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Prologo

El propésito de este trabajo es dar una idea general del problema de la suma de cuadrados, y de
cémo se ha desarrollado a lo largo del tiempo. Se hace un andlisis mas profundo de dos de los proble-
mas mas clasicos de la teoria de ndimeros: el teorema de Fermat y el teorema de Lagrange. El primero
trata de la suma de dos cuadrados, mientras que el segundo, trata de la suma de cuatro cuadrados.
Sobre estos dos teoremas se ha escrito mucha literatura y se han conseguido demostraciones muy ori-
ginales, aplicando diferentes herramientas mateméticas. En este trabajo se dardn las demostraciones
clasicas de estos resultados, haciendo algtin comentario sobre otras pruebas cuando sea oportuno y sin
profundizar demasiado.

En la primera parte del trabajo, se da una pequena introduccién explicando el origen del estudio
de las sumas de cuadrados, y de cémo se fueron desarrollando los dos teoremas a tratar, para acabar
con su final demostracién.

Se comenta, cémo diversas eminencias en el campo de las matemadticas, han estado involucrados
en la resolucién y desarrollo de estos problemas.

Los capitulos centrales dan demostraciones rigurosas de estos dos grandes teoremas, incluyendo
una segunda demostracién en el caso de los dos cuadrados, y un esquema de una demostracién alter-
nativa en el caso de los cuatro cuadrados. Remarcar que para estas demostraciones, se suele introducir
la ley de reciprocidad cuadritica para probar ciertos resultados clave. Sin embargo, en este trabajo no
se hace uso de esta herramienta para probar los teoremas.

El dltimo capitulo, se encarga de dar una visién global de cémo ha evolucionado el problema de
la suma de cuadrados. Asi, han aparecido varias generalizaciones y se han desarrollado herramientas
muy utiles y versétiles para la resolucién de diversos problemas, no solo referentes a la teoria de
nimeros. Estas extensiones han dado lugar a campos de estudio completamente nuevos, llegando a
crear toda una nueva disciplina matemadtica como es la teoria de cuerpos de clases.

La realizacion de este trabajo fue en un principio causa de la obligacién. Sin embargo, una vez que
estuve enfrascado entre los diferentes textos, result6 agradable e interesante investigar sobre la teoria
de ndmeros, la cual ha despertado una gran curiosidad en mi y que de otra forma es muy probable que
no hubiera llegado a conocer.

Por dltimo agradecer al Dr. Javier Otal, que me ha acompaiiado en este proyecto dirigiendo este
trabajo y ha tenido una gran paciencia conmigo en su labor de corrector. Decir que ha sido una mag-
nifica experiencia, haber realizado esta pequefia escaramuza en el mundo de la teoria de nlimeros de
la mano de este excelente profesor y amigo.

Antonio P. Lozano

III






English Summary

The main aim in this final year dissertation is to proof two of the most classic theorems in Number
Theory: Fermat’s Theorem on the Sum of two Squares and Lagrange’s four-square theorem. Both
theorems, are about determinate which integers can be expressed as the sum of a given number of
squares, that is, which have the form x% + .- +x,21 where x; € Z, for a given n.

In referring to the study of this kind of abstract subjects, people usually ask about why anybody
should want to know such facts. While mathematicians rarely raise such questions, they often answer
them by pointing out the usefulness of abstract mathematics in physics, engineering, and other scien-
tific disciplines. Also, in the present instance, a case can be made for the usefulness of the study of
representations of integers by sums of squares in lattice point problems, crystallography, and certain
problems in mechanics.

The theorems

The first theorem to deal with is the Fermat’s theorem on sums of two squares wich states that an
odd prime p is expressible as
p=a>+b?,

with a and b integers, if and only if p =1 (mdd 4).

However, Albert Girard had already made a determination of the numbers (not necessarily primes)
expressible as a sum of two integral squares. Fermat was the first to claim a proof of it; he announced
this theorem in a letter to Marin Mersenne dated December 25, 1640: for this reason this theorem is
sometimes called Fermat’s Christmas Theorem. Fermat stated that he possessed an irrefutable proof.
Elsewhere he stated that his proof was by the method of infinite descent. The method of infinite descent
is a method of demonstration which was developed by Fermat. This method relies on the facts that
the natural numbers are well ordered and that there are only a finite number of them that are smaller
than any given one. Nevertheless, Fermat usually did not write down proofs of his claims, and he did
not provide a proof of this statement. The first proof was found by Euler in the middle of the eighteen
century after much effort and is based on infinite descent.

In connection with the Lagrange’s four-square theorem, it states that any natural number 7 is
expressible as

n=a +b*+c*+d*

with a,b, c,d integers. Bachet remarked in the translation notes of Arithmetica that Diophantus appa-
rently assumed that any number is either a square or the sum of 2, 3 or 4 squares. This result is also
known as Bachet’s theorem. Fermat, again stated that he possessed a proof that every number is sum
of four squares. It was not until 1770 that Lagrange proved the theorem.

The origins

The origin of these results can be found in Diophantus (325-409 A.D.). He propossed a collection
of statements connected with characterize of the set of integers, for which the diophantine equation
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VI Capitulo 0. English Summary

n = x> +y? has solution. Often those statments are in geometric language, and the meaning of his
statements is not always clear. At least some of them appear to be incorrect; one of them, however, is
equivalent to the important identities

(af +b7) (a3 +D3) = (a1a2 — b1b2)? + (a1ba + b1an)* = (a1a2 + b1b2)* + (a1b2 — b1a)*

It is easy to prove this identity by applying the multiplicative property of the Gaussian integer’s norm
(see below). The identity shows that if two numbers are expressible as sum of two squares, its product
is too.

Among the mathematicians who studied this problem were Bachet (1581-1638), famous for his
own edition of Diophantus, and Girard (1595-1632) who first stated the necessary and sufficient con-
ditions on n for the solvability of n = x> +y? in integers: n has to be either a square, or a prime p = 1
(méd 4), or a product of such numbers, or the product of one of the preceding with a power of 2.

Shortly afterwards, Fermat (1601-1665) who had a Bachet’s copy of Diophantus’ Arithmetica,
stated, as a condition on n, that n = 1 (mdd 4) and that when 7 is divided by its largest square fac-
tor, the quotient should not contain any prime ¢ = 3 (mdd 4). In fact, he indicates (in a numerical
example), how to compute the number of ways to express such number as sum of two squares. Fermat
called the theorem that every prime 4n+ 1 is a sum of two squares, the fundamental theorem on right
triangles. He worked in solving the proposed problems making some annotations in the margin. In
one of those annotations is the famous Fermat’s Last Theorem.

The problem of characterizing which numbers can be expressed as a sum of three squares is
more difficult than the two squares or the four squares problem, what is more important, requires
different methods. However, Gauss proved that n is expressible as a sum of three squares if and only
if n # 4¢(8k +7); thus 7,15,23,28, ... are not sums of three squares.

There is no explicit statement of the Lagrange’s four-square theorem in Diophantus; however,
while he requires conditions for an integer to be a sum of two or of three squares, he states no condi-
tions whatsoever for n to be a sum of four squares. Bachet interpret this as indicating a knowledge of
the four squares theorem. Bachet did state the theorem explicitly and mention that he had verified it
up to 325, but had no general proof of it. As mentioned earlier, Fermat claimed (again) to have a proof
of the theorem. Fermat, in a letter to Carcavi, indicated that his proof (like so many others of his) was
based on the method of descent, whose application in this case, he added, required another new idea.
After several attempts to prove the four square theorem, especially from Euler and Goldbach, Euler
published some relevant results. Euler proved, among others, that there exists integers a, b such that
1 +a? + b? is divisible by a given prime p. Also, Euler gave the fundamental formula

@+ ++d) (PP + G+ +57) = +y + 27+,
x=ap+bg—+cr+ds, y=aq—bp=LcsFdr,
z=arFbs—cp=xdg, v=astbr¥cqg—dp.

These results are essential to prove the four square theorem. Finally, Lagrange gave the first proof of
the four square theorem and acknowledged his indebtedness to ideas in the preceding results by Euler.

The proofs

The classic proofs for the Fermat’s Theorem on the Sum of two Squares and Lagrange’s four-
square theorem are based on the method of infinite descent. Let’s take a closer look at this method.

The method of infinite descent is a particular kind of proof by contradiction which relies on the
facts that the natural numbers are well ordered and that there are only a finite number of them that
are smaller than any given one. Fermat’s own account of it is to be found a letter ‘Relation nouvelles
entitled decouvertes la science des nombres’ which he wrote to Carcavi in 1659. In this letter he
tells Carcavi that he has discovered a new method demonstration and applied it successfully to the
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solution of a considerable number of problems in the theory of numbers. He calls it the method of
infinite unlimited descent (descente infinie indefinie) says that first applied only negative propositions
as: ‘There is no right triangle whose sides are integers whose area is equal to the square of an integer.’

He gives the following abstract of his proof of the latter: ‘The proof is made by reductio ad absur-
dum in this manner: If there is a right triangle with integral sides and with an area equal to the square
of an integer, then there is a second triangle, smaller than the first, which has the same preperty; and
if there is a second triangle, smaller than the first, which has the same property, then there is, by like
reasoning, a third smaller than the second; and then a fourth, a fifth, and so on ad infinitum. But there
is not an infinite number of integers less than a given integer. From which one concludes thar it is
impossible that there should be a right triangle with integral sides and with an area wich is the square
of an integer.’

In the next paragraph Fermat says: ‘It was a long time before I was able to apply my method
to affirmative questions, because the way and manner of getting at them is much more difficult than
that which I employ with negative theorems. So much so that, when I had to prove that every prime
number of the form 4k + 1 is made up of two squares, I found myself in much torment. But at last a
certain reflection many times repeated gave me the necessay light, and affirmative questions yielded to
my method with some new principles by which sheer necessity compelled me to supplement it. This
development of my argument in the case of affirmative questions takes the following line. If a prime
number of the form 4k + 1 selected at random is not made up of two squares, there will exist another
prime number of the same sort but less than given number, and again a third still smaller and so on
descending ad infinitum until one comes to the number 5, which i the smallest of all numbers of the
kind in question and which the argument would require not to be made up of two squares, although
in fact it is so made up. From which one must infer, by reductio ad absurdum, that all numbers of the
kind in question are in consequence made up of two squares.’

The foregoing is a good account of Fermat’s method although it leaves out all details of the proof.
Fermat’s proof, like so many others of his, is no extant. As seen above, the proof was made by Euler.

Unlike many other texts of Numbers theory, the proofs in this final year dissertation are indepen-
dent of the law of quadratic reciprocity.

Before begining the proofs, let’s see some useful results and definitions.

Recall that a Gaussian integer is a complex number whose real and imaginary parts are both
integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form
an integral domain, usually written as Z[i]. The norm of a Gaussian integer is defined as the square of
its absolute value as a complex number and a natural number:

N:Zl] — Nu{0}
z — N(z)=2z%2

The norm is multiplicative i.e. N(zw) = N(z)N(w) and the units of Z[i] are precisely those elements
with norm 1, i.e. the set {41, +i}.

Definition 1. For each integer k > 1, let Sy = {n | n=x3+ ...+ x2, x1,...,xx € Z}, the set of all sums
of k squares.

As a consequence of the mutiplicativity of the norm, it follows the next lemma
Lemma 2. S, is closed under multiplication.

Demostracion. Lets,t € Sp, s = a% + b% andr = a% + b%. Let’sdefinez=aqy+i-byandw=ay+1i-bs.
Now, the lemma follows from the multiplicativity of the norm:

N(z)N(w) = (a2 +b3)(d3 +b3) = (a1ay — b1b2)* + (a1by + braz)* = N(zw)

O]

Autor: Antonio Pablo Lozano Vicente
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The next result is crucial to proof the Fermat’s theorem.

Lemma 3. For primes p = 4m+ 1 the equation x* = —1 (méd p) has two solutions s € {1,2,...,p—

1}, for p =2 there is one such solution, while the primes of the form p = 4n+ 3 there is no solution.

Demostracion. In this proof is where usually other books introduce the law of quadratic reciprocity.
However, let’s proof the lemma using some simple principles.

For odd p, and x € {1,..,p — 1} let P, be the set {x, —x,x~ !, —x~'} with x € {1,2,...,p— 1}. with
—x the additive inverse and x~! the multiplicative inverse over Z,. Those sets contains 4 elements
with the exception some of the following cases

= x = —x es impossible for odd p.

n x=x1is equivalent to x2 = 1. This have two solutions, namely x =1 and x = p — 1, and then

P =P, ={l,-1}={p-1,1-p}={l,p—1}

1

» x= —x"!isequivalent to x> = —1. This equation may have no solution or two distinct solutions

X =X, X = p — Xo; in this case, P, = {xo,p —xo}.

