

1 “Relationship between sainfoin proanthocyanidins and *in vitro* fermentation depending
2 on time of harvest and level of inclusion in the diet.”

3 *Clàudia Baila¹, Sandra Lobón, Mireia Blanco, Isabel Casasús, and Margalida Joy**

4 *Departamento de Ciencia Animal. Centro de Investigación y Tecnología Agroalimentaria de*
5 *Aragón (CITA). Avda. Montaña 930, 50059, Zaragoza, España. Instituto Agroalimentario*
6 *de Aragón – IA2 (CITA-Universidad de Zaragoza). Zaragoza, España.*

7 ¹ current address: Instituto de Ganadería de Montaña (CSIC-University of León), Finca
8 Marzanas s/n, 24346, Grulleros, León, Spain.

9 * Email address: mjoy@cita-aragon.es

10

11 **Abstract**

12 The aim of the current study was to evaluate the effect of the presence of active
13 proanthocyanidins (PAC) from sainfoin, either fresh or dehydrated included in the concentrate,
14 on *in vitro* ruminal fermentation parameters, by including polyethylene glycol to block PAC.
15 Total gas and methane productions, ammonia (NH₃-N), and volatile fatty acids (VFA) were
16 analyzed in fresh and in dehydrated sainfoin included in concentrates at different rates (0%,
17 20% and 40%), and ruminal biohydrogenation (BH) only in the latter. Active PAC from fresh
18 and dehydrated sainfoin reduced the production of gas and methane ($P < 0.01$), with no effect
19 on total VFA ($P > 0.05$). The presence of active PAC reduced NH₃-N content in fresh sainfoin
20 ($P < 0.01$), whereas the lower PAC contents in concentrates including dehydrated sainfoin only
21 elicited a tendency ($P = 0.06$). The presence of sainfoin PAC in the concentrate decreased the
22 BH extent and promoted the *trans*-11 BH pathway ($P < 0.05$). The inclusion of dehydrated
23 sainfoin in the concentrate decreased the branched-chain fatty acids (FA; $P < 0.01$) and
24 increased most of the *trans*-monounsaturated FA, C18:3 n-3, and BH intermediates ($P < 0.05$).
25 In conclusion, the use of sainfoin in the diet of small ruminants can be a useful strategy to
26 reduce gas and methane productions. In addition, the inclusion of dehydrated sainfoin in the
27 concentrate produced changes in the ruminal FA profile that could promote a healthier meat FA
28 profile.

29 **Keywords:** *Onobrychis viciifolia*; polyethylene glycol; gas production; fatty acids; sheep;
30 ruminal biohydrogenation.

31 **Abbreviations:** *A*, potential gas production; ADFom, acid detergent fiber exclusive of residual
32 ash; a.s.l., above sea level; BCFA, branched-chain fatty acid; BH, biohydrogenation; BI,
33 biohydrogenation intermediates; *c*, rate of gas production; C2:C3, acetic/propionic acid ratio;
34 CH₄, methane; CP, crude protein; DM, dry matter; FA, fatty acid; FID, flame ionization

35 detector; IVOMD, *in vitro* organic matter degradation; lignin (sa), lignin determined by
36 solubilization of cellulose with sulfuric acid; MUFA, monounsaturated fatty acids; NDFom,
37 neutral detergent fiber exclusive of residual ash; OM, organic matter; *P*, cumulative gas
38 production; PAC, proanthocyanidins; PEG, polyethylene glycol; PUFA, polyunsaturated fatty
39 acids; SFA, saturated fatty acids; s.e.m., standard error of the mean; VFA, volatile fatty acids.

40 **1. Introduction**

41 The current concern about climate change and the increasing interest in healthy ruminant
42 products force farmers to look for new feeding strategies while ensuring a good quality of meat
43 and milk. In response to these needs, the use of locally grown forages in ruminant diets could
44 simultaneously foster greater sustainability and feed autonomy, besides of a potential
45 improvement of the fatty acid (FA) profile of edible products (Moorby and Fraser, 2021;
46 Santos-Silva et al., 2023).

