000160928 001__ 160928
000160928 005__ 20251017144627.0
000160928 0247_ $$2doi$$a10.1016/j.biombioe.2025.107911
000160928 0248_ $$2sideral$$a144029
000160928 037__ $$aART-2025-144029
000160928 041__ $$aeng
000160928 100__ $$aGracia-Monforte, César$$uUniversidad de Zaragoza
000160928 245__ $$aLow temperature chemical looping combustion of pyrolysis gases in a fixed bed reactor
000160928 260__ $$c2025
000160928 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160928 5203_ $$aThis study presents an experimental investigation into the feasibility of oxidizing biomass pyrolysis gases at relatively low temperatures using a chemical looping combustion (CLC) approach. The application of this alternative method would enable the capture of carbon from the pyrolysis gas stream, which is currently released into the atmosphere in most pyrolysis systems, as high-purity CO2. In a fixed bed reactor, the reduction behavior of three different Cu-based oxygen carriers (OC) - pure CuO pellets, carulite and Al2O3-supported CuO - was evaluated to determine whether pyrolysis gases could be completely oxidized to CO2 and H2O within a temperature range of 600–650 °C and at weight hourly space velocities (WHSV) of 0.06–0.10 h−1. Both CuO and carulite exhibited significant amounts of unconverted pyrolysis gases even during the initial stages of the reduction experiments. In contrast, Al2O3-supported CuO emerged as the most effective material, facilitating the complete oxidation of pyrolysis gases over extended reaction times. For this oxygen carrier, a decline in the combustion efficiency was only observed at very high (90 %) reduction conversions. Reduction/oxidation cycles for this most promising material were successfully demonstrated, with the oxygen carrier showing no signs of activity loss after 10 cycles. However, carbon deposition was detected under several experimental conditions, which could potentially reduce the carbon capture efficiency of the process.
000160928 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133374-I00
000160928 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000160928 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160928 700__ $$aMaldonado-Martín, Francisco$$uUniversidad de Zaragoza
000160928 700__ $$0(orcid)0000-0002-5047-5106$$aAtienza-Martínez, María
000160928 700__ $$0(orcid)0000-0003-4493-6540$$aÁbrego, Javier$$uUniversidad de Zaragoza
000160928 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000160928 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000160928 773__ $$g199 (2025), 107911 [9 pp.]$$pBiomass bioenergy$$tBIOMASS & BIOENERGY$$x0961-9534
000160928 8564_ $$s4968317$$uhttps://zaguan.unizar.es/record/160928/files/texto_completo.pdf$$yVersión publicada
000160928 8564_ $$s2607076$$uhttps://zaguan.unizar.es/record/160928/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160928 909CO $$ooai:zaguan.unizar.es:160928$$particulos$$pdriver
000160928 951__ $$a2025-10-17-14:24:34
000160928 980__ $$aARTICLE