The set {1,..,p— 1} has p — 1 elements, and we partitioned it into quadruples, plus one or two pairs
(depending on the size of P;). For p — 1 = 4m+ 2, there is only one pair {1, p — 1} the rest is quadru-
ples, and thus x> = —1 (mdd p) has no solution. For p — 1 = 4m there has to be a second pair, and
this contains the two solutions of x> = —1. O

Theorem 4. An odd prime p is expressible as p = x> +y*, withx,y €N, ifand only if p=1 (méd 4).
Demostracion. The proof is as follows

1. S, is closed under multiplication.

2. Let p to be a prime 4n+ 1, p divide to 1 +x? for some x, choosing x such that mp = x*> + 1 with
O<m<p

3. Take the less m such that x> +y?> = mp, with p prime and 1 < m < p, then find x% +y§ =mp,
with x1,y; integers y 0 < m; < m and this contradicts the minimality of m.

O]

Generalizing for any integer:

Theorem 5. A positive integer n is a sum of two squares if and only if every prime ¢ =3 (méd 4)
divides n to an even power.

Demostracion. It is a rather easy consequence of the unique factorization property in the ring Z,
Lemma 2 and Theorem 4 at once. 0

Alternatively, Fermat’s theorem can be proven by using Gaussian integers.

First at all, recall some properties of Z[i]. We can define the divisibility and factorization in Z[i]
in the same way that in the integers. So, like in Z, we obtain that if p is irreducible in Z[i], it is prime
too. Also, Z[i] is a unique factorization domain (UFD).

Theorem 6. An odd prime p is expressible as p = x> +y?, with x,y €N, ifand only if p=1 (méd 4).

Demostracion. The alternative proof is as follows

1. S is closed under multiplication.

Sumas de cuadrados
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2. Let p to be a prime 4n+ 1, p divide to 1 +x? for some x, choosing x such that mp = x> + 1 with
O<m<p

3. Let x such that p|1 4 x> = (1 +xi)(1 —xi) and then prove that p { (1 +xi) and p { (1 —xi) then
p is not prime in Z[i].

4. If p is not prime in Z[i] then p € S,.
O

Just as the two-squares identity can be explained in terms of complex numbers, a similar four-
squares identity can be derived from a generalisation of complex numbers known as the quaternions
H. The elements of H are the points ¢ = (a,b,c,d) € R*, and addition and subtraction are performed
by the usual method for vectors. To define multiplication, it is useful to write each quaternion in the
form g = al + bi+ cj+ dk, where a,b,c,d € R and 1,i, j, k denote the standard basis vectors of R*.
Defining the products of the basis vectors by

=== -1

ij=—ij=k
jk=—kj=1i
ki=—ik=j
Notice that multiplication is not commutative, since ij = — ji for example. By assuming distri-

butivity (that is, ¢(¢' +¢”) = q¢' +qq” and (¢ +q”)q = ¢'q+ q”q for all q,q4',q”), we find that the
product of any pair of quaternions g; = (a2 +b? +c? +d?) and g2 = (a3 + b3 + 3 +d3)

q1qp = (ai +bi+ i +dD) (@B +D5+3+d3) = (a1aa—biby—cicr —dyda)?
+ (@by+biar+cidy —die)?
+ (alcg—bldz—l-claz—i-dlbz)z
-+ (ald2+b162—c1b2+d1a2)2

The conjugate of a quaternion g = a + bi + cj + dk is the quaternion ¢ = a — bi — cj — dk. The
norm of a Quaternion ¢ is defined as the square root of the product ¢gg. It will be denoted by ||g||.
Since conjugation is an automorphism, it follows:

la1q2|| = [lq1l] - [lq2||
So the norm is multiplicative. As a consequence of this, it is easy to proof the next lemma.

Lemma 7. S, is closed under multiplication.

Demostracion. Letx; =a?+b3+ci+d? =||[1-a1+i-by+j-c1+k-di||*=||q1]|* and x, = a3 + b3 +
c3+d3=||1-ax+i-by+j-ca+k-da||> = ||q2||>. Now, the lemma follows from the multiplicativity
of the norm:

xix2 = [lg1 ]l a2 = [|q142|*
Then

2

(@ +b}++dH) a3+ b3+ +d3) ayay —biby —cicp —did;
arby +biax+cidy —dica
ajca—bidy+crax +diby

aydy +bicr —c1by+dias

2

2

( )
( )
( )’
( )

O]

Autor: Antonio Pablo Lozano Vicente
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In the same way as in the two squares theorem the proof of Lagrange’s theorem is supported by
the following result.

Lemma 8. If p is an odd prime, then a*> + b* + 1 = kp for some integers a,b,k with 0 < k < p.

Demostracion. Let p =2n+ 1. Consider the sets A := {a® |[a=0,1,...,n} and B:= {-b*—1 | b=
0,1,...,n}. We have the following facts:

= No two elements in A are congruent mod p, for if a> = ¢ (méd p), then either p | (a —c) or
p | (a+ c) by unique factorization of primes. Since a — ¢,a+c¢ < 2n < p, and 0 < a,c, we must
have a =c.

= Similarly, no two elements in B are congruent mod p.

= Furthermore, A N B = 0 since elements of A are all non-negative, while elements of B are all
negative.

» Therefore, C := AUB has 2n+2, or p+ 1 elements.

Therefore, two elements in C must be congruent mod p. In addition, by the first two facts, the two
elements must come from different sets. As a result, we have a®> + b* + 1 = kp for some k. Clearly k
is positive. Also, p?> = (2n+1)2 > 2n> +1>a®> +b>+1=kp, so p > k. O

Theorem 9. Every non-negative integer is a sum of four squares.

Demostracion. The proof is as follows

1. S84 is closed under multiplication.
2. Let p to be a prime, p divide to 1+ x> +y* for some x, y.

3. Take the less m such that x?> +y> = mp, with p prime and 1 < m < p, then find x% —i—y% =m1p,
with x,y; integers y 0 < m; < m and this contradicts the minimality of m.

O

As in the case of the Fermat’s theorem, we can give a more algebraic proof of four squares theorem
using the quaternions. For this purpose, we define the Hurwitz quaternion (also known as Hurwitz
integers) as H, := {a+bi+cj+dk|a,b,c,d € Zora,b,c,d € Z+ 1/2} which is a subring of the
ring of all quaternions H. Every irreducible number over H; is prime over Hj.

Theorem 10. Every non-negative integer is a sum of four squares.

Demostracion. The proof is as follows

1. S84 is closed under multiplication.
2. Let p to be a prime, p divide to 1 + x> +y? for some x,y.

3. Let x,y such that p|1 +x*>+y?> = (1 +xi+yj)(1 —xi —yj) and then prove that p{ (1 +xi+y})
and pt (1 —xi—yj) then p is not prime in Hj.

4. If p is not prime in H; then p € S4.
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Other sums of powers

There exist many extensions and generalizations of these results. Once the theorems are proven,
one of the questions may emerge is how to express a number as sums of a determinated number of
squares or how many representations as sums of squares are possibles. In 1834, Jacobi found an exact
formula for the number of ways a given positive integer can be represented as the sum of four squares.

One of the generalization is the Fermat polygonal number theorem. This theorem states that every
positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written
as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers,
and as the sum of five or fewer pentagonal numbers, and so on. Gauss proved the triangular case in
1796, commemorating the occasion by writing in his diary the line ‘EYPHKA! num = A+ A+ A,
The full polygonal number theorem was finally proven by Cauchy in 1813. A shorter proof given by
Nathanson (1987) is based on the following lemma due to Cauchy:

For odd positive integers a and b such that b> < 4a and 3a < b* +2° +4 we can find
nonnegative integers s,¢,u, and v such that a = s> + 1> +u?> +v> and b = s+t +u+v.

We also can generalize these theorems taking linear combinations of sums of squares, i.e. to
caracterize which numbers can be expressed as x> + ay> where a is a given number and x,y € Z.
This question is partially answered by Gauss Reciprocity Law, and has ultimately lead to a whole
new mathematical discipline, namely the Class Field Theory. Another generalization is about sums of
higher powers, that is, to determinate which numbers are expressibles as sums of k-th powers. This
problem is known as Waring’s problem.

Waring stated ‘Every integer is a cube or the sum of two, three, ... nine cubes; every integer is also
the square of a square, or the sum of up to nineteen such, and so forth.’.

It is presumed that by this, in modern notation, Waring meant that for every k > 3 there are
numbers s such that every natural number is the sum of at most s k-th powers of natural numbers and
that the smallest such number g(k) satisfies g(3) =9, g(4) = 19.

Hilbert proved the existence of a such number g(k) < oo for any k, but the proof did not show
how to find those numbers. Some of those values are known. Obviously the case k = 2 is Lagrange
theorem. Other known values are g(3) =9, g(4) = 19, g(5) = 37, g(6) = 73. However, in the case
k = 3, only 23 and 239 requires as many as nine cubes. That fact, the Waring problem is a bit more
generalizated. G(k) is defined to be the least positive integer s such that every sufficiently large integer
(i.e. every integer greater than some constant) can be represented as a sum of at most s kth powers of
positive integers. There are not a way to determine those numbers but there exists some bounds.

A variation of this problem known as the ‘easier’ Waring problem in which sums and differences
of powers are taken (n = j:x’f + .. 4 x* where n is given and x; are integers). Another problem related
to the sums of squares is the Taxicab problem. The name is derived from a conversation involving
mathematicians Hardy and Ramanujan. As told by Hardy:

I remember once going to see him when he was lying ill at Putney. I had ridden in taxi-cab No.
1729, and remarked that the number seemed to be rather a dull one, and that I hoped it was not
an unfavourable omen. "No", he replied, it is a very interesting number; it is the smallest number
expressible as the sum of two (positive) cubes in two different ways.

Typically denoted Ta(n), the n-th Taxicab number is defined as the smallest number that can be
expressed as a sum of two positive algebraic cubes in n distinct ways. The restriction of the summands
to positive numbers is necessary, because allowing negative numbers allows for more (and smaller)
instances of numbers that can be expressed as sums of cubes in n distinct ways. The concept of a
taxicab number has been introduced to allow for alternative, less restrictive definitions of this nature.
In a sense, the specification of two summands and powers of three is also restrictive; a generalized
taxicab number allows for these values to be other than two and three, respectively. The generalized
taxicab number Taxicab(k, j,n) is the smallest number which can be expressed as the sum of j k-th
positive powers in n different ways.

Autor: Antonio Pablo Lozano Vicente
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Capitulo 1

Introduccion

Esta pequefia introduccién se divide en dos secciones. En la primera parte se describe como surgié
el problema y fueron apareciendo diversos resultados que acabarian en los enunciados del teorema de
Fermat y del teorema de Lagrange.

En la segunda parte aparece una explicacién detallada del método del descenso infinito, una for-
ma de demostracién introducida por Pierre de Fermat en el s.XVII y muy utilizada por éste para la
resolucion de diversos problemas en teoria de nimeros. Este método se basa en el principio de buena
ordenacidn y tiene cierta similitud con el método de induccion.

1.1. Sumas de cuadrados: El origen

El origen de estos resultados se encuentra en la resolucion de diversos problemas planteados por
Diofanto (s.IIT) quien es considerado como “el padre del dlgebra”.

A continuacién se muestran algunos de estos problemas que llevaron finalmente a los enunciados
y demostraciones de los teoremas conocidos como teorema de Fermat y teorema de Lagrange.

Diofanto propuso encontrar cuatro nimeros x; tales que cada una de las ocho expresiones £ =
(ij)2 =+ x; fuera un cuadrado. Ahora bien, en un tridngulo rectdngulo de lados p,q,h € N, que se
denotara en adelante como A(p,q,h), se tiene que h> +2pq es un cuadrado, es decir k> = h? 4 2pq
para algtin k entero.

Siparai=1,...,4, se tiene h> = p,~2 +q,~2, definiendo x = !

Y.2piqi
hx. Es sencillo comprobar que las ocho expresiones (¥ x j)z = x; son cuadrados de niimeros racionales

():xj)2 +x; = W2x? + 2x%a;b; = x*(a; + b;)>.

Por tanto, para dar respuesta al problema planteado, basta encontrar cuatro tridngulos rectdngulos
con igual hipotenusa, es decir, un cuadrado que pueda ser expresado como suma de dos cuadrados
de cuatro maneras distintas. Por ejemplo, se consideran los tridngulos A(3,4,5) y A(5,12,13). Si
se multiplica la hipotenusa de cada uno de ellos por cada lado del otro tridngulo, se obtienen dos
tridngulos con la misma hipotenusa A (39,52,65) y A\(25,60,65).

y Xi = 2pi4ix2 se tiene que in =

65

39 65

25

52 60

Figura 1.1: Dos tridngulos rectangulos con igual hipotenusa.
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Por otra parte 65 = 12 + 82 = 4% +7? y teniendo en cuenta que A(a®> — b*,2ab,a’> + b*) es un
tridngulo rectangulo (se comprueba directamente), se obtienen cuatro tridngulos rectangulos con igual
hipotenusa y lados enteros: A(39,52,65), A(25,60,65), A(33,56,65) y 2A(16,63,65).