47 Sainfoin (*Onobrychis viciifolia*) is a forage legume with a high-medium crude protein (CP)
48 concentration and with a medium content of proanthocyanidins (PAC) (Rufino-Moya et al.,
49 2022), also known as condensed tannins. Two thirds of the annual sainfoin production are
50 collected in the first cut, thus this forage is often preserved as hay, dehydrated or ensiled to be
51 used by ruminants during feed shortage periods (Hayot Carbonero et al., 2011) or included in
52 fattening diets (Baila et al., 2023b). In addition to the effect of forage *per se* on ruminal
53 fermentation characteristics, sainfoin PAC can change the ruminal microbial population
54 (Mannelli et al., 2019; Vasta et al., 2019) and, consequently, modulate the ruminal
55 biohydrogenation (BH) pathways in different ways (Frutos et al., 2020). Among others, these
56 changes may reduce methane, gas, and ammonia (NH₃-N) productions, thus resulting in greater
57 energy efficiency and lower environmental impact (Waghorn, 2008), as well as changes in the
58 concentration of polyunsaturated FA (PUFA) and FA intermediates (C18:3, C18:2, and C18:1
59 isomers) in the rumen, which may be deposited on ruminant products (Álvarez-Rodríguez et

60 al., 2022; Woods and Fearon, 2009). However, literature is not conclusive concerning the
61 effects of PAC, which depend, *inter alia*, on the concentration and structure of the PAC, the
62 type of diet or the animal for which it is intended (Patra and Saxena, 2011; Niderkorn et al.,
63 2020; Menci et al., 2021). Besides, the preservation can change the content and fractions of
64 PAC (Wang et al., 2015; Huang et al., 2016), being the extent of the effects dependent on the
65 method of preservation (Scharenberg et al., 2007).

66 Previous studies assessed the effect of using i) fresh sainfoin harvested at different dates in
67 the diet of ewes rearing a suckling lamb and ii) dehydrated sainfoin in the concentrate of
68 finishing lambs. Briefly, while no effects were observed on the productive performance of ewes
69 and lambs (Baila et al., 2022, 2024), changes were found in the fatty acid profile of milk in the
70 first study (Baila et al., 2023b) and in the ruminal BH and fatty acid profile of lamb meat in the
71 second study (Baila et al., 2023a). Therefore, we hypothesized that sainfoin PAC would have
72 different effects on ruminal fermentation depending on the time of harvest, and the level and
73 form of inclusion in the diet. Hence, the aim of the current study was to evaluate the effect of
74 the PAC from fresh and dehydrated sainfoin on *in vitro* fermentation parameters through the
75 addition of polyethylene glycol (PEG) to inhibit the action of PAC. In addition, the study also
76 evaluated the effects on ruminal BH on the diets with dehydrated sainfoin.

77

78 **2. Material and methods**

79 All procedures were carried out in accordance with the guidelines for experimental animal
80 protection (European Union Directive 2010/63) and were approved by the Animal Care and
81 Use Committee of the Research Centre (Animal Ethics Committee of the Centro de
82 Investigación y Tecnología Agroalimentaria de Aragón (CITA) (CEEA, protocol no. 2017–07).

83 Two assays were conducted separately to assess the *in vitro* fermentation of fresh sainfoin
84 and dehydrated sainfoin included in a finishing concentrate. In both assays, the effect of PAC
85 was evaluated using PEG as a blocking agent for PAC activity.

86 *2.1. Incubated feedstuffs*

87 Sainfoin (*Onobrychis viciifolia* cv Reznos) was grown at CITA Research Institute in
88 Zaragoza (41° 42' N, 0° 49' W, altitude 216 m.a.s.l., mean annual temperature 15 ± 7.3 °C and
89 mean rainfall 296 ± 78 mm, Ebro Valley, NE Spain). It was sown in autumn 2018 at a seeding
90 rate of 100 kg/ha, and irrigation was applied every 15–21 days in spring. Sainfoin was harvested
91 on a weekly basis between 10th April (vegetative stage) and 8th May (start of flowering stage)
92 to feed ewes rearing suckling lambs (Baila et al., 2023b). Finally, the remaining sainfoin was
93 harvested at flowering stage to be dehydrated, pelleted and included at different rates in
94 finishing concentrates for lambs, as described in detail in Baila et al. (2024).

95 *Assay 1: Effects of the presence of active PAC of fresh sainfoin and the week of harvest*
96 *(concerning different vegetative stages).* Fresh samples of sainfoin without (SF treatment) or
97 with the addition of PEG (SF+PEG treatment) were used to assess the effects of the presence
98 of active PAC and the week of harvest (1 to 4) on *in vitro* fermentative parameters, and gas and
99 methane production. For that, fresh samples of sainfoin from each week were lyophilized and
100 ground through a 0.2 mm sieve. The chemical composition evolved during the 4 weeks, with
101 neutral detergent fiber (NDFom) and acid detergent fiber (ADFom) contents increasing and CP
102 content decreasing from week 1 to 3; PAC contents were highest in weeks 1 and 2 and decreased
103 thereafter (Fig. 1). More details of chemical composition are presented in supplementary Table
104 S1 (Baila et al., 2022).

