Detection of changes in the heat emissions signature of buildings related to indoor activity using publicly available satellite data
Resumen: Monitoring human activities in remote areas presents significant challenges due to lacking communication networks and infrastructure. In this context, using publicly available satellite imagery offers a cost-effective solution, as it enables the identification of changes in these areas. However, specific scenarios make detection more complicated. One such scenario is detecting indoor activity within buildings in remote areas. Walls and roofs create barriers for most sensors. Nevertheless, activities inside buildings can be associated with heat emissions, which specific remote sensors can detect. Unfortunately, publicly available satellite data does not include information from such sensors. In light of this limitation, this study investigates the opportunity of using machine learning models to interpret public-available data. Specifically, we trained four machine learning models (XGBoost, LGBM, DNN, and CNN) using images from Sentinel-2 Band 12 (the sensor with the frequency range closest to the heat emission peak) and meteorological data (temperature). Our results show that these models can identify farm-building activity, with the XGBoost model achieving the highest accuracy of 0.96 by integrating satellite data and temperature information; the findings suggest that leveraging public satellite sensors can effectively detect human heat emissions and improve surveillance in remote areas, overcoming some limitations of traditional methods.
Idioma: Inglés
DOI: 10.1007/s12145-025-01926-6
Año: 2025
Publicado en: EARTH SCIENCE INFORMATICS 18, 2 (2025), 420 [17 pp.]
ISSN: 1865-0473

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113353RB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T59-23R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2025-10-17-14:22:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2025-06-12, última modificación el 2025-10-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)