52

60

Figura 1.2: Cuaro tridngulos rectdngulos con igual hipotenusa.

Y con estos tridngulos con igual hipotenusa se obtiene la solucién al problema planteado

~ 17136600 12675000 15615600 8517600
N 163021824 163021824 163021824 163021824

Otro de los problemas propuestos por Diofanto fue el de descomponer la unidad en dos partes
de modo que al afadir a cada una el mismo nimero dado se forme un cuadrado, es decir, dado a,
encontrar x,y tales que x+y =1y x+ay y+a sean cuadrados. Para ello el nimero dado no debe ser
impar y el doble més uno, 2a + 1, no debe ser divisible por ningiin nimero primo de la forma 4n — 1
Desafortunadamente la condicién necesaria no se lee con claridad en los manuscritos de Diofanto.

Respecto esto ultimo Fermat postulo lo siguiente: ‘La verdadera condicion (aquella que es general
y excluye los niimeros que son inadmisibles) es que el niimero dado a no puede ser impary que 2a+ 1
tras dividirlo por el mayor cuadrado como factor, no puede ser divisible por un niimero primo de la
forma 4n—1".

Realmente fué Girard en 1632 quien por primera vez dié una caracterizacion de los numeros que
podian expresarse como suma de dos cuadrados: «Todo cuadrado, todo niimero primo de la forma
4n+ 1, un producto formado por éstos 'y el doble de uno de los anteriores» Por esta razon, en algunos
textos el teorema de los dos cuadrados es conocido como Teorema de Girard. A raiz de estos proble-
mas y diversas soluciones que fueron surgiendo, sobre todo con casos particulares, Fermat comunicé
en una carta a Mersenne el 25 de Diciembre de 1640 (Por lo que en ocasiones el teorema de la suma
de dos cuadrados también es conocido como el Teorema de la Navidad) las siguientes observaciones:

» Todo niimero primo de la forma 4n+ 1 es la hipotenusa de sélo un tridngulo rectdngulo, su
cuadrado de dos, su cubo de tres y asi sucesivamente.

» Un nimero primo de la forma 4n+ 1 y su cuadrado son suma de dos cuadrados de manera
Unica, su cubo y potencia cuarta es suma de dos cuadrados de dos formas distintas, su potencia
quinta y sexta de tres y asi sucesivamente.

Sumas de cuadrados
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» Es sencillo hallar cuantos tridngulos rectdngulos se pueden formar con una hipotenusa w dada.
Se pueden formar p?¢”r‘s donde p,q,r son primos de la forma 4n -+ 1 y s es un cuadrado sin
ninguno de los factores anteriores y definir w = 2¢(2ab+a+b) +2ab+a+b+c

= Para encontrar un nimero que sea la hipotenusa de un nimero determinado w de tridngulos
rectdngulos, basta tomar los factores primos de 2w +- 1 y restar uno a cada uno de éstos y tomar
la mitad de lo que queda como exponente para cualquier primo de la forma 4n + 1. Por ejemplo,
siw=7,2w+1=15=(2+1)(2-2+1) por tanto pg” resuelve el problema con p,q primos
de la forma 4n 4 1.

Fermat llamé al teorema de que todo nimero primo de la forma 4n+ 1 es una suma de dos cuadra-
dos el teorema fundamental de los tridngulos rectdngulos. Y afirmé que tenia una prueba irrefutable
de éste basada en el método del descenso infinito. Sin embargo, no fue hasta mas de un siglo despues
cuando Euler publica una demostracién tras varios intentos y resultados intermedios por parte de va-
rios matemadticos como Goldbach o Jaquemet. Posteriormente se publicaron diversas demostraciones
de este resultado relacionando varias ramas de las matemadticas.

En los problemas propuestos por Diofanto también se pueden encontrar cuestiones sobre repre-
sentaciones superiores, decir qué nimeros pueden ser expresados como suma de tres, cuatro, cinco
cuadrados. Gauss demostré que un nimero es suma de tres cuadrados si y sélo si n # 4¢(8k +7); por
tanto 7,15,23,28, ... no son suma de tres cuadrados. Es facil probar que ningin entero n = 4¢(8k +7)
puede expresarse como suma de tres cuadrados. Probar el reciproco es mds complicado, principal-
mente porque el conjunto de nimeros expresables como suma de tres cuadrados no es cerrado bajo la
multiplicacion.

Al igual que ocurre con la suma de dos cuadrados, se puede encontrar el origen del enunciado del
teorema de los cuatro cuadrados en Diofanto quien propuso encontrar cuatro niimeros x; tales que la
suma de sus cuadrados sumados (restados) con la suma de los x;, diera como resultado un nimero
dado n. Tomé como ejemplo n = 12 (n = 4). Para ello observar que x> +x+ 1/4 = (x£1/2)? es un
cuadrado. Por tanto la suma de los cuatro cuadrados més la suma de sus lados mds 1 es la suma de
otros cuatro cuadrados, luego tendrd que ser igual a 13(5). Es decir Zx,z +Y x;+ 1 es una suma de
cuatro cuadrados, en este caso 13(5). Asi pues si se divide 13(5) en cuatro cuadrados. Después se
resta (suma) 1/2 a cada uno de sus lados y se obtienen los lados de los cuadrados pedidos.

— — 64, 36, 144, 81 —9 416, 64 36
B=4+9=%5+35+73 15 (5—25+25+25+25)

Por tanto, la solucién al problema es

1, 7,19, 13 1, 13,21 17

ntotiotn  (otntiot )
Bachet observé que Diofanto, tanto aqui como en otros enunciados, parecia asumir que cualquier
nimero puede ser expresado como suma de dos, tres o cuatro cuadrados (resultado conocido como
Teorema de Bachet) y afirmé haber demostrado la proposicion para nimeros menores que 325 y
hallado la descomposicién en suma de cuatro cuadrados para nimeros menores que 120. Fermat por
su parte, aseguraba tener una demostracion de que todo nimero podia ser expresado como suma de
cuatro cuadrados y que seguramente este teorema ya era conocido por Diofanto.

Descartes enunci6 el teorema (‘cuya demostracion juzgo de tal dificultad que no se atrevio a
intentarla’): cualquier nimero que es suma de tres cuadrados y mayor que 41, puede también ser
expresado como suma de cuatro cuadrados. Euler admitié que no pudo probar el teorema de Bachet
de que cualquier ndmero puede expresarse como suma de cuatro cuadrados, ni dar una regla general

para expresar n> + 7 como suma de cuatro cuadrados. Sin embargo demostré el teorema para ciertos
conjuntos de nimeros y di6 la férmula fundamental

(@ 40>+ +d) (PP + P+ +5) =+ + 2+,
x=ap-+bqg+cr+ds, y=aq—bp+csFdr,
z=arFbs—cp=+dq, v=astbr¥cq—dp.

Autor: Antonio Pablo Lozano Vicente
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A mediados del siglo X VIII, Euler declaré haber demostrado que si p es un niimero primo cualquiera,
entonces existen cuatro niimeros enteros a, b, c,d no divisibles por p, tales que a* 4+ b +c* 4+ d> es
divisible por p. Después de diversos intentos para demostrar el teorema de Bachet, sobre todo por
parte de Euler y Goldbach, Euler publicé algunos resultados sobre éste. Euler probd, entre otros, que
existen enteros a, b tales que 1 + a® + b? es divisible por un niimero primo p dado.

Fué finalmente Lagrange quien en 1770 di6 la primera demostracién del teorema de Bachet re-
conociendo que no habria sido posible sin las ideas y aportaciones de Euler. Lagrange afiadié una
generalizacion para la identidad dada por Euler:

(P> —Bg® —Cr* + BCs®)(pi — Bqi — Cr} + BCsi) =
(pp1+Bgqi £C(rri ¥ Bsq1))? — B(pq1 +qp1 £C(rsy +sr1))*—
C(pr1 — Bgsi & rpi F Bsq1)* + BC(qri — ps1 £ sp1 Frq1)?

Posteriormente, en 1773, Euler di6 una demostracion mucho mas simple que la de Lagrange. A parte
de las generalizaciones que surgieron de los resultados probados, estos teoremas han sido mirados
desde muy diferentes dngulos dando con demostraciones ingeniosas y creando nexos entre diferentes
aspectos de las matematicas.

1.2. Meétodo del descenso infinito

La primera vez que se menciona este método es en una carta de Fermat enviada a Pierre de Carcavi
en 1659 cuyo titulo rezaba “Relation des nouvelles découvertes en la science des nombres.”. En esta
carta comunicaba a Carcavi que habia descubierto un nuevo método de demostracién y que lo habia
aplicado con exito en la resolucién de un nimero considerable de problemas de la teoria de ndimeros.
A esta forma de demostracién la llamé método de descenso infinito o ilimitado y que en un principio
s6lo lo habia aplicado a proposiciones negativas como:

«No existe ningtin tridngulo rectdngulo cuyos lados sean niimeros enteros y su drea sea el cua-
drado de un niimero entero»

Fermat argument6 de forma abstracta la demostracién de la siguiente manera: ‘La demostracion
se realiza por reduccion al absurdo como sigue: si existe un tridngulo de lados enteros y drea el
cuadrado de un entero, entonces existe un segundo tridngulo menor que el primero con esta misma
propiedad; y si existe un segundo tridngulo menor que el primero con la misma propiedad, entonces
existe un tercero menor que el segundo, y entonces hay un cuarto, un quinto y asi ad infinitum. Pero
no hay un niimero ilimitado de enteros menor que uno dado. Por tanto es imposible que pueda haber
un tridngulo rectdngulo cuyos lados sean niimeros enteros y su drea sea el cuadrado de un niimero
entero’

En el siguiente parrafo de la carta, Fermat comentaba que habia encontrado grandes dificultades
para aplicar este método a enunciados no negativos, lo cual le produjo grandes quebraderos de cabeza
a la hora de intentar demostrar el teorema de los dos cuadrados. Para este tltimo afirmaba tener
finalmente una demostracién basada en el metodo del descenso infinito aunque segiin decia, necesitd
emplear algunos nuevos principios. Expuso en esta carta un esquema de los pasos que habia seguido
en la demostracion pero ésta estaba falta de detalles.

Notar que este método se basa principalmente la aplicacion del principio de buena ordenacién
(todo conjunto no vacio de nimeros naturales posee un nimero minimo). Otro ejemplo algo mas
detallado de este tipo de razonamiento se ve en el siguiente ejemplo.

Se consideran ternas pitagdricas, es decir aquellas ternas de nimeros naturales (a,b,c) tales que
c? = b*> +d?, o dicho de otra forma, son lados de un tridngulo rectdngulo.

Teorema 1.2.1. No existen ternas pitagoricas que se correspondan con un tridngulo isosceles, o lo
que es lo mismo que no existen ternas pitagoricas de la forma (a,a,c).

Sumas de cuadrados
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Demostracion. Si existiera una tal tupla (a,a,c) se tendria ¢> = 2a?, esto querria decir que ¢? es par
luego ¢ también es par. Sea pues ¢ = 2¢; con c; € N. Se tiene la igualdad 4c% =242, es decir a? = ZC%,
por tanto a es par; sea ahora a = 2ay, es decir c% = Za% de donde se tiene otra terna (aj,a;,ci) que
es un tridngulo estrictamente menor que el primero. Aplicando este proceso sobre el nuevo tridngulo
se obtendria otro (a;,a,c;) menor que el anterior. Repitiendo este proceso, se tiene una secuencia
infinita de tuplas cuyos primeros valores forman una sucesion infinita decreciente

a>a>ay>azy>...

de valores enteros lo cual es imposible ya que en una sucesién tal, tarde o temprano tendrian que
aparecer nimeros negativos (La correspondiente sucesién de tridngulos pitagdricos se muestra en la
figura 1.2; es claro que no pueden ser valores negativos pues son medidas). Luego no existen tuplas
pitagéricas de la forma (a,a,c). O

e \
.

-¢ a
-—— Al —p
-—A2—p

Y

Figura 1.3: Una secuencia de tridngulos pitagéricos.

De este resultado, se desprende ficilmente el hecho de que v/2 no es un nimero racional, ya que
si lo fuera se tendria que existen a, ¢ niimeros enteros tales que /2 = ¢/a y por tanto ¢> = 24> lo cual
es imposible. El descubrimiento de nimeros irracionales fue un verdadro trauma para los Pitagoricos,
quienes basaban toda su ciencia y filosofia en las propiedades de los niimeros enteros y racionales.