105 *Assay 2: Effects of the presence of active PAC in increasing doses of dehydrated sainfoin*
106 *included in the finishing concentrate of lambs.* Three finishing concentrates for lambs including

107 0% (0SF), 20% (20SF), and 40% (40SF) dehydrated sainfoin were evaluated without the
108 addition of PEG (SF treatment) or with the addition of PEG (SF+PEG treatment) to study the
109 effects of increasing amounts of active PAC, on *in vitro* fermentation parameters, gas, and
110 methane production. Additionally, the biohydrogenation (BH) was evaluated to assess the
111 potential effect on lamb meat FA profile. The concentrates were formulated to be iso-energetic
112 (18.3 MJ gross energy/kg DM) and iso-proteic (174 g/kg DM), and as the percentage of sainfoin
113 increased and cereals was reduced, the contents of ADF, total PAC, and C18:3 n-3 increased,
114 while that of starch decreased (Fig. 4). Further details on the chemical composition of the
115 sainfoin pellets and the concentrates can be found in Baila et al. (2024) (Table S2 and Table
116 S3).

117 *2.2. Animals and sampling of ruminal digesta*

118 Four adult Rasa Aragonesa wethers (56 ± 1.3 kg body weight) fitted with a ruminal cannula
119 (5 cm-inner diameter; Bar Diamond, ID, USA) were used to obtain the ruminal digesta for *in*
120 *vitro* assays. The wethers received a diet at maintenance levels, composed of alfalfa hay and
121 barley grain in a proportion of 70:30 distributed in two equal meals at 8:00 h and 14:00 h. The
122 collection of ruminal fluid, as well as the preparation of buffer solution and rumen inoculum,
123 were conducted following the procedures explained in Rufino-Moya et al. (2019) as a
124 modification of the method proposed by Menke and Steingass (1988). Briefly, ruminal fluid
125 from the four wethers was mixed homogeneously, and a buffer solution was added in a
126 proportion of 1:2 (v/v, ruminal fluid:buffer solution) to obtain the rumen inoculum.

127 *2.3. Experimental and sampling procedures*

128 Gas production was determined with the Ankom system (Ankom Technology Corporation,
129 Fairport, NY, USA), which consists of 310-mL capacity bottles fitted with pressure and
130 temperature sensors. Freeze-dried samples (≈ 500 mg) were incubated with 60 mL of rumen

131 inoculum in a water bath at 39 °C. To measure the effect of PAC, PEG (molecular weight:
132 4000; Merck, Darmstadt, Germany) was added to the rumen inoculum at a concentration of 2.3
133 g/L (McSweeney et al., 1999). Three runs were conducted on three separate days, and each
134 sample was incubated in triplicate in each run. Two bottles without substrate, with and without
135 PEG, were used as negative controls (blanks). Gas production was recorded for 72 h in Assay
136 1 (fresh sainfoin) and 48 h in Assay 2 (dehydrated sainfoin included in concentrates), and the
137 results were corrected by gas production of the blanks.

138 After the incubation, the bottles were placed in ice for 5–10 minutes to stop fermentation
139 and then tempered at room temperature (10–15 minutes). A sample of gas of each treatment
140 was collected in a Vacutainer® at atmospheric pressure with a syringe attached to a manometer
141 tube and conserved at 4 °C until CH₄ determination. The pH of the fermentation fluid was
142 measured with a pH-meter (Crison Instruments S.A., Barcelona, Spain). The entire bottle
143 content was filtered through a pre-weighed bag (50 µm; Ankom Technology, Macedon, NY,
144 USA) to obtain the *in vitro* organic matter degradation (IVOMD). To determine the NH₃-N
145 content in the fermentation fluid, 2.5 mL of liquid was mixed with HCl 0.1 N in a proportion
146 of 1:1 (v/v). For volatile fatty acid (VFA) determination, 0.5 mL of liquid was added to 0.5 mL
147 of deproteinizing solution [5 mL of 85% (v/v) ortho-phosphoric acid and 0.125 mL of 4-
148 methylvaleric acid (Sigma Aldrich, Saint Louis, MO, USA) as internal standard, dissolved in
149 250 mL of distilled water] and 1 mL of distilled water. Tubes with samples of NH₃-N and VFA
150 were stored at -20 °C until the analysis. To study the BH in Assay 2, one bottle per diet and
151 per run were collected and immediately frozen at -80 °C to be freeze-dried and then stored at -
152 80 °C until future FA methyl esters analysis.

