000160904 001__ 160904
000160904 005__ 20251017144613.0
000160904 0247_ $$2doi$$a10.1016/j.colsurfb.2025.114736
000160904 0248_ $$2sideral$$a144067
000160904 037__ $$aART-2025-144067
000160904 041__ $$aeng
000160904 100__ $$aPele, Karinna Georgiana
000160904 245__ $$aNovel hydrogel-based cancer-on-a-chip models for growth of 3D multi-cellular structures and investigation of early angiogenesis in pancreatic ductal adenocarcinoma
000160904 260__ $$c2025
000160904 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160904 5203_ $$aCancer-on-a-chip models have enormous potential for the study of tumour development events. Here, we investigated hydrogels of egg white (EW) and gelatin for growth of 3D multi-cellular structures and investigation of early angiogenesis inside microfluidic devices. We focused on pancreatic ductal adenocarcinoma (PDAC), a devastating gastrointestinal malignancy. EW/gelatin hydrogels were stiffer and showed porous globular structures compared to the fibrous network of collagen I molecules. PANC-1 cells preferentially formed significantly larger spheroids in collagen I than in EW/gelatin hydrogels, whilst cell aggregates in the shape of grape-like clusters were significantly larger and more abundant in EW/gelatin. Cells inside the aggregates showed active cell unions, secreted matrix, and formed active unions with the surrounding EW/gelatin hydrogel. Early stages of PDAC were recreated by co-culture of two different microenvironments, one for PANC-1 and another one for fibroblasts, for investigating the secretion of soluble angiogenic factors, which depended on the role of each factor in the angiogenic and tumorigenic processes. Overall, cancer cell proliferation and establishment of a tumour vasculature were favoured. This study demonstrates the importance of the microenvironment in tumour cells behaviour as well as the complex interplay between the different cells present in PDAC to establish a tumoural vasculature.
000160904 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101018587/EU/Individual and Collective Migration of the Immune Cellular System/ICoMICS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101018587-ICoMICS$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-033490-I$$9info:eu-repo/grantAgreement/ES/MINECO-AEI-FEDER/PID2021-122409OB-C21$$9info:eu-repo/grantAgreement/ES/MINECO/PID2020-113819RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/PID2021-125762NB-I00
000160904 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000160904 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160904 700__ $$aCalderón-Villalba, Alejandro$$uUniversidad de Zaragoza
000160904 700__ $$aAmaveda, Hippolyte
000160904 700__ $$0(orcid)0000-0003-4747-7327$$aMora, Mario$$uUniversidad de Zaragoza
000160904 700__ $$aZhang-Zhou, Jack
000160904 700__ $$aPérez, María Ángeles
000160904 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, José Manuel$$uUniversidad de Zaragoza
000160904 700__ $$0(orcid)0000-0003-1958-4432$$aAlamán-Díez, Pilar$$uUniversidad de Zaragoza
000160904 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía-Gareta, Elena$$uUniversidad de Zaragoza
000160904 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000160904 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000160904 773__ $$g253 (2025), 114736 [14 pp.]$$pColloids surf., B Biointerfaces$$tCOLLOIDS AND SURFACES B-BIOINTERFACES$$x0927-7765
000160904 8564_ $$s15841262$$uhttps://zaguan.unizar.es/record/160904/files/texto_completo.pdf$$yVersión publicada
000160904 8564_ $$s2493989$$uhttps://zaguan.unizar.es/record/160904/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160904 909CO $$ooai:zaguan.unizar.es:160904$$particulos$$pdriver
000160904 951__ $$a2025-10-17-14:18:17
000160904 980__ $$aARTICLE