000160971 001__ 160971
000160971 005__ 20251017144553.0
000160971 0247_ $$2doi$$a10.1016/j.ceramint.2025.03.120
000160971 0248_ $$2sideral$$a144155
000160971 037__ $$aART-2025-144155
000160971 041__ $$aeng
000160971 100__ $$aLahlahi-Attalhaoui, A.
000160971 245__ $$aProcessing and optimization of laser-activated Cu and Ni inks for ceramic tile inkjet printing
000160971 260__ $$c2025
000160971 5203_ $$aThis study presents a technique for the metallization of ceramic surfaces under ambient conditions, using metallic inks activated through direct laser writing. This process represents a significant advancement in surface processing technology in the ceramic tile industry. The method involves crystallizing metallic coatings directly onto the ceramic surface, using a Cu or Ni polymer coordination complex. A uniform and vitrified metallic coating is formed on the ceramic when exposed to pulsed laser irradiation at 1064 nm. X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis confirm the formation of face-centered cubic phases of Cu and Ni. Scanning Electron Microscopy (SEM) analysis reveals spherical grains embedded in the matrix with diameters smaller than 150 nm. TEM analysis confirms the presence of crystals with an average size smaller than 20 nm, which induce Surface Plasmon Resonance (SPR) effects. The absorption effect observed at 450 and 350 nm, indicated by UV–Vis Diffuse Reflectance Spectroscopy, is attributed to the surface plasmon resonance effects of Cu and Ni particles on the glass coating. X-ray Photoelectron Spectroscopy (XPS) analysis confirms the laser-induced redox transformation of Cu(II) and Ni(II) precursor complexes into reduced Cu(0) and Ni(0) nanoparticles, while also confirming the formation of a thin oxide coating of CuO and NiO on the surface. This approach holds great potential for digital ceramic decoration due to the scalable nature of this technique.
000160971 536__ $$9info:eu-repo/grantAgreement/ES/AEI/TED2021-130963B-C22$$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-116719RB-C43
000160971 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000160971 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160971 700__ $$aPorcar, S.
000160971 700__ $$aCuadra, J.G.
000160971 700__ $$aToca, S.
000160971 700__ $$aFraga, D.
000160971 700__ $$aJordán, M.D.
000160971 700__ $$aCervera, I.
000160971 700__ $$0(orcid)0000-0002-0500-1745$$aFuente, G.F. de la
000160971 700__ $$aCarda, J.B.
000160971 773__ $$g(2025), [13 pp.]$$pCeram. int.$$tCeramics International$$x0272-8842
000160971 8564_ $$s13060195$$uhttps://zaguan.unizar.es/record/160971/files/texto_completo.pdf$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2027-03-10
000160971 8564_ $$s2489373$$uhttps://zaguan.unizar.es/record/160971/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2027-03-10
000160971 909CO $$ooai:zaguan.unizar.es:160971$$particulos$$pdriver
000160971 951__ $$a2025-10-17-14:12:27
000160971 980__ $$aARTICLE