153 To study the kinetics of fermentation, gas production was recorded hourly during the
154 incubation using the Ankom system. The gas produced in batch cultures was adjusted to the
155 model described by France et al. (2000):

156
$$P = A \times (1 - e^{-ct})$$

157 where P is the cumulative gas production (mL) at time (h), A is the potential gas production
158 (mL) and c is the rate of gas production (h^{-1}).

159 *2.4. Analytical methods*

160 The chemical analysis of dry matter (DM) (index n°. 934.01), ash (index n°. 942.05), CP
161 (Dumas Procedure, index n°.968.06; Model NA 2100, CE Instruments, Thermoquest S.A.,
162 Barcelona, Spain) were carried out following the techniques described in AOAC (2000).
163 Contents of NDFom, ADFom, and acid detergent lignin (lignin (sa)) were determined according
164 to the method described by Mertens (2002) using the Ankom 200/220 fiber analyzer (Ankom
165 Technology Corporation). For the IVOMD estimation, the bags with sample were washed twice
166 with distilled water and were dried at 103 °C to a constant weight to obtain the DM content.
167 Thereafter, the sample was placed in a muffle at 550 °C to obtain the ashes. The organic matter
168 (OM) of bag content was obtained as DM-ashes, and the IVOMD was calculated.

169 The methane (CH_4) was determined through an Agilent 7890B gas chromatograph (Agilent
170 Technology, California-USA) with a PAL3 autosampler equipped with a flame ionization
171 detector (FID), and a HPPlot Q column (15 m × 320 μm × 20 μm , Agilent Technology, CA,
172 USA), and using helium as carrier gas (5.6 mL / min). The temperature was set at 40 °C for the
173 injector and oven and 350 °C for the detector. The injection volume was 300 μL . Methane
174 identification was based on the retention time relative to the standard and methane production
175 was calculated by the model proposed by Cattani et al. (2016) for the Ankom Gas Production
176 System:

177
$$\text{CH}_4 = -0.0064 \times [\text{CH}_4 \text{ in the head space} \times (\text{head space volume} + \text{gas production})]^2 + 0.9835$$

178
$$\times [\text{CH}_4 \text{ in the head space} \times (\text{head space volume} + \text{gas production})]$$

179 Content of NH₃-N was determined in an Epoch microplate spectrophotometer (BioTek
180 Instruments, Inc., Winooski, VT, USA) using the colorimetric method of Berthelot reaction,
181 and read at 625 nm, as described by Chaney and Marbach (1962). The concentrations of VFA
182 were determined using a Bruker Scion 460 gas chromatograph (Bruker, Billerica, MA, USA)
183 equipped with a CP-8400 autosampler, FID, and a BR-SWax capillary column (30 m × 0.25
184 mm ID × 0.25 µm film thickness, Bruker, Billerica, MA, USA). The helium was used as carrier
185 gas at 1 mL/min. The temperature program of the oven was 100 °C, followed by a 6 °C/min
186 increase to 160 °C. The injection volume was 1 µL with a split ratio of 1:50. The identification
187 of the individual VFA was based on retention time comparisons with commercially available
188 standards of acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, and 4-methyl-valeric
189 acids at 99% purity (Sigma-Aldrich, Saint Louis, MO, USA).

190 *Fatty acid determination*

191 For the analysis of the FA profile of sainfoin and ruminal fluid carried out in Assay 2, 500
192 mg of freeze-dried sainfoin samples were analyzed following the method described by
193 Rufino-Moya et al. (2022), while 250 mg of freeze-dried ruminal fluid were directly *trans*-
194 esterified according to the method described in Alves et al. (2013) and analyzed according to
195 Alves et al. (2017). The FA concentration of both sainfoin and ruminal fluid was determined in
196 a Bruker Scion 436-GC gas chromatograph (Bruker, Billerica, MA, USA) with a FID equipped
197 with a CP-8400 autosampler and a SP-2560 capillary column (100 m × 0.25 mm ID × 0.20;
198 Sigma Aldrich, Saint Louis, MO, USA). The identification of the FA was performed with
199 standard FA mixtures GLC-532, GLC-401, GLC-643, and GLC-642 (Nu-Chek Prep, Inc.,
200 Elysian, MN, USA) and compared with the retention times described in literature for sainfoin
201 forage (Kramer et al., 1997; Alves and Bessa, 2009; Bravo-Lamas et al., 2016) and for ruminal
202 fluid (Alves et al. 2013; Alves and Bessa 2014). The quantification was performed as described
203 in ISO 12966-4:2015 and expressed as g of FA per 100 g of total FA. Total FA concentrations