Autor: Antonio Pablo Lozano Vicente






Capitulo 2

El Teorema de los dos cuadrados

En este capitulo se demuestra el resultado mds conocido como el Teorema de Fermat. Aunque
en realidad fué Albert Girard en 1632 quien formula por primera vez que "todo niimero primo de la
forma 4n+ 1 es suma de dos cuadrados" (como ya se ha comentado en la introduccién). Para ello se
verdn inicialmente algunas definiciones y resultados previos necesarios para la demostracion.

Como se puede observar, se dardn dos demostraciones distintas del mismo teorema. Suele ser de
gran utilidad tener més de una demostracién de un mismo resultado, no porque le afiada validez (una
s6la demostracién correcta es suficiente), sino que puede servir para comprender mejor el resultado e
incluso dar opcién para desarrollarlo en diversas direcciones.

Como se comentara en su momento, a diferencia de muchos textos de Teoria de Numeros, las
demostraciones en este trabajo son independientes de la ley de reciprocidad cuadrtica de Legendre-
Gauss.

2.1. Aritmética modular

Se recordardn a continuacién, algunos resultados basicos de la aritmética modular, la cual serd de
gran ayuda a la hora de trabajar con los problemas a abordar.

Dados enteros a,b,m con m > 0, se dice que a es congruente con b médulo m si se cumple que
m|a— by se escribe como

a=b (méd m).

Una expresién como la anterior se denomina congruencia. Se tiene que a = b (méd m) cuando la
diferencia a — b pertenece al conjunto de los multiplos de m. Todavia cabe otra definicién, basada
en que el resto de la divisién de a por m es Unico: a es congruente con b médulo m si, y solo si,
dan el mismo resto al dividirlos por m. Dicho de otra forma, a = b (mé6d m) quiere decir que a es
de la forma mk + b con k € Z. La relaciéon de congruencia es una relaciéon de equivalencia en el
conjunto Z de los niimeros enteros cuyas clases de equivalencia son conjuntos formados por todos los
nimeros que al dividirlos por m se obtiene el mismo resto. La clase de equivalencia de un entero a
se denota como [a],, (0 simplemente [a] si sobreentendemos el médulo) y hay exactamente m clases
de equivalencia {[0], [1],[2], ..., [m — 1]}; este conjunto suele denotarse como Z,,. En ocasiones es més
conveniente utilizar como representantes de las clases de equivalencia aquellos niimeros con menor
valor absoluto,

{0,£1,42,...,+(m—1)/2} simesimpar
@2.1)
{0,+1,42,...,+(m—2)/2} sim par

de modo que para cualquier resto r, se tendrd —m/2 <r <m/2.

7
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Ademds las sumas y productos de enteros congruentes también son congruentes, es decir sia = b
(méd m) y x € Z se tiene

at+x=b+x (médm); ax=bx (médm); —a=-b (méd m),

lo que muestra que la suma y la multiplicacién son operaciones bien definidas sobre el conjunto de las
clases de equivalencia [a] + [b] = [a+b] y [a] - [b] = [a - b]. Asi el conjunto Z,, es un anillo conmutativo
con unidad.

Si a y b son dos enteros cualesquiera y m es un entero positivo, la congruencia ax = b (méd m)
tiene una solucién en x si y sélo si b es divisible por el maximo comin divisor mcd(a,m) de a y
m. Cuando éste es el caso, y xp es una solucién, el conjunto de todas las soluciones viene dado por
{xo +k% | k € Z}. En particular, existen exactamente d = mcd(a,n) soluciones en el conjunto de
residuos {0,1,2,...,n—1}.

Como consecuencia, si m = p es primo, Z, es un cuerpo, pues la congruencia ax =1 (méd p)
tiene una tnica solucién si [0] # [a] € Z,,.

2.2. Enteros de Gauss

Es de sobra conocido el conjunto de los nimeros enteros Z y el de los nimeros complejos C
ambos muy interesantes y muy utiles en gran cantidad de problemas relacionados con muchas ramas
de las matematicas.

Un entero de Gauss es exactamente un nimero complejo cuyas partes real e imaginarias son
nimeros enteros. Los enteros de Gauss fueron introducidos por Gauss en 1832 motivado por el estudio
de las sumas de cuadrados. El conjunto de los enteros de Gauss se representa como Z[i] y por tanto es
el siguiente:

Z[i) = {x+yi|x,y € Z} (donde i*=—1)

Con las operaciones heredadas de C se tiene que la suma y la multiplicacién de enteros de Gauss es
un entero de Gauss:

zzw€E Zlilconz=a;+iby yw=a;+ib,
ztw= (a1 +a)+i(by+b2) €Z[i] y z-w=(a1a2—b1by) +i(a1by+axby) € Z[i]

En consecuencia Z[i] es un dominio de integridad, cuyo cuerpo de fracciones es la extension simple
Q(i) formada por los niimeros complejos cuya parte real e imaginaria son nimeros racionales.

Se puede ver una estrecha relacion entre estos nimeros y las sumas de cuadrados ya que si se toma
z=a+b-i € Z[i], se tiene que |z|> = z-Z = a® + b>. Se define la norma en el dominio Z[i] como:

N:Z[i] — Nu{0}
z — N(z)=2z2

Y se demuestra entonces que la norma asi definida satisface las propiedades
» N(z)=0siysélosiz=0
= N(zw) = N(z)N(w) para todos z,w en Zli]

La primera propiedad es trivial y para la segunda basta aplicar la definicién

N(zw) = zwzw = 2Z2ww = N(2)N(w)

Sumas de cuadrados
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2.3. Primera demostracion del teorema de Fermat
Se dan primero algunas definiciones que ayudaran a hacer mas comprensible la demostracion.

Definicién 2.3.1. Por cada entero k > 1, sea Sy = {n | n=x} +...+x3, x1,...,xx € Z}, el conjunto de
todas las sumas de k cuadrados.

Ejemplo 2.3.1. S; ={0,1,4,9,...} es el conjunto de todos los cuadrados, se comprueba directamente
que Sy, el conjunto de las sumas de dos cuadrados, contiene a 0, 1,2, 4, 5y 8 peronoa 3,60 7.

Lema 2.3.2. El conjunto S», es multiplicativamente cerrado, es decir, si s,t € S, entonces st € S»

Demostracion. Sea s = a% + b% yt= a% + b% elementos de S> con ay,b;.az,by € Z, luego aplicando
que los enteros de Gauss z=aj+i-b; y w =ay +i-b, tienen como norma s y ¢ respectivamente,
aplicando ahora que N(zw) = N(z)N(w) se tiene:

N(z)N(w) = (a3 +b?) (a5 + b3) = (a1a2 — b1b2)* + (a1by + biaz)* = N(zw) (2.2)
y por tanto st € S, ya que aja, —b1by,a1by +biar € Z. O

Observacion 2.3.1. Aplicando induccion, se demuestra que el producto de cualquier numero finito
de elementos de S, también estd en S,.

Observacion 2.3.2. Reemplazando z por 7 en 2.2 obtenemos la igualdad
(a% + b%)(a% + b%) = (a1az + b1b2)2 + ((11]92 — b1a2)2 2.3)
una identidad que se utiliza mds adelante.

El Lema 2.3.2 sugiere que para determinar los elementos de S, se pueden estudiar primero los
nimeros primos ya que todo entero n > 2 es producto de nimeros primos y si todos sus factores estan
en S, entonces n también lo estd. Notar que no todos los nimeros primos son suma de dos cuadrados,
por ejemplo el 3.

El resultado que aparece a continuacién se prueba sin emplear la ley de reciprocidad cuadrética y
serd clave para demostrar el teorema de Fermat.

Lema 2.3.3. Para niimeros primos p de la forma p = 4n+ 1 la ecuacion s> = —1 (méd p) tiene dos

soluciones s € {1,2,...,p— 1}, si p =2 tiene solucion tinica, mientras que para primos de la forma
4n+ 3 la ecuacion no tiene solucion.

Demostracion. Si p = 2 basta tomar s = 1. Sea p impar. Dado x € {1,..,p — 1}, se cosidera el con-
junto P, := {x,—x,x !, —x"'} con x € {1,2,...,p — 1} siendo —x la inversa aditiva y x~! la inversa
multiplicativa en Z,. Estos conjuntos tienen cuatro elementos salvo que alguno de ellos coincida, es
decir, estos casos seran:

= x = —x es imposible por ser p impar.

s x=x"!, es decir x> = 1, que tiene dos soluciones x = 1 y x = p — 1, con lo que se tiene que la
tinica tupla cumpliendo esta relaciones Py =P, ={1,—1} ={p—1,1—-p} ={l,p—1}

= x = —x"! por tanto, x> = —1. Esta ecuacién puede tener dos soluciones distintas o no tener
ninguna. De tener dos soluciones, serian x = xo y x = p — xp por lo el conjunto tendria dos
elementos {xo, p —x0}.

Autor: Antonio Pablo Lozano Vicente



10 Capitulo 2. El Teorema de los dos cuadrados

El conjunto {1,2,...,p— 1} tiene p — 1 elementos y se ha realizado una particién en cuadruplas
(cuando P, tiene 4 elementos) y una o dos tuplas (los casos en los que P, tiene 2 elementos). Ahora,
si p— 1 = 4m +2 entonces sélo puede haber una tupla y lo demds son cuadruplas, por tanto s*> = —1
(méd p) no tiene solucién. Si p — 1 = 4m debe exisitir una segunda tupla y esta contiene las dos
soluciones de s> = —1 (méd p) O

Teorema 2.3.4. Todo niimero primo de la forma 4n+ 1, con n € N, es suma de dos cuadrados.

Demostracion. Supongamos que p =1 (mdd 4), por el teorema 2.3.3 se tiene que para algin u entero
u?>+1=rp con r € Z. Se puede elegir un u tal que 0 < u < p—1,con 0 < r < p y se tiene que
rp =u®>+12 € Sy. Sea m el menor entero tal que mp € S, y 0 < m < p. Sim = 1 entonces p € S, y el
resultado est demostrado.

Seam > 1. Como mp € S,, se tiene que mp = a% —l—b% para algunos enteros a; y b1. Sean ap,by € Z
los representantes de las clases de a; y b1 con menor valor absoluto como en 2.1, de modo que a; = a;
y by =by (méd m)y |a; |,| by |< m/2, se tiene a3 + b3 = a3 + b3 =0 (méd m); Asi a3 + b3 = sm
para algtin s € Z. Como | a |, | by |< m/2, se tiene a? +b? < 2(m/2)?> = m?/2 luego s < m/2 y por
tanto s < m.

También se tiene s > 0, pues si s = 0, entonces a% + b% =0, y esto implica que a; = b; =0
(méd m), esto es m divide a a; y by. Luego m? divide a a% + b% = mp y por tanto m divide a p. Esto
no puede ser yaque pes primoy 1 <m < p, luego 0 < s < m.

Ahora (a} +b?)(a3 +b3) = mpsm = m*sp y de la identidad 2.3

(a} +b})(a3 +b3) = (a1a2 +b1b2)* + (a1by — biaa)?

se tiene
(a1a2 + b]bz)z + (a1b2 — b]dg)z = mzsp.

Como ajar +b1by = a% +b3=0 (m6d m)y ajh —byay =0 (méd m) se puede dividir esta ecuacién
por m? quedando
bib2\ > by —braz \
(alaz+ 1 2> Jr(611 2 1a2> —sp
m m

donde ambos sumandos son enteros. Luego sp € S» con 0 < s < m lo cual es una contradiccién por la
minimalidad de m. Por tanto m = 1 O

Teorema 2.3.5. Un niimero entero positivo n es suma de dos cuadrados si y solo el exponente en la
factorizacion de n de los primos ¢ =3 (méd 4) es par.

