000161079 001__ 161079
000161079 005__ 20251017144620.0
000161079 0247_ $$2doi$$a10.1016/j.fm.2025.104823
000161079 0248_ $$2sideral$$a144305
000161079 037__ $$aART-2025-144305
000161079 041__ $$aeng
000161079 100__ $$aTavares da Silva, Ruthchelly
000161079 245__ $$aMeropenem-induced cross-protection in Salmonella enterica resistant variants: Insights from adaptive laboratory evolution and whole genome sequencing
000161079 260__ $$c2025
000161079 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161079 5203_ $$aAdaptive laboratory evolution (ALE) assay provides a deep understanding of the genetic mechanisms and processes involved in bacterial responses. This study aimed to obtain resistant-variants (RVs) of Salmonella enterica subsp. enterica Typhimurium (SeT) and Enteritidis (SeE) after ALE assays with meropenem (MPM); to identify genetic modifications of RVs responsible for their increased resistance; and to evaluate their cross-protection against antibiotics and food preservatives (heat and carvacrol). Five MPM-RVs from SeT (SeT_M1-5) and one from SeE (SeE_M5) showed a 100 % increase in MPM minimum inhibitory concentrations (from 0.0312 to 0.0625 μg/mL). MPM-RVs had lower maximum growth rates and/or longer lag times, except in SeT_M5 and SeE_M3, which maintained or even improved growth fitness in the presence of MPM. Whole genome sequencing of RVs revealed single mutations in AMR-related and -unrelated genes in most MPM-RVs: spoT in SeT_M1, glnA in SeT_M2, thrS in SeT_M4 and SeE_M2, and mrdA in SeT_M5, SeE_M3 and SeE_M5. Two mutations were identified in SeT_M3 and SeE_M4: spoT and znuA in SeT_M3 and AWJ12_RS14025 and rfbF in SeE_M4. The individual mutations resulted in cross-protection to at least one of the antibiotics tested and/or heat (reductions of up to 3.8–4.3 cycles of inactivation for MPM-RVs in contrast to 4.7 and 5.3 cycles for SeE and SeT, respectively) and/or carvacrol (3.4–3.7 cycles for MPM-RVs in contrast to 4.4 cycles for SeT). These findings highlight the importance of preventing the emergence of resistant bacterial variants, considering the cross-protection to other antibiotics and food preservatives, which plays an important role in spreading resistance in food chain.
000161079 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/PID2021-123404NB-I00
000161079 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000161079 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161079 700__ $$0(orcid)0000-0002-6598-8879$$aGarcía-Penas, Ivo$$uUniversidad de Zaragoza
000161079 700__ $$0(orcid)0000-0002-3170-9755$$aEspina, Laura
000161079 700__ $$0(orcid)0000-0002-7629-8101$$aGarcía-Gonzalo, Diego$$uUniversidad de Zaragoza
000161079 700__ $$aMagnani, Marciane
000161079 700__ $$0(orcid)0000-0002-0238-6328$$aPagán, Rafael$$uUniversidad de Zaragoza
000161079 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000161079 773__ $$g132 (2025), 104823 [12 pp.]$$pFood microbiol.$$tFOOD MICROBIOLOGY$$x0740-0020
000161079 8564_ $$s2718646$$uhttps://zaguan.unizar.es/record/161079/files/texto_completo.pdf$$yVersión publicada
000161079 8564_ $$s2504232$$uhttps://zaguan.unizar.es/record/161079/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161079 909CO $$ooai:zaguan.unizar.es:161079$$particulos$$pdriver
000161079 951__ $$a2025-10-17-14:21:23
000161079 980__ $$aARTICLE