204 were expressed as mg of FA per g of sample using C19:0 (methyl-nonadecanoate N-19-M from
205 Nu-Chek Prep, Inc., Elysian, MN, USA) as the internal standard. Calculations concerning the
206 BH extent of C18 dietary FA and the BH completeness (%) in rumen were performed following
207 the procedures described in Alves et al. (2017).

208 *2.5. Statistical Analyses*

209 Data were analyzed using SAS statistical software (SAS V.9.3) and carried out separately
210 for each assay. The fermentation kinetic parameters (A and c) were estimated through a non-
211 linear regression model using the SAS NLIN program and, together with the fermentation
212 parameters (pH, gas, CH_4 , $\text{NH}_3\text{-N}$, VFA, and IVOMD), were analyzed with a mixed model
213 (MIXED procedure). The degrees of freedom were adjusted with the Kenward–Roger
214 correction. In Assay 1: the presence of PAC (through the addition or non-addition of PEG;
215 SF+PEG and SF), the week of harvest (1, 2, 3 and 4), and their interaction were considered as
216 fixed effects and the run as random effect. In Assay 2: the inclusion of sainfoin in the
217 concentrate (at 0%, 20%, and 40%) and the presence of PAC (through the addition or non-
218 addition of PEG; SF+PEG and SF) and their interaction were used as fixed effects and the run
219 as random effect.

220 When significant, the group statement was included in the model to adjust the variance
221 heterogeneity. The least-squares means and their associated standard errors were obtained and
222 Tukey's correction was used for pairwise comparisons. The effects were considered significant
223 at $P < 0.05$, while $0.05 \leq P < 0.1$ results were treated as a tendency.

224 **3. Results**

225 *Assay 1: Effect of the presence of active PAC and the week of harvest of fresh sainfoin.*

226 The *in vitro* fermentation parameters according to the presence of active PAC and week are
227 shown in Table 1 and the dynamics of gas production are plotted in Fig. 2. The presence of
228 active PAC decreased the total, potential (A), and rate (c) of gas production, CH₄ production,
229 NH₃-N content ($P \leq 0.01$), and IVOMD ($P \leq 0.05$) without affecting total VFA ($P > 0.10$). The
230 week only affected total gas and the dynamics of gas production, IVOMD and total VFA ($P \leq$
231 0.01), with values decreasing as the week progressed ($P < 0.05$). The interaction between the
232 presence of active PAC and the week affected the proportions of VFA ($P \leq 0.03$; Fig. 3), except
233 for the acetic acid, which was lower in the presence of active PAC ($P < 0.001$). The presence
234 of active PAC led to higher proportions of acetic, iso-butyric, butyric, and iso-valeric in weeks
235 1 and 2 ($P < 0.05$), but had no effect thereafter. These four VFA remained almost stable in the
236 SF+PEG treatment, while in the SF treatment acetic acid decreased and the other VFA increased
237 between week 1 and 4 ($P < 0.05$). Propionic and valeric acids also increased as the weeks
238 progressed ($P < 0.05$).

239 *Assay 2: Effect of the presence of active PAC and the inclusion level of dehydrated sainfoin in*
240 *the concentrate.*

241 *In vitro* fermentation parameters are presented in Table 2 and the fermentation dynamics in
242 Fig. 5. No interaction between the inclusion of sainfoin in the concentrate and the presence of
243 PAC was observed ($P > 0.05$); therefore, the results are presented separately for the main
244 effects. The presence of active PAC increased the final pH ($P < 0.05$) but decreased total gas
245 production, A , c , the production of methane ($P < 0.001$), the CH₄:gas ratio, the IVOMD ($P <$
246 0.05), and tended to reduce NH₃-N content ($P = 0.07$) but did not affect total VFA ($P > 0.05$).
247 Regarding the percentages of VFA (Fig. 6), the percentages of acetic, propionic, and butyric
248 were not affected ($P > 0.10$) but the presence of active PAC reduced iso-butyric, valeric and
249 iso-valeric acids ($P < 0.001$).