Demostracion. (<) Supongamos que
2 2
n= 2ep(]31 .. .pqulfl .. qlfl = 2€p?l .. ple{k(q%)fl e (q%)fl

para algunos primos p; =1 (méd 4) y g; =3 (mdd 4), donde los exponentes son enteros e > 0,¢; >0
y fj > 0. Ahora bien 2 = 12412 € S5, por el teorema anterior se tiene que p; € S, y también que
q? = q? +0? € S,. Por tanto n es producto de elementos de S, y por el lema 2.3.2 y por tanto n € S,
(=) Sean € S, y tomemos como hipotesis que n = x> +y?. Sea q cualquier niimero primo tal que
g =3 (méd 4), sea ¢/ 1a mayor potencia de ¢ que divide a n (¢/|n) y supongamos que f es impar.
Sea d el maximo comin divisor de x e y, es decir, x = ad y y = bd con mcd(x,y) = 1. Se tiene que
n=(a®+b*)d? y por tanto nd % = a®> + b*. Si ¢°|d, entonces ¢/ ~2¢|nd 2. Ahora bien f — 2e es impar
luego distinto de cero, asf que g|nd =2 = a*> +b? y por tanto a*> = —b*> (méd gq). Pero b no puede ser
divisible por ¢ (ya que si asi fuera, ¢ dividiria a a y b contradiciendo m.c.d.(x,y) = 1), asi que b es

una unidad (méd ). Si ¢ = b~ médulo g, bc =1 (méd q). Entonces multiplicando por ¢? se tiene
(ac)’> = —1 (méd g). Pero esto es imposible para un ¢ primo tal que ¢ =3 (méd 4) por el lema 2.3.3
luego f tiene que ser par. O

Sumas de cuadrados
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Ejemplo 2.3.2. El entero 60(= 2% -3-5) no es suma de dos cuadrados ya que el exponente de 3
en la factorizacion es impar. Sin embargo, 180(= 2%-3%-5) si que es suma de dos cuadrados. Para
encontrarlos, primero se expresa 5 como suma de dos cuadrados: 5 = 12 + 2. Al multiplicar por
22.32 y se obtiene 180 =2%-3-5=(2-3-2)>+(2-3-1)> = 122 + 6%

Ejemplo 2.3.3. El entero 221(= 13-17) es suma de dos cuadrados ya que 13 =17 =1 (méd 4).
Para encontrar estos cuadrados, se utiliza la demostracion del Lema 2.3.2 sustituyendo 13 = 32422
y17=4>41%

221 = st = (a1ap — b1hy)? + (a1by +b1ay)? = (3-4—2- 1> +(3-1+2-4)> = 10> + 112,

Notar que la ecuacién 2.3 puede dar diferentes expresiones, en este caso, 221 = 14> + 52, De
manera similar, se puede expresar 6409(= 221 -29) repitiendo el proceso: 221 = 10? + 112 y 29 =
52422, por tanto, 6409 = (10-5—11-2)> 4 (10-2+11-5)% = 282+ 752,

Corolario 2.3.1. Un niimero primo p es suma de dos cuadrados si'y sélo sip =26 p=1 (méd 4).

2.4. Aritmética de los Enteros de Gauss

En esta seccién se hace un estudio mas profundo de los enteros de Gauss. Ya se habia visto que
Z[i] es un dominio de integridad al que se le ha dotado de una norma. El siguiene paso razonable es
ver si se puede dividir y factorizar de la misma forma que con los nimeros enteros.

Se tiene que las unidades en Z[i] (elementos invertibles, es decir, los o € Z[i] tales que 3B € Z[i] y
off = Bo = 1) tienen norma 1, de hecho, un entero de Gauss tiene norma 1 si y solo si es una unidad.
Se demuestra de forma sencilla que las unidades de Z[i] son {+1,+i}. Dados z,w € Z][i], se dice que z
divide a w, 0 z| w si z = sw para algln s € Z[i] y dado un z € Z[i] se recuerda que z que es irreducible
en Z[i] si z no es una unidad y sus tnicos divisores son

{£1,+i, +z+iz}

Dicho de otra forma, si sus tnicos divisores son z, 1 y sus asociados (w = uz con u unidad).

No todos los nimeros primos en Z son irreducibles en Z[i]; por ejemplo 2 es primo en Z y sin
embargo no lo es en Z[i] yaque 2 = (1+1)(1 —1i).

Se tienen los siguientes resultados:

Lema 2.4.1. Si z | w en Zli], entonces N(z) | N(w) en Z

Demostracion. Si z | w, entonces w = sz, tomando normas N (w) = N(sz) = N(s)N(z) y se tiene que
N(z) | N(w). O

Este lema puede ser util a la hora de determinar si un nimero es irreducible en Z[i], por ejemplo,
z =4+ i es irreducible ya que N(z) = 4% + 12 = 17 que es irreducible en Z y por tanto si w | z se
tendrd que z = sw, aplicando normas N(z) = N(w)N(s) = 17 y como la norma es un entero positivo,
las tnicas opciones son N(w) =1, N(s) = 17 o N(s) = 1, N(w) = 17. Por simetrd se puede tomar
cualquiera de las dos opciones y se tiene que w es una unidad, luego s = w~!z, es decir, los tnicos
divisores de z son las unidades y asociados de z. Por tanto z = 4 +i es irreducible en Z[i].

Se demuestra a continuacién que todo entero de Gauss se factoriza como producto de enteros de
Gauss irreducibles.

Teorema 2.4.2. Sea 0 # z € Z[i] y N(z) # 1, entonces 3p; ... py € Zl[i] irreducibles tales que 7 =
Pt Pk

Autor: Antonio Pablo Lozano Vicente
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Demostracion. La demostracion es similar a la de los ndmeros enteros. Sea z € Z[i], si z es irredu-
cible, ya estd si no z = sw con N(s), N(w) < N(z). Si se repite este proceso con cada factor, o w es
irreducible, o w = wiwy con N(wy), N(w2) < N(w) y asi sucesivamente, como las normas son cada
vez mds pequeas y como poco tienen que valer 1 este proceso termina en algin punto y se tiene una
factorizacién en factores primos de Z][i]. O

Recordar que para probar la factorizacién tinica en Z se utilizaba que todo irreducible en Z verifica
la condicién de primo (el reciproco se verifica siempre), esto es que si p es irreducibley p |ab = p | a
0 p | by este resultado se probaba con el algoritmo euclideo. Para Z[i] se procede del mismo modo.

Lema 2.4.3. Sean z,w € Z[i], w # 0, entonces existe un cociente s € Z[i| y un resto t € Z[i] tales que
z=sw+tconN(t) <N(w)

Demostracion. Sean z,w € Z[i] y w # 0. Se considera su cociente en el cuerpo de fracciones de Z]i],
z/w=d +bieQ) (b €Q).

Sean a,b € 7 las mejores aproximaciones de a’,b’, es decir, |a —d'| < 1/2, |b—b'| < 1/2. Se
define s = a + bi € Z|i], teniendo asi z = sw+ ((d' —a) + (b' = b)i)wy

N(((d' —a)+ (&' = b)i)w) = ((d' —a)’ + (b' —b)*)N(w) < N(w)/2 < N(w)

(w # 0 implica N(w) # 0)
O

Un dominio de integridad que posee una norma tal que se cumple lo anterior se conoce como
Dominio Eucldeo.

Definicion 2.4.4. Sean z,w,s € Z|i| tales que s | 7y s | w entonces se dice que s es un divisor comiin
de zyw. Se dird que s es un mdximo comiin divisor (mcd) de z y w si es undivisor comiin con mdxima
norma posible.

Lema 2.4.5. Siz=sw+rdonde N(r) < N(w). Sir=0, wesunmcd de zyw. Sino,unmecd dezyr
es también un mcd de z y w (y viceversa).

Demostracion. Lo primero es claro ya que ningin divisor de w puede tener norma mayor que N(w).
Sea r # 0. Cualquier divisor comun de z y w tendra que ser un divisor comun de z y r, y viceversa.
Esto implica cualquier mcd de z y w serd med de z y r, y viceversa. O

Este lema muestra que el siguiente algoritmo para determinar el mcd de z y w en Z[i] funciona
siempre. Al igual que en el caso de Z, el algoritmo termina en un nimero finito de pasos.

Algoritmo Eucldeo en Z|i]
1. Supongamos que N(z) > N(w). Sea (z1,w1) = (z,w)

2. Sedefine z; = sjw;+r;j con N(r;) < N(wj;). Sir; =0, entonces w; es un mcd para zy w. Si no
continuar.

3. Seazj 1 =wj, wjr1 =r;j. Se tiene que N(zj1) > N(wj41) por el paso 2. Incrementar jen 1y
repetir paso 2.

Se puede recorrer el algoritmo anterior en orden inverso y obtener que el mcd de z y w tiene que
ser de la forma uz + vw para algin u,v € Z[i] (Identidad de Bezout).

Lema 2.4.6. Todo p irreducible en Z][i] es primo en Zli], es decir que para todo p irreducible en Z]i],
p | zw entonces p |z o p | w.

Sumas de cuadrados
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Demostracion. Se supone que p | zw pero p {z. Como p no divide a z y p es irreducible en Z]i],
cualquier mcd de p y de z tendrd que ser una unidad. Por lo comentado anteriormente, esta unidad u
es de la forma u = sp +1tz con s, € Z[i]. Luego

Uuw = Spw +1zw

y se tiene que p divide a ambos terminos en la derecha, p | uw por tanto uw = pk con k € Z][i] como u
es una unidad, w = u~ ! pk, es decir p | w. O

Ahora es sencillo ver que si py p’ son irreducibles en Z[i], se tiene que si p | p" implica que p = up’
donde u es una unidad en Z[i], es decir son asociados. Este resultado se utiliza en la demostracién de
la factorizacioén unica.

Teorema 2.4.7. Sea 0 # z € Z[i] y sean z = pi...py y 2 = p)...p, dos factorizaciones de z en
irreducibles Gaussianos p;y p;-. Entonces m = n, y salvo reordenaciones de p’j se tiene que p; = u; p’j
para cada j, donde uj es una unidad en 7.]i]

Demostracion. La demostracion es similar a la de N. Se supone que el teorema es falso. Cancelando
cualquier factor comin, se puede asumir

donde los p; no son asociados a los p;-, es decir py # up’j para algiin &, j y u una unidad. Es claro que
p1|z=p}...p,. Dado que p; es primo, por el lema 2.4.6 p; | p| o p1 | (p}...p),). Ahora, p; | p}
es imposible ya que p; # up| para cualquier unidad u. Por tanto, py | (p5...p)). Al repetir este
razonamiento eventualmente se obtendré que p; | p), lo cual es una contradiccion. O

En consecuencia el dominio eucldeo Z[i] es un Dominio de Factorizacion inica (DFU)

2.5. Segunda demostracion del teorema de Fermat

En esta demostracion se pone de manifiesto la estrecha relacion entre los nimeros expresables
como suma de cuadrados y los enteros de Gauss.

Teorema 2.5.1. Un niimero primo p es suma de dos cuadrados si 'y sélo sip =206 p=1 (médd 4).

Demostracién. =) Es inmediato, basta observar que si n € Z, n> = 0,1 (méd 4) segtin sea n par o
no y que un nimero primo no puede ser suma de dos pares o dos impares.
<) Sea p # 2 un nimero primo tal que p =1 (mdd 4), por 2.3.3, existe un entero tal que p |
n?>+1=(n+i)(n—1i)yocurre que p{(n-+i)y pt(n—i) yaque en caso contrario se tendria que
p divide a n. Luego p no es primo en Z[i]. Como Z[i] es un DFU, existe z € Z[i] primo tal que z | p,
es decir p = zw con z y w enteros de Gauss no unidades. Tomando normas p> = N(p) = N(z)N(w) y
como N(z), N(w) # 1 tiene que ser N(z) = N(w) = p = a*> + b>.
O

Corolario 2.5.1. Si p un primo entero, entonces son equivalentes:
1. p es expresable como suma de dos cuadrados.
2. 3z € Z]i] cuya norma es p.

3. p no es irreducible en ZJi].

Autor: Antonio Pablo Lozano Vicente
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Demostracion. 1) = 2) Sea p = a* + b*. Basta tomar z = a + bi.
2) = 3) Sea 7 tal que N(z) = p = zZ = a*> + b*. Como z,Z no son unidades, pues tendrian norma
1, se tiene que p se descompone en producto de dos elementos de Z[i], luego no es irreducible.
3) = 1) Si p no es irreducible en Z[i], existen z = a + bi,w = ¢+ di € Z[i] no unidades tales que
p = zw. Tomando normas, se obtiene p> = N(p) = N(z)N(w), como z y w no son unidades N(z),
N(w) # 1 luego sélo puede ser N(z) = N(w) = p = a* + b
O

Corolario 2.5.2. Un niimero primo p € N es irreducible en Z][i] si y sélo si p =3 (méd 4).

Lema 2.5.2. Un entero de Gauss es irreducible si y solo si es de una de las dos formas siguientes:
1. Es asociado de un niimero primo p > 0 entero con p =3 (méd 4), es decir p,—p,ip,—ip.
2. Tiene norma prima.

Demostracion. Si p es como en 1 es claro que es primo por el resultado anterior.

Sea z € Z[i] tal que su norma sea un primo de Z, p = N(z).

Sea z = ab cualquier factorizacion de z, tomando normas p = N(a)N(b). Es una ecuacién de
enteros positivos, y p es primo en N y por lo tanto o N(a) o N(b) es 1, pero entonces uno de los dos
seria una unidad y se tiene que z es primo.

