000161035 001__ 161035
000161035 005__ 20251030145434.0
000161035 0247_ $$2doi$$a10.1016/j.tsep.2025.103721
000161035 0248_ $$2sideral$$a144259
000161035 037__ $$aART-2025-144259
000161035 041__ $$aeng
000161035 100__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000161035 245__ $$aEnergy storage using direct iron oxide reduction and energy utilization with high temperature metal combustion
000161035 260__ $$c2025
000161035 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161035 5203_ $$aIn response to the growing demand for renewable energy storage solutions, metal fuels have emerged as a promising alternative as recyclable energy carriers. These metals release energy through combustion, forming metal oxides, which can subsequently be regenerated into their metallic state using renewable hydrogen. Recent experimental studies have demonstrated the feasibility of self-sustaining combustion-oxidation of various finely ground metals. For the reduction step, established direct reduction iron (DRI) technology has been successfully used to convert solid iron ore into metallic iron without transitioning to the liquid phase.
Through thermodynamic calculations conducted using Aspen, ensuring precise process modelling and efficiency evaluation, this study examines the technical feasibility and preliminary design of an energy storage system that employs iron as a metallic energy carrier. Iron undergoes oxidation and serves as a fuel in high-temperature reactors operating above 1200 °C, thereby releasing its stored energy and forming iron oxide. When hydrogen is available, the iron oxide can be reduced back to metallic iron through the well-established Direct Reduced Iron (DRI) process or a comparable method at approximately 750 °C.
A round-trip thermal efficiency of 77.9 % has been calculated for the overall energy storage and utilization process. To further enhance global efficiency, key recommendations include hydrogen recirculation during the reduction process to ensure complete conversion and mitigating the impact of excess air in the oxidation stage.
000161035 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-141372OB-I00$$9info:eu-repo/grantAgreement/ES/DGA/T46-17R
000161035 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161035 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161035 700__ $$aSaez de Guinoa, Javier
000161035 700__ $$0(orcid)0009-0004-7376-8894$$aJiménez, Santiago$$uUniversidad de Zaragoza
000161035 700__ $$aMayoral, Carmen
000161035 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000161035 7102_ $$15007$$2570$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Lenguajes y Sistemas Inf.
000161035 773__ $$g63 (2025), 103721 [10 pp.]$$tThermal Science and Engineering Progress$$x2451-9049
000161035 8564_ $$s4053829$$uhttps://zaguan.unizar.es/record/161035/files/texto_completo.pdf$$yVersión publicada
000161035 8564_ $$s2600174$$uhttps://zaguan.unizar.es/record/161035/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161035 909CO $$ooai:zaguan.unizar.es:161035$$particulos$$pdriver
000161035 951__ $$a2025-10-30-14:52:09
000161035 980__ $$aARTICLE