250 Regardless of its level, the inclusion of sainfoin in the concentrate decreased total gas
251 production and *A* but increased *c* ($P < 0.05$; Table 2; Fig. 5B). Methane production decreased
252 when sainfoin was included in the concentrate, being lower in 40SF than 0SF ($P < 0.05$). As
253 the level of inclusion of sainfoin in the concentrate increased, the IVOMD decreased ($P <$
254 0.001), without affecting total VFA and NH₃-N ($P > 0.05$). However, NH₃-N production tended
255 to be lower in both concentrates with sainfoin ($P = 0.07$). Only the percentages of acetic and
256 butyric acids were affected by the inclusion of sainfoin ($P < 0.05$), with greater percentage of
257 acetic acid and lower percentage of butyric acid in 40SF concentrate than in the other
258 concentrates ($P < 0.05$).

259 The effects of the presence of active PAC and the rate of inclusion of sainfoin in the
260 concentrate on the ruminal FA profile are shown in Table 3. The presence of active PAC
261 decreased C10:0, C12:0, C15:0, C17:0, C18:0, and C20:0 and, consequently, total saturated FA
262 (SFA; $P < 0.001$ to $P < 0.05$), but no effect was observed on the branched-chain FA (BCFA; P
263 > 0.10). Regarding monounsaturated FA (MUFA), the presence of PAC mainly affected the
264 *cis*-MUFA, increasing the total and several individual *cis*-MUFA, including C18:1 c9 ($P <$
265 0.05). On the contrary, for *trans*-MUFA, the presence of PAC only increased C18:1 t11 and
266 resulted in a lower C18:1 t10/C18:1 t11 ratio ($P < 0.05$). The presence of PAC also led to higher
267 total PUFA, C18:2 n-6, and C18:3 n-3 ($P < 0.01$).

268 The inclusion of sainfoin in the concentrate had no effect on the total percentage of SFA (P
269 > 0.10), but reduced the percentages of C12:0, C13:0, C15:0, C16:0, and C17:0, but not in a
270 clear dose-dependent manner ($P < 0.001$ to $P < 0.05$). Irrespective of the inclusion level,
271 sainfoin in the concentrate decreased the percentages of BCFA, *iso*-BCFA, and *anteiso*-BCFA
272 ($P < 0.01$ to $P < 0.05$), while increased the total and the major individual *trans*-MUFA ($P <$
273 0.001 to $P < 0.05$). Nevertheless, sainfoin inclusion did not affect total and *cis*-MUFA, total

274 PUFA, and C18:2 n-6 ($P > 0.10$), but increased C18:2 t11,c15/t10,c15 and C18:3 n-3 contents
275 in 40SF compared to 0SF ($P < 0.05$).

276 Table 4 shows the effects of the presence of active PAC and the rate of inclusion of sainfoin
277 in the BH calculations. The presence of active PAC increased only as a tendency the sum of
278 BH intermediates (BI; $P = 0.65$) and significantly the C18:1t11/BI ($P < 0.05$) and decreased
279 C18:1t10/BI ($P < 0.001$), the BH extent of C18:1 c9, C18:2 n-6, and C18:3 n-3 ($P < 0.01$),
280 resulting in lower BH completeness ($P < 0.001$). Irrespective of the inclusion level, sainfoin in
281 the concentrate increased BI, and BH extent of C18:3 n-3, and decreased the BH completeness
282 ($P < 0.01$).

283 **4. Discussion**

284 *4.1. Effect on gas and methane production and degradation*

285 The presence of active PAC of sainfoin has been shown to affect *in vitro* fermentation by
286 decreasing gas, methane, and NH₃-N productions, the extent of the impacts depending on the
287 accession and the dose included (Hatew et al., 2015, Hatew et al., 2016; Niderkorn et al., 2012).
288 In both assays presented here, the presence of active PAC from either fresh sainfoin fed as the
289 sole diet or as dehydrated sainfoin included in concentrates, despite the lower PAC content of
290 the later, always reduced the total, potential, and rate of gas production, as well as methane
291 production, as reported previously in sainfoin hay, extracts or fresh forage (Theodoridou et al.,
292 2011; Calabró et al., 2012; Niderkorn et al., 2012; Hatew et al., 2016). Additionally, the results
293 confirmed the activity of PAC in the concentrates, despite the potential damage that they could
294 have suffered during the pelleting process due to high temperatures (Wang et al., 2015). There
295 was a decrease in IVOMD due to the effect of PAC, which is consistent with Jayanegara et al.
296 (2012), who showed that CH₄ reduction in the presence of PAC is mainly associated with a
297 lower apparent digestion of the substrate. The literature shows inconclusive results about the