Queda probar que si z = a + bi € Zli] es irreducible, entonces es de una de las formas enunciadas.
Sia =00 b =0, entonces z es asociado con p.

Sia=0yb=0, entonces N(z) = a®> + b* = (a+ bi)(a — bi) es una descomposicién en factores
irreducibles. Por ser Z[i] un DFU, N(z) debe ser un nimero primo, porque en otro caso una descom-
posicién en Z seria distinta de la anterior. 0

Teorema 2.5.3. Un niimero natural n es suma de dos cuadrados si 'y solo si cualquier primo tal que
plnyp=3 (méd 4) aparece como potencia par en la factorizacion de n.

Demostracién. Sea n = m?q, de modo que los factores primos de g son 2 o congruentes con 1 médulo
4. Por el teorema 2.5.1 y dado que S, es cerrado con la multiplicacién, se tiene que n es suma de
dos cuadrados. Reciprocamente, supongamos que n = a> + b . La descomposicién en Z[i] en factores
irreducibles de a + bi serd, por el lema 2.5.2, a+bi = up;---p,(c1 +dy) - (cs +idy), donde u es
una unidad, py,...,p, € Z son nimeros primos, tales que p; =3 (méd 4), parai=1,...,r,y ¢;+
id; € Z[i] son elementos de norma c?4d? , para j=1,...,s, que por el lema 2.5.2, no puede ser
congruente con 3 médulo 4. Conjugando la expresion anterior, se obtiene una descomposicién de
a — bi, y multiplicdndolas, queda:

n=(a+bi)(a—bi)=pi-pi(ci+di)-(ci+d2),

que verifica el enunciado. O

Sumas de cuadrados



Capitulo 3

Teorema de los cuatro cuadrados

Como ya se ha comentado, es méas sencillo estudiar las sumas de cuatro cuadrados que las de tres.
Antes de nada, se presenta a los cuaternios de Hamilton, que al igual que ocurre con los enteros de
Gauss para las sumas de dos cuadrados, es una herramienta ttil e interesante para las demostracio-
nes de esta seccién. Los cuaternios son una extensién de los nimeros complejos. En general, a las
extensiones de los nimeros complejos se las conoce como niimeros hipercomplejos.

3.1. Cuaternios de Hamilton

El descubrimiento de los cuaternios en 1843 fué clasificado como un importante hito en la histo-
ria del algebra abstracta, puesto que permitié calcular algebraicamente las rotaciones de los cuerpos
solidos.

En 1833 Sir William Rowan Hamilton logré dar estructura algebrdica a las parejas de nimeros
reales, haciendo corresponder la estructura de R? con la de C. Esto fue un triunfo del dlgebra pues se
empezaron a vislumbrar otro tipo de estructuras que no eran nimeros en el sentido usual del término,
pero estos nuevos objetos obedecian a ciertas reglas de operacién, de manera similar a las reglas de
operacion acostumbradas que se conocian para los ndmeros.

Dado el éxito que Hamilton tuvo al darle una estructura algebraica a R?, los cuaternios surgieron
de los intentos de Hamilton por generalizar las operaciones (aritmética) de los ndmeros complejos
de una manera que fuese aplicable en R3. Hamilton llevaba afios trabajando con tres términos - uno
por cada dimensién del espacio - pero podia sélo hacerlos rotar en un plano. No fue hasta el afio de
1843, a la edad de 38 aiios, que Hamilton, en un chispazo de inspiracién, inventd en un instante un
sistema de 3 partes ‘imaginarias’ que se convertiria en el dlgebra de los cuaternios. Segin una historia
relatada por el propio Hamilton, la solucién al problema que le ocupaba le sobrevino un dia que estaba
paseando con su esposa, bajo la forma de la ecuacion:

Inmediatamente, grabo esta expresion en el lateral del puente de Brougham, que estaba muy cerca del
lugar.

Cuando el introdujo el cuarto término, encontrd las rotaciones tridimensionales que venia buscan-
do, pero tuvo problemas al conceptualizar el significado de este término extra. Como casi todos los
victorianos, supuso que este término deberia significar algo, asi que en el prefacio de sus Conferencias
sobre Cuaterniones de 1853 adicion6 en una nota de pie de pagina: ‘Parecia (y aun me parece) normal
conectar esta unidad espacial extra con la concepcion del tiempo.’

Con respecto a estos nimeros, Melanie Bayley hace una interpretacién de Alicia en el Pais de
las Maravillas en la que observa un paralelismo entre los cuaternios de Hamilton y la fiesta de té del
Sombrerero Loco.

15
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Lewis Carroll fue el seudénimo del reverendo Charles Lutwidge Dodgson, un matemdtico de la
Universidad de Oxford. Se asume razonablemente, que muchos de los pasajes del libro tuvieron una
inspiracién matemdtica, aunque Dodgson no hizo ningtin comentario al respecto. Por lo que se sabe
Dodgson tenia una opinién muy tradicionalista de las matematicas, basadas en el enfoque axiomadtico
de los Elementos de Euclides. Bayley lo describe como ‘aferrado conservador en matematicas’, quien
se sentia frustrado al ver que las matematicas decaian segun €l en sus estandares de rigor.

La situacién en el libro es la siguiente: Alicia, comparte la mesa con tres extrafias figuras: el
Sombrerero, la Liebre de Marzo y el Lirén. La figura Tiempo, que ha discutido con el Sombrerero,
estd ahora ausente y en un arranque de locura no permite al Sombrerero mover los relojes pasadas las
seis.

Segun interpreta Bayley, los participantes en la fiesta de té, representan tres términos de un cua-
ternio, en el cual el cuarto término, el tiempo, no aparece. Sin el Tiempo, los personajes quedan
atascados en la mesa de té, moviéndose constantemente alrededor, buscando platos y vasos limpios.
Su movimiento alrededor de la mesa podria ser la rememoracion de los intentos iniciales de Hamilton
de calcular el movimiento, el cual se limitaba a rotaciones en el plano antes de adicionar el tiempo.
Aun cuando Alicia se une a la fiesta, ella no puede parar al Sombrerero, ni a la Liebre, ni al Lir6n
que giran errdticamente en torno a la mesa, porque ella no es una unidad espacial extra como lo es el
Tiempo.

Por otra parte, las respuestas de Alicia a las adivinanzas del Sombrerero son no conmutativas, al
igual que ocurre con los cuaternios. La escena es la siguiente:

-Entonces debes decir lo que piensas -siguio la Liebre de Marzo.

-Ya lo hago -se apresurd a replicar Alicia-. O al menos... al menos pienso lo que digo... Viene a
ser lo mismo, ;jno?

-cLo mismo? ;De ninguna manera! -dijo el Sombrerero-. [En tal caso, seria lo mismo decir «veo
lo que como» que «como lo que veo»!

-;Y seria lo mismo decir —aiiadio la Liebre de Marzo- «me gusta lo que tengo» que «tengo lo que
me gusta»!

-/ Y serd lo mismo decir —aiiadio el Liron, que parecia hablar en medio de sus suefios- «respiro
cuando duermo» que «duermo cuando respiro»!

Cuando la escena termina, la Liebre y el Sombrerero tratan de poner al Lirén en la jarra de té. Esta
podria ser la ruta hacia la libertad. Si pudieran deshacerse del Lirén, podrian existir independiente-
mente, como un nimero complejo con dos términos. Aun absurdo, segin Dodgson, pero ya libres de
una rotacién permanente alrededor de la mesa.

Histéricamente un cuaternio estd descrito por una cuaterna de nimeros reales ¢ = (a,b,c,d), y el
conjunto H de todos ellos es exactamente el espacio vectorial real R*. Llamando {1,i,j,k} alabase
canénica de H, se puede escribir H = {a+bi+cj+dk| a,b,c,d € R}. Este espacio vectorial admite
una multiplicacién distributiva y asociativa (que se denota por yuxtaposicion, i.e. qq’) inducida por
las reglas i> = j> = k? = i jk = —1 que no es conmutativa pero hace que H sea un dlgebra de division,
es decir todo elemento de H no nulo tiene inverso. Al igual que en la construccién de C a partir de R,
siendo C isomorfo a un R-espacio vectorial de dimension 2, se puede construir H a partir de C, siendo
H isomorfo a un C-espacio vectorial de dimension 2 (¢ = a+bi+cj+dk = (a+bi)+ (c+di)j). Esta
interpretacion se vuelve a obtener con la siguiente definicion.

Definicion 3.1.1. El dlgebra H de cuaternios es la subdlgebra del dlgebra de las matrices complejas
2 x 2 formada por las matrices de la forma

q:<gﬁ§>
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donde oy B son niimeros complejos. Un elemento de H se denomina cuaternio, cuaternion o niimero
cuaternio.

Dados @ =a+biy B =c+di,donde a,b,c,d € R, se toman como 1,1, j, k alas siguientes matrices

(o )= (o S )= (0 6)e= (0 4)

a+bi  c+di
—c+di a—bi
binacién lineal de las anteriores g =a-1+b-i+c-j+d-k

Resulta obvio que cualquier elemento g = ) de H puede expresarse como com-

Definicion 3.1.2. La norma de un cuaternio ||q|| se define como la raiz cuadrada de su determinante,
por tanto ||q||* es

aa( %5 b ) —aaipp—al+1p]

__<a+bi c+di

_ 2 2 2 2
i abi>—a-+b%%?+d

Los cuaternios 1,1, j, k tienen norma 1 y satisfacen

ij=—ij=k
jk=—kj=i
ki = —ik=j

Los cuaternios son un grupo abeliano con la suma. Los cuaternios no nulos son grupo con la mul-
tiplicacion, pero el producto de cuaterniones generalmente no es conmutativo (¢1g» # ¢g2q1) aunque
si que son asociativos y distributivos sobre la suma.

Debido a la propiedad multiplicativa de los determinantes det(q1q2) = det(q)det(q2) se tiene
que la norma cumple

llg1g2ll = llar[-[l2]]

Se define el conjugado de un cuaterniog =a-1+b-i+c-j+d-kcomog=a-1—-b-i—c-j—d-k.
Se tienen las siguientes propiedades:

_ 2
qq = ||ql|
gQ+p=q+q

q192 = 4291

(Debido a que el producto no es conmutativo).

Es interesante remarcar el hecho de que los tnicos n tales que R” tiene multiplicacion distributiva
sobre la suma y norma multiplicativa son n = 1,2,4,8. Para n = 1 son los nimeros reales R, n =2
corresponde con los complejos C, con n = 4 son los cuaternios H y para n = 8 son los octoniones Q.
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18 Capitulo 3. Teorema de los cuatro cuadrados

3.2. Teorema de los cuatro cuadrados

Como se ve a continuacion existe una cierta analogia entre la demostracién de este teorema y el
teorema de Fermat. Se han ordenado los razonamientos de forma que este parecido sea mas evidente.

Lema 3.2.1. El conjunto Ss, es multiplicativamente cerrado, es decir, si s,t € S, entonces st € Sy

Demostracion. Seax) =a;+b3+ci+d? =||1-a+i-by+j-ci+k-di||>=||q1||* y 2 = a3+ b3+
cA+ds=||1-ay+i-by+j-ca+k-da||* = ||q2||*. Por la propiedad multiplicativa de la norma, se tiene
que

xix2 = [lg1 1]l ¢2])* = |14z
Por tanto se tiene:

(@B b+ +d) a3 +bs+c+d3) = 2

(a1a2 —blbz —C1C2 —dldz)

(a1b2 +biar +c1dr — di 02)2
(a1C2 —b1d2 —|—c1a2 +d1b2)2
( )

ardy +bicr —c1by +dias

+ o+ o+

2 3.1
O

Observacion 3.2.1. Aplicando induccion, se demuestra que el producto de cualquier numero finito
de elementos de Sy también estd en Sa.

Observacion 3.2.2. Sien 3./ envezde g=a-1+b-i+c- j+d-k se toma su conjugado se obtiene
la siguiente identidad

2

(ai +b% +ci+di) (a3 +b3+c3+d3) (a1az +b1by+cic2 +d1do)
(a1by —bray — c1dy +dyc2)?
(ajca+bidy —cras — diby)?

(a1d2 — bicy +c1by — dyaz)? (3.2)
Esta altima identidad se utiliza mas adelante.

Lema 3.2.2. Sea p un niimero primo, entonces, existen x,y enteros tales que p divide a x> +y*>+1 (la

ecuacion x*> +y* = —1 (méd p) tiene solucion). Ademds se pueden tomar x,y con x> +y* +1 = mp
tales que 0 < m < p.

