000161077 001__ 161077
000161077 005__ 20251017144620.0
000161077 0247_ $$2doi$$a10.3390/sym17050684
000161077 0248_ $$2sideral$$a144226
000161077 037__ $$aART-2025-144226
000161077 041__ $$aeng
000161077 100__ $$0(orcid)0000-0002-6497-7158$$aKhiar, Yasmina$$uUniversidad de Zaragoza
000161077 245__ $$aFactorizations and Accurate Computations with Min and Max Matrices
000161077 260__ $$c2025
000161077 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161077 5203_ $$aMin and max matrices are structured matrices that appear in diverse mathematical and computational applications. Their inherent structures facilitate highly accurate numerical solutions to algebraic problems. In this research, the total positivity of generalized Min and Max matrices is characterized, and their bidiagonal factorizations are derived. It is also demonstrated that these decompositions can be computed with high relative accuracy (HRA), enabling the precise computations of eigenvalues and singular values and the solution of linear systems. Notably, the discussed approach achieves relative errors on the order of the unit roundoff, even for large and ill-conditioned matrices. To illustrate the exceptional accuracy of this method, numerical experiments on quantum extensions of Min and L-Hilbert matrices are presented, showcasing their superior precisions compared to those of standard computational techniques.
000161077 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00$$9info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
000161077 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161077 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161077 700__ $$0(orcid)0000-0002-1101-6230$$aMainar, Esmeralda$$uUniversidad de Zaragoza
000161077 700__ $$0(orcid)0000-0003-1550-8168$$aRoyo-Amondarain, Eduardo$$uUniversidad de Zaragoza
000161077 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000161077 773__ $$g17, 5 (2025), 684 [13 pp.]$$pSymmetry (Basel)$$tSymmetry$$x2073-8994
000161077 8564_ $$s316199$$uhttps://zaguan.unizar.es/record/161077/files/texto_completo.pdf$$yVersión publicada
000161077 8564_ $$s2157195$$uhttps://zaguan.unizar.es/record/161077/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161077 909CO $$ooai:zaguan.unizar.es:161077$$particulos$$pdriver
000161077 951__ $$a2025-10-17-14:21:23
000161077 980__ $$aARTICLE