000161048 001__ 161048
000161048 005__ 20251017144600.0
000161048 0247_ $$2doi$$a10.1093/jxb/eraf128
000161048 0248_ $$2sideral$$a144209
000161048 037__ $$aART-2025-144209
000161048 041__ $$aeng
000161048 100__ $$aWang, Yuanyuan
000161048 245__ $$aGenomic and evolutionary evidence for drought adaptation of allopolyploid Brachypodium hybridum
000161048 260__ $$c2025
000161048 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161048 5203_ $$aClimate change is increasing the frequency and severity of drought worldwide, threatening the environmental resilience of cultivated grasses. However, the genetic diversity in many wild grasses could contribute to the development of climate-adapted varieties. Here, we elucidated the impact of polyploidy on drought responses using allotetraploid Brachypodium hybridum (B. hybridum) and its progenitor diploid species Brachypodium stacei (B. stacei). Our findings suggest that progenitor species’ genomic legacies resulting from hybridization and whole-genome duplications conferred greater ecological adaptive advantages to B. hybridum compared with B. stacei. Genes related to stomatal regulation and the immune response from S-subgenomes were under positive selection during speciation, underscoring their evolutionary importance in adapting to environmental stresses. Biased expression in polyploid subgenomes (B. stacei-type and B. distachyon-type) significantly influenced differential gene expression, with the dominant subgenome exhibiting more differential expression. B. hybridum adapted a drought escape strategy characterized by higher photosynthetic capacity and lower intrinsic water-use efficiency than B. stacei, driven by a highly correlated coexpression network involving genes in the circadian rhythm pathway. In summary, our study shows the influence of polyploidy on ecological and environmental adaptation and resilience in model Brachypodium grasses. These insights hold promise for informing the breeding of climate-resilient cereal crops and pasture grasses.
000161048 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-140074NB-I00$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131073B-I00
000161048 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000161048 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161048 700__ $$aChen, Guang
000161048 700__ $$aZeng, Fanrong
000161048 700__ $$aDeng, Fenglin
000161048 700__ $$aYang, Zujun
000161048 700__ $$aHan, Zhigang
000161048 700__ $$aXu, Shengchun
000161048 700__ $$aNevo, Eviatar
000161048 700__ $$0(orcid)0000-0001-7793-5259$$aCatalán, Pilar$$uUniversidad de Zaragoza
000161048 700__ $$aChen, Zhong-Hua
000161048 7102_ $$15011$$2063$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Botánica
000161048 773__ $$g(2025), [15 pp.]$$pJ. Exp. Bot.$$tJournal of Experimental Botany$$x0022-0957
000161048 8564_ $$s19936251$$uhttps://zaguan.unizar.es/record/161048/files/texto_completo.pdf$$yVersión publicada
000161048 8564_ $$s2746768$$uhttps://zaguan.unizar.es/record/161048/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161048 909CO $$ooai:zaguan.unizar.es:161048$$particulos$$pdriver
000161048 951__ $$a2025-10-17-14:14:09
000161048 980__ $$aARTICLE