298 effect of PAC on ruminal degradation. Some studies found that the presence of PAC decreased
299 the IVDMD (Niderkorn et al., 2012, 2020; Rufino-Moya et al., 2019), while other studies did
300 not find any differences (Theodoridou et al., 2011; Rufino-Moya et al., 2021). The differences
301 in gas production and IVOMD due to the week of harvest observed here could be related to the
302 differences in NDFom, ADFom, lignin (sa), CP, and PAC contents (Baila et al., 2022), which
303 would compromise the fermentation of soluble carbohydrates.

304 The decrease of total and potential gas production, and total CH₄ when dehydrated sainfoin was
305 included in the concentrates, regardless of the level on inclusion, could be related to the
306 decrease of IVOMD as a result of a greater content of fiber fractions, being the lignin (sa)
307 content twice in 20SF, and three times in 40SF, and the lower starch content in both diets with
308 dehydrated sainfoin.

309 *4.2. Effect on fermentation end-products*

310 The presence of active PAC in the diet promotes a lower protein degradation
311 (Mueller-Harvey, 2006; Waghorn, 2008), which was evidenced in the current work by a
312 decrease in NH₃-N and iso-acid contents, in agreement with previous findings with sainfoin
313 PAC (Huyen et al., 2016; Toral et al., 2016; Brinkhaus et al., 2017). Consistent with this
314 assumption, the presence of active PAC decreased ruminal NH₃-N production in fresh sainfoin,
315 in line with previous studies (Hatew et al., 2016; Rufino-Moya et al., 2019; Niderkorn et al.,
316 2020). However, when the dehydrated sainfoin was included in the concentrate, only a tendency
317 towards a lower NH₃-N was observed with active PAC, which could be related to the lower
318 PAC content in the concentrates.

319 The effect of active PAC on total VFA is not clear as previous studies reported no effect, an
320 increase or a decrease depending on the accession (Calabró et al., 2012; Niderkorn et al., 2012;
321 Rufino-Moya et al., 2019). In the current experiment, the presence of active PAC had no effect

322 on total VFA on either fresh or dehydrated sainfoin. The differences between the studies, as
323 pointed out above, could be due to the time of incubation, accession, chemical structure, and
324 biological activity of PAC, and the species of the donor animal (Frutos et al., 2004; Hatew et
325 al., 2015). Despite the lack of effect on total VFA, differences on the VFA profile appeared due
326 to PAC in fresh and dehydrated sainfoin, although in different patterns probably related with
327 the lower PAC content. While active PAC from dehydrated sainfoin only decreased minor VFA
328 (iso-acids and valeric acid), those of fresh sainfoin reduced all individual VFA, except for acetic
329 acid, during the first two weeks when PAC content was higher. Besides, differences in NDFom,
330 ADFom, CP, and PAC due to the week of harvest (Baila et al., 2022) also led to differences in
331 total VFA and most individual VFA as a consequence of the higher IVOMD produced by the
332 promotion of soluble carbohydrates fermentation. The consistency in the reduction of valeric
333 acid percentages in both studies has been previously described before when studying sainfoin
334 PAC (Niderkorn et al., 2020) and it has been associated with altered ruminal H₂ pathways,
335 affecting directly the formation of this VFA. The percentage of propionic acid was only affected
336 in Assay 1 due to the reduction of the amylolytic fermentation pathway in a highly fibrous diet
337 incubated for a long period (i.e. 72 h).

338 In Assay 2, the concentrate with 40% sainfoin had higher fiber content, which favors the
339 development of cellulolytic microorganisms resulting in a greater proportion of acetic acid, as
340 had been recorded in the present study. In addition, those differences are consistent with the
341 effect observed in the rumen of lambs fed with these concentrates during all the fattening
342 process, although in the in vivo study, acetic values were similar between both sainfoin-
343 containing concentrates (Baila et al., 2024).

344 *4.2. Effect on ruminal BH*

345 The presence of PAC in the diet can modify the ruminal BH, modulating the saturation of
346 dietary PUFA and the production of some intermediate FA in the rumen (Frutos et al., 2020).