Demostracion. Si p =2 es trivial. Sea p un primo impar. Sea P el conjunto de todos los cuadrados
moédulo p. Notar que si se toman clases de equivalencia como en 2.1, es decir, con menor valor
absoluto, los cuadrados médulo p seran {0,1,...,(p —1)/2} y por tanto hay (p + 1)/2 elementos
en P. Sea P’ el conjunto de los nimeros de la forma —1 —x con x € P. P’ también tiene (p+1)/2
elementos. Como hay p elementos distintos médulo p, se tiene que Py P’ tienen algin elemento en
comn, lo que implica que x> +y?> = —1 (méd p) tiene solucién. Ademds, para esta pareja concreta
se tiene:

0< 1+ +y* <1+ ((p—1)/2° +((p—1)/2* < p*/4+p* /4 < p’

Y por tanto 0 < mp < p>. O
De otra forma

Sumas de cuadrados
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Demostracion. Sea A = {1+x* | x€0,1,...,(p—1)/2}. No hay dos elementos de A congruentes
médulo p. En efecto si 1 +x?> = 1 +x% (méd p), se tiene que p divide a (x —x)(x+x;). Se tiene por
tanto que p | (x—x1) o p| (x+x1) es decir, como x,x; € {0,1,...,(p—1)/2}, se tiene que x+x; < p
y solo puede ser x = x;. Luego, los restos al dividir cada uno de los (p + 1)/2 elementos de P por p
son distintos.

De forma similar tomando B = {—y* | y € 0,1,...,(p — 1)/2} también dan restos diferentes al
dividirlos por p. Estos conjuntos son disjuntos pues los elementos de B son negativos y los de A son
mayores que 1.

Se tiene que la unién de ambos conjuntos tiene p + 1 elementos. Como sélo hay p posibles restos
distintos, alguno de los restos es comiin en ambos conjuntos, es decir x> + 1 = —y?> (méd p). Ademds,
para esta pareja concreta se tiene:

0<1+x2+y <1+ ((p—1)/2°+((p—1)/2) < p*/A+p* /A< p
Y por tanto 0 < mp < p°. O

Lema 3.2.3. Si p es un primo impar y m un entero positivo par tal que mp es suma de cuatro cuadra-
dos, entonces (m/2)p es también suma de cuatro cuadrados.

Demostracion. Sean m'y p como en el enunciado y sea mp = a® + b*> 4 ¢> +d* donde a,b,c,d son
enteros. Como m es par, se da uno de los siguientes casos:

1. a,b,c,d son todos pares.
2. a,b,c,d son todos impares.
3. Dos de ellos son pares y otros dos impares.

En cualquiera de los casos se tiene que a + b, a— b, c+d y ¢ —d son pares. Por tanto:

mp a+b 2+ a—>b 2+ c+d 2+ c—d\?
2\ 2 2 2 2

Y se tiene que (m/2)p € S4 O

Teorema 3.2.4. Todo entero no negativo es suma de cuatro cuadrados.

Demostracion. Es claro que 0, 1,2 € Sy, luego por el Lema 3.2.1, es suficiente probar que todo primo
impar p estd en S4. Sea p primo entero impar, por el lema 3.2.2, para algin 0 < m < p se tiene

mp:x%+x%+x§+xi (3.3)

Se observa que si un ntimero es suma de tres cuadrados también es suma de cuatro cuadrados
(83 € S4). Sea mgp el menor m que cumple (3.3). Por el lema 3.2.1, se puede suponer m impar. Si
mg = 1 se tiene el el resultado. Supongamos 1 < my < p. No todos los x; son divisibles por p, ya que
si lo fueran se tendria mgp = p? (y% + y% + y% + yﬁ) , pero my < p. Como mq > 3, se puede suponer por
el algoritmo de la divisiéon
xj=mobj+y;, j=12,3,4.

Donde [y;| <mo/2y y2+y3+y3+y5 > 0. Ademds x; =y; (méd my). Por tanto
0 <yt +y3+y3+yi < 4(mo/2)* = m}

luego
AR +R =0 +8+5+x5=0 (méd mp)

Autor: Antonio Pablo Lozano Vicente



20 Capitulo 3. Teorema de los cuatro cuadrados

Luego se tiene
M 423+ 53 +y3 = mom (3:4)

con 0 < my < mg. Multiplicando 3.3 y 3.4 y aplicando la identidad 3.2, se tiene

X117 +X2y2 + X33 + Xay4)?

( )
(X1y2 = X2y1 — X3y4 + X4)3)
(X1y3 + X2y4 — X3y1 — X4)2)
(X1y4 — X2y3 +X3y2 — X4)1)
A+B+Z+25 =mimp

(F+x3+3+x3) 0T+ +)3+53)

[NS I )

I+ + + |

Como x; =y; (méd my), se tiene
21 = X1y1 +x2y2 +x31y3 + X4)4 EX% +x§+x§+x2 =0 (mdd my)

2 = X1Y2 — X1 — X3Y4 +YaX3 = X1y2 —yox1 —X3y4+y4ax3 =0 (méd myg)

y asi con cada uno de los z;. Luego se puede dividir en ambos lados por m(z) quedando

ELR2 (22 (S ()2

mp = (
my my my my

Es decir, m;p € S4 con 0 < m; < myg, lo que contradice la minimalidad de mq y se tiene my = 1 lo que
finaliza la demostracion. L]

La demostracion de este teorema se basa en el método del descenso infinito al igual que la primera
demostracion del teorema de Fermat en la seccion anterior. En esencia, ambas demostraciones son
similares, basta recordar a grandes rasgos los pasos empleados en la del teorema de Fermat

1. > es multiplicativamente cerrado.

2. Si p es un primo de la forma 4n+ 1 p divide a 1 +x? para algtin x, pudiendo elegir este x de
forma que mp =x*>+1con0<m < p

3. Se toma el menor m para el que x> +y? = mp, con p primo y 1 < m < p, entonces encontrar
x% + y% = myp, con x1,y; enteros y 0 < m; < m contradiciendo la minimalidad de m.

Al igual que en el teorema de los dos cuadrados existe una demosracion alternativa utilizando
los enteros de Gauss, se puede dar una damostracién de este teorema empleando los cuaternios de
Hamilton. Esta demostracion no ha sido incluida dada la limitada extensién para este trabajo pero se
da una idea esquemdtica.

Para tal demostracion, se definen los cuaternios de Hurwitz (también llamados enteros de Hurwitz)
como H; :={a+bi+cj+dk|a,b,c,d €Zoa,b,c,d € Z+1/2} que es un subanillo de los cuaternios
de Hamilton. Se tiene que todo irreducible en H; es primo en H; y la demostracién sigue el siguiente
esquema:

1. S4 es multiplicativamente cerrado.
2. Si p es un entero primo, p divide a 1 +x? 4 y? para algiin x, y.

3. Dado p, se toman x,y tales que p|1 +x>+y? = (1 +xi+yj)(1 —xi —yj) y se prueba que
pt(14+xi+yj)ypt(1—xi—yj)luego p no es primo en Hj.

4. Si p no es primo en H; se tiene que p € S4.
Una demostraciéon completa se puede ver en Quaternions and the four square theorem de Jia Hong

Ray Ng [Ji08].
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Capitulo 4

Representaciones superiores

Los teoremas sobre las sumas de dos y cuatro cuadrados, originaron diversas generalizaciones
sobre estos. Algunas de estas generalizaciones surgieron antes de las demostraciones del teorema de
Fermat y el de Lagarnge.

Una de las preguntas que sugieren estos teoremas es cOmo representar un nimero dado como
suma de cuadrados y de cuantas formas puede hacerse. En 1834 Jacobi encontré el nimero exacto
de formas en las que se puede expresar un niimero entero positivo n como suma de cuatro cuadrados.
Este nimero es 8 veces la suma de los divisores de n si n es impar y 24 veces la suma de los divisores
impares de n si n es par.

Una de las generalizaciones es el teorema de los niimeros poligonales de Fermat. Recordar que
un ndmero poligonal es aquel que puede ser representado como puntos dispuestos en forma de po-
ligono regular, empezando por el 1. El teorema de los nimeros poligonales, dice que todo niimero
entero positivo puede ser expresando como suma de, como mucho, 3 nimeros triangulares, 4 nime-
ros cuadrados, 5 nimeros pentagonales, etc. Gauss demostro el resultado para nimeros triangulares
en 1796 y anoté en su diario ‘EYPHKA! num = A+ /A + /A’ conmemorando tal ocasion. El teorema
de los numeros poligonales fué finalmente probado por Cauchy en 1813. Nathanson en 1987 da una
demostracién mas corta basada en un lema probado por Cauchy que dice:

Para ntimeros naturales impares a y b tales que b* < 4a y 3a < b> +2b + 4 se pueden
encontrar enteros no negativos s,¢,u 'y v tales que a = s> +> +u> +v? yb = s+t +u+v.

Otra generalizacion es tomar combinaciones de cuadrados, es decir, buscar nlimeros expresables
como x? + ay? donde a es un nimero dado y x,y € Z. La ley de reciprocidad cuadritica de Gauss,
responde parcialmente a este problema y conduce en dltimo término, a desarrollar toda una nueva
disciplina conocida como Teoria de cuerpos de clases.

Del mismo modo, con la suma de cuatro cuadrados, se puede plantear para que a, b, c,d nimeros
naturales, la ecuacién n = ax? -+ bx3 + cx3 + dx3, tiene solucién para todo n siendo x1,x2, X3, X4 enteros.

El teorema de los cuatro cuadrados es el caso a = b = ¢ =d = 1. La solucién general de este
problema fue dada por Ramanujan:

Asumiendo que a < b < ¢ < d entonces hay exactamente 54 elecciones de a,b,c,d tal que la
ecuacion anterior puede resolverse en enteros xy,xz,x3,x4 para todo n (en realidad Ramanujan dio una
eleccion méds, a = 1,b =2,c = d =5, pero en este caso la ecuacion no tiene solucién para n = 15).

En los teoremas demostrados en este trabajo, se deja la posibilidad, de que en las representaciones
de nimeros como suma de cuadrados, alguno de los sumandos sea nulo. Encontrar descomposiciones
en sumas de cuadrados tales que ningiin sumando se anule, es un problema interesante pero escapa a
los contenidos de este trabajo. Puede encontrarse un andlisis de este problema en Representations of
Integers as Sums of Squares de Emil Grosswald [Gros85].

Otra forma de generalizar estos teoremas consiste en buscar representaciones de nimeros como
potencias superiores, es decir, buscar nimeros que se puedan expresar como sumas de potencias k-
ésimas. Este problema es conocido como el problema de Waring.

21
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4.1. El problema de Waring

‘Omnis integer numerus vel est cubus, vel e duobus,
tribus, 4, 5, 6, 7, 8, vel novem cubis compositus,

est etiam quadrato-quadratus vel e duobus, tribus &c.
usque ad novemdecim compositus & sic deinceps.’

Meditationes Algebraicae 1770, pp. 204-5(Edward Waring)

Asi enunci6é Waring, la conjetura que afirma que todo entero es expresable como suma de 9 cubos, 19
potencias cuartas y en general un ndmero finito de potencias k-ésimas. Es decir, todo entero positivo
puede expresarse como suma de a lo sumo s potencias k-ésimas positivas, siendo s dependiente de k
(se entiende que k es un ndmero entero no negativo).

n:xlf—l—...—i—x’;

Se denota por g(k) al minimo s que verifica la condicién anterior. El teorema de Lagrange prueba
esta conjetura para el caso k = 2. No fue hasta 1909 cuando David Hilbert, resolvi6 el problema de la
existencia de g(k) < oo, para todo k. La demostracion se basa en la siguiente identidad:

Lemad4.1.1. Dadosk>1,n>1, seaN = (2“2',171). Existen N niimeros racionales Ay, ..., Ay y enteros

Aliy---,ani, i=1,... N tales que

(x% R _|_x’21)k = Z l,-(auxl + - +Clnixn)2k

—_

para todo x; entero.

Aunque la conjetura quedaba demostrada, Hilbert no determiné la forma de calcular el valor nu-
mérico de g(k) para cualquier k. Se conocen algunos valores de estos nimeros. Como ya se ha co-
mentado el caso g(2) = 4, es el teorema de Lagrange. Otros valores conocidos son

= g(3) =9, demostrado por Wieferich y Kempner entre 1909 y 1912.

= g(4) =19, demostrado por Balasubramanian, Dress y Deshouillers en 1986.
» g(5) =37, demostrado por Chen Jingrun en 1964.

» g(6) =73, demostrado por Pillai en 1940.

