000161071 001__ 161071
000161071 005__ 20251017144618.0
000161071 0247_ $$2doi$$a10.1111/1751-7915.70176
000161071 0248_ $$2sideral$$a144250
000161071 037__ $$aART-2025-144250
000161071 041__ $$aeng
000161071 100__ $$aCampos-Pardos, Elena
000161071 245__ $$aEvolutionary Trajectories of Methionine Metabolism in Mycobacterium and Its Application to Engineer a Vitamin B12 Whole‐Cell Ribosensor
000161071 260__ $$c2025
000161071 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161071 5203_ $$aABSTRACT Vitamin B12 metabolism differs among members of the Mycobacterium genus. While non‐tuberculous mycobacterial species are B12 producers, tuberculous mycobacteria lack endogenous production and rely on the host supply of this vitamin. Here, we hypothesise that this discrepant phenotype might impact the function of B12‐dependent enzymes. We specifically focused on methionine synthases MetH and MetE. Both enzymes showed genetic differences in the Mycobacterium genus, resulting in a clear divergence between tuberculous and non‐tuberculous species. Unexpectedly, the dependency of MetH on B12 was indistinguishable between M. tuberculosis and M. smegmatis, assayed as representative members of tuberculous and non‐tuberculous species, respectively. However, MetE showed robust phenotypic differences between these species, displaying a finely tuned B12 regulation in M. tuberculosis, in contrast to a more permissive regulation in M. smegmatis. Both orthologs differ in the vitamin isoform specifically recognised, and the B12 threshold level required for MetE regulation. Since the B12 regulatory element in the metE gene is an RNA riboswitch, we analysed the polymorphisms in this region, with a special focus on loss‐of‐function mutations identified after in vitro selection. We used this information to engineer a whole‐cell B12 biosensor in the genetically fastidious Mycobacterium genus, being able to detect vitamin B12 concentration in the range of micrograms per millilitre.
000161071 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-02909$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-104690RB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/PID2023-148710OB-I00
000161071 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000161071 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161071 700__ $$aSanz-Asensio, Laura$$uUniversidad de Zaragoza
000161071 700__ $$aPérez-Jiménez, Sandra
000161071 700__ $$0(orcid)0000-0003-3608-4720$$aYruela, Inmaculada
000161071 700__ $$0(orcid)0000-0002-5462-907X$$aContreras-Moreira, Bruno
000161071 700__ $$aToledo-Arana, Alejandro
000161071 700__ $$0(orcid)0000-0001-8841-6593$$aGonzalo-Asensio, Jesús$$uUniversidad de Zaragoza
000161071 7102_ $$11011$$2630$$aUniversidad de Zaragoza$$bDpto. Microb.Ped.Radio.Sal.Pú.$$cÁrea Microbiología
000161071 773__ $$g18, 6 (2025), e70176 [14 pp.]$$pMicrob. biotechnol.$$tMicrobial biotechnology$$x1751-7907
000161071 8564_ $$s2867909$$uhttps://zaguan.unizar.es/record/161071/files/texto_completo.pdf$$yVersión publicada
000161071 8564_ $$s2418750$$uhttps://zaguan.unizar.es/record/161071/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161071 909CO $$ooai:zaguan.unizar.es:161071$$particulos$$pdriver
000161071 951__ $$a2025-10-17-14:20:32
000161071 980__ $$aARTICLE