000160990 001__ 160990
000160990 005__ 20251017144617.0
000160990 0247_ $$2doi$$a10.1039/d5mh00373c
000160990 0248_ $$2sideral$$a144178
000160990 037__ $$aART-2025-144178
000160990 041__ $$aeng
000160990 100__ $$aMalefioudaki, Mariella
000160990 245__ $$aMultifunctional polyoxomolybdate ionic liquid coatings for mitigating microbiologically influenced corrosion
000160990 260__ $$c2025
000160990 5060_ $$aAccess copy available to the general public$$fUnrestricted
000160990 5203_ $$aCorrosion of metals and other materials in marine environments poses significant economic, operational, safety, and environmental challenges across the oil and gas industry, the renewable energy sector, and maritime infrastructure. Microbiologically influenced corrosion (MIC) accounts for a substantial portion of this corrosion, with sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) being key contributors. Conventional methods such as cathodic polarization have proven insufficient in mitigating the colonization of corrosive microbial communities in real marine environments, requiring the development of alternative, broad-spectrum antimicrobial strategies to prevent such biofilm formation. Recently, molybdate has emerged as a potential alternative to traditional biocides and nitrate. Our hypothesis is polyoxometalate-ionic liquids (POM-ILs), which exhibit antimicrobial and anticorrosion properties, could have a broader spectrum of antimicrobial activity than demonstrated until now and could be capable of shielding and protecting sensitive metal surfaces from the extreme acidic environments produced by MIC microorganisms. Here we show how two prototype polyoxomolybdate-based POM-ILs, [(CH3(CH2)6)4N]2[Mo6O19] and [(CH3(CH2)6)4N]4[Mo8O26], demonstrated antimicrobial activity at microgram per millilitre concentrations, prevented biofilm formation on metal surfaces, and provided resistance to corrosive acidic environments. Furthermore, impedance measurements were commensurate with electron microscopy studies showing that POM-IL-coated brass coupons withstood extremely corrosive environments. These proof-of-concept results demonstrate how multi-functional POM-IL coatings represent promising MIC mitigation solutions by providing a hydrophobic acid-resistant and biocidal protective layer that prevents biocolonisation and acidic corrosion by MIC microorganisms.
000160990 536__ $$9info:eu-repo/grantAgreement/EUR/COST-Action/CA20130$$9info:eu-repo/grantAgreement/ES/DGA/E15-23R$$9info:eu-repo/grantAgreement/ES/DGA/T02-23R$$9info:eu-repo/grantAgreement/ES/AEI/MICNN/PID2022-137626OB-C31$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2023-001286-S
000160990 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000160990 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000160990 700__ $$aMisra, Archismita
000160990 700__ $$aSbeity, Nadja
000160990 700__ $$aZueco-Vincelle, Juan
000160990 700__ $$0(orcid)0000-0002-7819-8956$$aLaguna-Bercero, Miguel A.
000160990 700__ $$aKoerdt, Andrea
000160990 700__ $$0(orcid)0000-0003-0702-8260$$aMartín-Rapún, Rafael$$uUniversidad de Zaragoza
000160990 700__ $$0(orcid)0000-0003-4848-414X$$aMitchell, Scott G.
000160990 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000160990 773__ $$g(2025), [14 pp.]$$pMater. horizons$$tMATERIALS HORIZONS$$x2051-6347
000160990 8564_ $$s2337817$$uhttps://zaguan.unizar.es/record/160990/files/texto_completo.pdf$$yVersión publicada
000160990 8564_ $$s2796999$$uhttps://zaguan.unizar.es/record/160990/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000160990 909CO $$ooai:zaguan.unizar.es:160990$$particulos$$pdriver
000160990 951__ $$a2025-10-17-14:20:30
000160990 980__ $$aARTICLE