000160918 001__ 160918
000160918 005__ 20251017144624.0
000160918 0247_ $$2doi$$a10.1002/ange.202420879
000160918 0248_ $$2sideral$$a144074
000160918 037__ $$aART-2025-144074
000160918 041__ $$aeng
000160918 100__ $$0(orcid)0000-0001-8572-1760$$aPérez-Miana, Marta$$uUniversidad de Zaragoza
000160918 245__ $$aAmphiphilic Zeolitic Imidazolate Framework for Improved CO2 Separation in PIM-1 Mixed Matrix Membranes
000160918 260__ $$c2025
000160918 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160918 5203_ $$aThis study aims to enhance the compatibility between filler and polymer in mixed matrix membranes (MMMs), addressing an important challenge in membrane development. ZIF‐94, known for its affinity to CO2, was partially modified with 2‐undecylimidazolate (umIm) through the solvent‐assisted ligand exchange (SALE) method to improve its compatibility with the prototypical polymer of intrinsic microporosity PIM‐1. The modified ZIF‐94 (ZIF‐94‐umIm) can be considered as an amphiphilic MOF with both hydrophilic and hydrophobic moieties, while maintaining a considerably high CO2 adsorption capacity (2.34 mmol g−1 at 90 kPa and 0 °C). Gas separation experiments were performed using mixed gas compositions of 15/85 CO2/N2 at 3 bar and 35 °C. The resulting MMM with a 5 wt.% loading exhibited an enhanced CO2 separation performance, with ca. 70% and 10% increases in CO2 permeability (8900 Barrer) and CO2/N2 selectivity (20.2), respectively, compared to pristine PIM‐1 membranes. In addition, thin film nanocomposite membranes were prepared showing a 23.5 CO2/N2 selectivity at 2350 GPU of CO2. This modification strategy shows a great potential for improving the CO2 capture technologies, highlighting the potential of tailoring MOF fillers for advanced membrane materials in gas separation applications.
000160918 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MCIU/CNS2023-144346$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138582OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC-2018-024561-I$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130621B-C4$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000160918 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000160918 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160918 700__ $$0(orcid)0000-0001-5002-7197$$aLuque-Alled, José Miguel$$uUniversidad de Zaragoza
000160918 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, Álvaro
000160918 700__ $$0(orcid)0000-0003-4789-4649$$aMartínez-Visus, Íñigo$$uUniversidad de Zaragoza
000160918 700__ $$aFoster, Andrew B.
000160918 700__ $$aBudd, Peter M.
000160918 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000160918 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000160918 773__ $$g137, 22 (2025), e202420879 [12 pp.]$$pAngew. Chem.$$tAngewandte Chemie$$x0044-8249
000160918 8564_ $$s2993486$$uhttps://zaguan.unizar.es/record/160918/files/texto_completo.pdf$$yVersión publicada
000160918 8564_ $$s3022761$$uhttps://zaguan.unizar.es/record/160918/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160918 909CO $$ooai:zaguan.unizar.es:160918$$particulos$$pdriver
000160918 951__ $$a2025-10-17-14:23:19
000160918 980__ $$aARTICLE