000160913 001__ 160913
000160913 005__ 20251204145007.0
000160913 0247_ $$2doi$$a10.1016/j.foodhyd.2025.111527
000160913 0248_ $$2sideral$$a144046
000160913 037__ $$aART-2025-144046
000160913 041__ $$aeng
000160913 100__ $$0(orcid)0009-0005-4339-0111$$aMarín-Sánchez, Javier$$uUniversidad de Zaragoza
000160913 245__ $$aYeast protein extraction assisted by Pulsed Electric Fields: Balancing electroporation and recovery
000160913 260__ $$c2025
000160913 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160913 5203_ $$aPulsed Electric Fields (PEF) technology is a promising method for extracting intracellular proteins from Saccharomyces cerevisiae by inducing membrane permeabilization. The degree of permeabilization, influenced by the number and size of pores formed, is expected to affect extraction efficiency. However, the impact of PEF treatment intensity on protein recovery remains unclear, particularly regarding the balance between membrane permeabilization and potential protein denaturation due to treatment. In this study, yeast cells were treated with PEF at 15 kV/cm across a total specific energy range (43.3–207.0 kJ/kg), and electroporation was assessed via flow cytometry. The release of amino acids, peptides, proteins, and protease activity was monitored over incubation time. The impact of field strength (5–20 kV/cm) on protein solubility was also analyzed. Lower-intensity treatments (43.3–84.0 kJ/kg) enabled up to 80 % protein recovery after 24 h, driven by protease activation and sustained hydrolysis. In contrast, higher-intensity treatments (≥121.1 kJ/kg) induced greater electroporation but reduced extraction efficiency (30–50 %) due to electric field–temperature synergy causing protein denaturation and loss of solubility. These findings highlight the need to optimize PEF conditions to balance electroporation and protein recovery, reinforcing PEF as a viable method for sustainable, high-quality protein recovery from yeast biomass.
000160913 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-113620RB-100
000160913 540__ $$9info:eu-repo/semantics/embargoedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000160913 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000160913 700__ $$aBerzosa, Alejandro$$uUniversidad de Zaragoza
000160913 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez, Ignacio$$uUniversidad de Zaragoza
000160913 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, Javier$$uUniversidad de Zaragoza
000160913 700__ $$0(orcid)0000-0002-5086-7839$$aSánchez-Gimeno, Cristina$$uUniversidad de Zaragoza
000160913 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000160913 773__ $$g168 (2025), 111527 [11 pp.]$$pFood hydrocoll.$$tFOOD HYDROCOLLOIDS$$x0268-005X
000160913 8564_ $$s3404773$$uhttps://zaguan.unizar.es/record/160913/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-05-11
000160913 8564_ $$s728935$$uhttps://zaguan.unizar.es/record/160913/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-05-11
000160913 909CO $$ooai:zaguan.unizar.es:160913$$particulos$$pdriver
000160913 951__ $$a2025-12-04-14:45:25
000160913 980__ $$aARTICLE