Como se puede ver, lo que conjeturé Waring en su dia, resultd ser cierto. Es curioso el hecho de que
2(6) se encontrara antes que g(5), y éste a su vez antes que g(4). Sin embargo, aunque hacen falta 9
cubos para expresar cualquier entero, tinicamente son necesarios 9 cubos para dos nimeros, el 23 y
el 239, para el resto es suficiente con 8 sumandos. Por este curioso hecho, se generaliza algo mis el
problema de Waring. Se denota como G(k) al menor nimero de k-ésimas potencias, necesario para
representar cualquier entero, salvo un nimero finito de ellos. Es inmediato que G(k) < g(k).

Aunque no se conoce ninguna férmula para calcular estos nimeros, si se pueden establecer cotas

Teorema 4.1.2. Dado un entero positivo k se tiene
g(k) > [ (3/2)] +2¢ -2
donde | x| es el mayor entero menor o igual que x.

Demostracion. Sea 3% = q2% +r, donde 1 < r < 2%y g = |(3/2)|, como el entero n = 2%q — 1 < 3k,
solo puede ser representado por potencias k-éimas de 1y 2, y el menor nimero de éstas es | (3/2)%| —1
potencias k-éimas de 2 y 2F — 1 potencias k-éimas de 1 esto es, n = (g — 1)2% + (2% — 1)1, asf que se
requieren 2 4 ¢ — 2 potencias k-éimas. O

Sumas de cuadrados



4.2. Numeros Taxicab 23

Este resultado fue probado por Johann Albrecht Euler, hijo de Leonhard Euler.

Si se toman los primeros valores conocidos de g(k) se observa que coincide con su cota superior.
Por este motivo se cree que la cota da el valor exacto. De hecho se sabe que es asi exceptuando un
nudmero finito de casos.

Teorema 4.1.3. Si k > 6y se cumple
32k < (25— 1)[(3/2)F] (4.1)

se tiene g(k) = | (3/2)%| +2¢ —2.
Ademds, si no se cumple 4.1, definiendo N (k) = | (3/2)] - | (4/3)*] + [ (3/2)%| + | (4/3)X| se tiene

g(k) = (3/2)F| +[(4/3)%| +2k -3 siN(k) > 2*

g(k) = [(3/2)%) + [(4/3)F + 2t —2 siN(k) =2*

En 1957 Mahler demostrd, que si existen valores de k para los cuales 4.1 es falsa, entonces s6-
lo pueden ser un nimero finito. Posteriormente Stemmler (1964) verificd, en ordenador, que 4.1 se
cumple para k < 200000. En 1990, Kubina y Wunderlich ya lo habian extendido a £ < 471600000.

Igualmente, también existe una acotacién para los G(k). Se tiene que si k > 2, entonces se veri-
fica la desigualdad G(k) > k+ 1. Resultado probado por Maillet en 1908. Esto significa que existen
nimeros naturales arbitrariamente grandes que no son suma de k-éimas potencias. Asi que para todo
k > 2 se verifican las desigualdades k+ 1 < G(k) < g(k).

Para el caso de sumas de cuadrados se tiene por el teorema de Lagrange que g(2) = 4 y por tanto
G(2) < 4. Ahora bien, como se ha comentado, los nimeros de la forma n = 4¢(8k + 7) no pueden
expresarse como suma de tres cuadrados. Por tanto se tiene G(k) =4

Para los cubos (caso k = 3), no se conoce el valor exacto de G(3). En 1949, Yu V. Linnik, demostré
que G(3) < 7. Aplicando el resultado de Maillet, se tiene que 4 < G(3) < 7, aunque los cdlculos
numéricos, parecen indicar que G(3) = 4.

Igualmente se puede extender el problema de Waring permitiendo sumar y restar potencias k-
ésimas. Es decir un nimero n puede ser expresado como suma o diferencia de s potencias k-ésimas
si

n=4x\ ... £

De forma similar a lo anterior, se denota por w(k) al minimo s que verifica lo anterior para cual-
quier n. Igualmente, se define como W (k) al menor ndimero de k-ésimas potencias, necesario para
representar cualquier entero, salvo un nimero finito de ellos.

El problema de determinar w(k) y W (k) se suele conocer como el problema ‘facil’ de Waring,
aunque en realidad es mas dificil.

Un desarrollo mds amplio del problema de Waring se puede ver en Waring’s Problem: A Survey,
de Vaughan y Wooley [VW02]

4.2. Numeros Taxicab

El problema de los nimeros taxicab, profundiza en el estudio de la suma de cubos. Da comienzo
con una anécdota, bastante conocida, entre los matemdticos Hardy y Ramanujan.

Srinivasa Ramanujan, naci6 en 1887 en Erode, India, en el seno de una familia de brahmanes pobre
y ortodoxa. Ramanujan fue autodidacta de las matematicas. Adquirié practicamente la totalidad de su
conocimiento sobre éstas, a través de los libros La Trigonometria plana de S. Looney, y Synopsis of
Elementary Results in Pure Mathematics de S. Carr que contenian un listado de unos 6000 teoremas
sin demostracion.

El 16 de enero de 1913, el matemadtico britdnico Godfrey Harold Hardy, recibe una carta de Ra-
manujan, un joven indio de 25 afios. En esta carta, Ramanujan, explicaba su situacién, admitiendo
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que carecia de una formacién universitaria en matemadticas, habiendo seguido una trayectoria propia.
En esta carta se adjuntaban 120 férmulas, alguna de las cuales desbordaban al propio Hardy, el cual
comentd: ‘Forzoso es que sean verdaderas, porque si no lo fueran, nadie habria tenido la suficiente
imaginacién para inventarlas’.

Hardy le invit6 a trasladarse a Cambridge, a lo que Ramanujan en un principio se mostré reticente.
Por fin, tras la intervencién de su madre y de la diosa Namagiri, de la que Ramanujan afirmaba que le
dictaba sus resultados en suefios, y de una beca de 250 libras, Ramanujan llega al Trinity College en la
primavera de 1913. Durante su estancia en Cambridge, en plena guerra mundial, Ramanujan enfermé
de tuberculosis, por lo que acabd ingresado en diversas ocasiones. En 1919 tras el fin de la contienda,
y gravemente enfermo, decide regresar a la India. Morird a los pocos meses. A pesar de ello, su trabajo
con Hardy ha dejado una increible produccion de resultados matematicos sorprendentes, en forma de
‘Cuadernos’. Algunos de ellos todavia estdn siendo estudiados.

Una de las veces que Ramanujan fue ingresado, Hardy fue a visitarlo, y le llamé la atencién el nd-
mero del taxi, 1729, pues lo encontraba muy poco interesante. Debi6 de estar pensando en ello porque
entrd en la habitacidn del hospital en donde estaba Ramanujan tumbado en la cama y, con un ‘hola’
seco, expreso su desilusion acerca de este nimero. Era, segin él, un nimero aburrido, agregando que
esperaba que no fuese un mal presagio. ‘No, Hardy, dijo Ramanujan, es un nimero muy interesante.
Es el nimero mas pequefio expresable como la suma de dos cubos positivos de dos formas diferen-
tes.” Hardy, a continuacion, le pregunté si conocia la respuesta para las cuartas potencias. Ramanujan
contesto, tras pensarlo un momento, que no podia ver la respuesta, pero que pensaba que debia ser un
nimero extremadamente grande. De hecho, la respuesta, obtenida mediante cdlculos con ordenador,
es 635318657 = 134* + 133* = 1584+ 59*.

De esta anécdota surgen los llamados niimeros taxicab. Se define el enésimo niimero taxicab
(Ta(n)) como el menor entero que se puede expresar como suma de dos cubos de n formas distintas.
Para n = 1 es sencillo comprobar que Ta(1) =2 = 13 +13. Otros valores son

» Ta(2) = 1729 = 13+ 12° = 93 4 10° conocido como el nimero Hardy-Ramanujan, fue publi-
cado por primera vez por Bernard Frénicle de Bessy en 1657.

» Ta(3) = 87539319 = 167> +436% = 2283 + 4233 = 2553 + 414> obtenido por John Leech en
1967 mediante cdlculos con supercomputadoras.

Se conocen 6 niimeros taxicab, siendo Ta(6) = 24153319581254312065344 hallado por Uwe Holler-
bach en 2008. Para el resto, Christian Boyer en 2006 encontré cotas superiores para Ta(7),...,Ta(12).
Incluyendo alguna restriccion mds, se encuentran los llamados nimeros ‘cubefree taxicab’ T'(n)
siendo éste, el menor ndmero que se puede descomponer como 7 sumas distintas de la forma 7'(n) =
x* 4 y3 siendo x e y coprimos. Se tiene que Ta(1) = T (1) y Ta(2) = T(2). Otros valores conocidos

» T(3) = 15170835645 hallado por Paul Vojta en 1981.

» T(4)=1801049058342701083 hallado por Stuart Gascoigne e independientemente por Duncan
Moore en 2003.

Se puede generalizar los nimeros taxicab permitiendo mayor nimero de sumandos y potencias
mayores. Asi, se denota como Taxicab(k, j,n) al menor entero positivo que puede expresarse como la
suma de j potencias positivas de k de n formas diferentes. Los nimeros taxicab son el caso k =3y
J = 2. Por ahora no se conoce nigin Taxicab(5,2,n) paran > 2.

Asi mismo, también pueden generalizarse los nimeros taxicab, permitiendo sumas y restas de
potencias ctbicas. A éstos se los conoce como niimeros cabtaxi, siendo Cabtaxi(n) el menor entero
positivo que puede descomponerse como suma o resta de dos potencias cubicas de n formas. Para
estos nimeros se conocen hasta n = 10. Cabtaxi(5), Cabtaxi(6) y Cabtaxi(7) fueron hallados por
Randall L. Rathbun; Cabtaxi(8) hallado por Daniel J. Bernstein; Cabraxi(9) hallado por Duncan
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Moore. Para Cabtaxi(10) Christian Boyer encontré una cota superior en 2006 y ésta fue verifcada
como Cabtaxi(10) por Uwe Hollerbach en mayo de 2008.

Como se observa existen infinidad de maneras de abordar y generalizar este problema. Las ge-
neralizaciones proporcionan una vision mds amplia de resultados anteriores e incluso en ocasiones
permiten demostrar resultados con mayores restricciones.

Autor: Antonio Pablo Lozano Vicente






Bibliografia

[AZ09] M. Aigner y G.M. Ziegler. Proofs from THE BOOK, Springer-Verlag, Berlin, New York,
2009.

[Bus18] W. H. Bussey. Fermat’s Method of Infinite Descent, The American Mathematical Monthly,
Vol. 25, No. 8, 1918.

[Calll] C. Calderén-Garcia. Sobre el problema cldsico de Waring, Revista de la Academia de Cien-
cias Exactas, Fisicas, Quimicas y Naturales de Zaragoza, 2011.

[Dic19] L.E. Dickson. History of the theory of numbers, Washington, Carnegie Institution of Wa-
shington, 1919.

[Gros85] E. Grosswald. Representations of Integers as Sums of Squares, Springer-Verlag New York
Inc., 1985.

[Gauss] Gaussianos. http://gaussianos.com/

[Ji08]  Jia Hong Ray Ng. Quaternions and the four square theorem, Pappers from the University
of Chicago, http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Ng.pdf,
2008.

[JJ98] G.A. Jones y J.M. Jones. Elementary Number Theory,Springer undergraduate mathematics
series, 1998.

[Kos09] K. Kostadinov. Introduction to Number Theory notes,Boston University, Department of Mat-
hematics and Statistics, 20009.

[Mar09] K. Martin. Introduction to Number Theory,University of Oklahoma, Department of Mathe-
matics, 2009.

[Rod] J.J. Rodriguez-Padilla. El Algebra y la geometria de los cuaternios y algunas de sus aplica-
ciones, http://www.bibliotecadigital.uson.mx/, Tesis digitales, Tesis 21070.

[Rib72] P. Ribenboim. Algebraic numbers, John Wiley & Sons, Inc. 1972.
[Ros95] H.E.Rose. A Course in Number Theory,Oxford Science Publications, 1995.

[Tat05S] Leung Tat-Wing. The Method of Infinite Descent, Mathematical Excalibur, Vol. 10, No. 4,
2005.

[VWO02] R.C. Vaughan y T.D. Wooley. Waring’s Problem: A Survey, University of Bristol, 2002.

[Wiki] Wikipedia. http://www.wikipedia.org/

27






	Prólogo
	English Summary
	Introducción
	Sumas de cuadrados: El origen
	Método del descenso infinito

	El Teorema de los dos cuadrados
	Aritmética modular
	Enteros de Gauss
	Primera demostración del teorema de Fermat
	Aritmética de los Enteros de Gauss
	Segunda demostración del teorema de Fermat

	Teorema de los cuatro cuadrados
	Cuaternios de Hamilton
	Teorema de los cuatro cuadrados

	Representaciones superiores
	El problema de Waring
	Números Taxicab

	Bibliografía

