000160945 001__ 160945
000160945 005__ 20251017144643.0
000160945 0247_ $$2doi$$a10.1016/j.actamat.2025.121080
000160945 0248_ $$2sideral$$a144021
000160945 037__ $$aART-2025-144021
000160945 041__ $$aeng
000160945 100__ $$aPesquera, David
000160945 245__ $$aHierarchical domain structures in buckled ferroelectric free sheets
000160945 260__ $$c2025
000160945 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160945 5203_ $$aFlat elastic sheets tend to display wrinkles and folds. From pieces of clothing down to two-dimensional crystals, these corrugations appear in response to strain generated by sheet compression or stretching, thermal or mechanical mismatch with other elastic layers, or surface tension. Extensively studied in metals, polymers and, — more recently — in van der Waals exfoliated layers, with the advent of thin single crystal freestanding films of complex oxides, researchers are now paying attention to novel microstructural effects induced by bending ferroelectric-ferroelastics, where polarization is strongly coupled to lattice deformation. Here we show that wrinkle undulations in BaTiO3 sheets bonded to a viscoelastic substrate transform into a buckle delamination geometry when transferred onto a rigid substrate. Using spatially resolved techniques at different scales (Raman, scanning probe and electron microscopy), we show how these delaminations in the free BaTiO3 sheets display a self-organization of ferroelastic domains along the buckle profile that strongly differs from the more studied sinusoidal wrinkle geometry. Moreover, we disclose the hierarchical distribution of a secondary set of domains induced by the misalignment of these folding structures from the preferred in-plane crystallographic orientations. Our results disclose the relevance of the morphology and orientation of buckling instabilities in ferroelectric free sheets, for the stabilization of different domain structures, pointing to new routes for domain engineering of ferroelectrics in flexible oxide sheets.
000160945 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001263-S$$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/EC/H2020/823713/EU/Fibre Reinforced thermoplAstics Manufacturing for stiffEned, complex, double curved Structures./FRAMES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823713-FRAMES$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2021-001214-S$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICINN/PID2023-147211OB-C22$$9info:eu-repo/grantAgreement/ES/MINECOPID2022-140589NB-100
000160945 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000160945 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160945 700__ $$aCordero-Edwards, Kumara
000160945 700__ $$aCheca, Marti
000160945 700__ $$aIvanov, Ilia
000160945 700__ $$aCasals, Blai
000160945 700__ $$aRosado, Marcos
000160945 700__ $$aCaicedo, José Manuel
000160945 700__ $$0(orcid)0000-0001-8184-7753$$aCasado-Zueras, Laura
000160945 700__ $$0(orcid)0000-0001-6771-6941$$aPablo-Navarro, Javier
000160945 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000160945 700__ $$aSantiso, José
000160945 700__ $$aDomingo, Neus
000160945 700__ $$aCatalan, Gustau
000160945 700__ $$aSandiumenge, Felip
000160945 773__ $$g293 (2025), 121080 [9 p.]$$pActa mater.$$tActa Materialia$$x1359-6454
000160945 8564_ $$s8635111$$uhttps://zaguan.unizar.es/record/160945/files/texto_completo.pdf$$yVersión publicada
000160945 8564_ $$s2563208$$uhttps://zaguan.unizar.es/record/160945/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160945 909CO $$ooai:zaguan.unizar.es:160945$$particulos$$pdriver
000160945 951__ $$a2025-10-17-14:32:54
000160945 980__ $$aARTICLE