347 Thus, ruminal BH plays an important role by actively contributing to the final composition of
348 the FA profile of ruminant-derived products, improving the presence of FA with potential
349 beneficial effect on consumers health (Woods and Fearon, 2009; Ferlay et al., 2017; Alvarez-
350 Rodríguez et al., 2022). Due to the great relevance of its implications, BH is a topic that has
351 attracted much research interest over the last 20 years (Toral et al., 2024). Nevertheless, the
352 effects of PAC on ruminal BH are highly variable, depending on many factors such as the
353 concentration, dosage, and chemical structure of PAC (Buccioni et al., 2011; Guerreiro et al.,
354 2021; Valenti et al., 2021), and therefore need to be studied in depth for each individual assay.

355 The effect of active PAC as an inhibitory factor on microbial growth and rumen function
356 and therefore, affecting ruminal concentrations of BCFA (Fievez et al., 2012; Costa et al.,
357 2017), was not observed in the present study. We suggest that the low content of active PAC in
358 the concentrates, due to the dehydrating and pelleting process, may not be sufficient to affect
359 BCFA. However, PAC modulated BH, as shown by the reduction in saturation (lower SFA,
360 including the final BH product, C18:0), the increase in total PUFA and the three major dietary
361 unsaturated FA (i.e., C18:1 c9, C18:2 n-6, and C18:3 n-3), and the tendency towards a higher
362 BI content. The decrease of dietary PUFA, together with the promotion of *trans*-11 BH
363 pathway, as observed in the present study, are two of the main objectives to be achieved in the
364 study of ruminal BH modulation (Palmquist, 2006; Chilliard et al., 2007; Scollan et al., 2017).
365 According to our findings, Toral et al. (2016) observed an increase of C18:2 n-6, and total
366 PUFA of sainfoin hay substrate compared to alfalfa hay in an *in vitro* assay, which could be a
367 consequence of a lower BH of dietary FA during the first steps of the BH process. Similarly,
368 Campidonico et al. (2016) found greater concentrations of total PUFA and C18:3 n-3 in lambs
369 fed with sainfoin and red clover silages (as two PAC-containing legumes) compared to those
370 receiving timothy (a grass without PAC).

371 Besides, the greater percentage of several *cis*-MUFA due to the presence of PAC and the
372 lack of effect on *trans*-MUFA (except for the increase of the *trans*-11 isomer) also suggests a
373 reduction of the isomerization process occurring during the first-intermediate phase of ruminal
374 BH (Frutos et al., 2020). The explanation for this lower ruminal isomerization seems to lie in
375 an adaptive mechanism of bacteria against the toxicity exerted by certain compounds on their
376 membrane permeability (Eberlein et al., 2018).

377 The inclusion of sainfoin in the concentrate produced a less clear effect on BH compared to
378 the changes generated by fresh sainfoin active PAC. The inclusion of forage in the diet is a
379 strategy to improve the FA profile of edible products, as it has been shown to promote the *trans*-
380 11 BH pathway instead of the *trans*-10 BH pathway (increased by concentrate-rich diets)
381 (Griinari et al., 1998). While the former leads to a more beneficial FA profile for human health
382 (Vahmani et al., 2020), the latter is considered as non-desirable as it has been linked to negative
383 health (Aldai et al., 2013; Ferlay et al., 2017) and productive implications (Griinari et al., 1998;
384 Baumgard et al., 2000; Dewanckele et al., 2020). Nevertheless, in the present study, an increase
385 of both *trans*-10 and *trans*-11 was observed, although some changes in the rumen FA profile
386 suggest a greater predominance of pathways involving the BH of C18:3 n-3 with sainfoin
387 inclusion, as the greater BH extent of C18:3 n-3 *per se*, and the tendency towards a higher
388 formation of CLA c9,t11. In addition, the increase in the formation of BI together with the
389 tendency to present higher C18:1 t11/BI ratio, indicates that the increase in BI was more related
390 to this isomer when sainfoin was included in the concentrate, regardless of the inclusion level.

391 Lastly, the fact that most of the effects observed on ruminal BH due to sainfoin inclusion are
392 related to changes in BCFA percentages, contrarily to that observed due to sainfoin PAC, shows
393 a great impact of forage on ruminal populations, even being an *in vitro* trial. As is well-known,
394 forage inclusion improves the environment for cellulolytic bacteria, while higher concentrations
395 of starch in the diet promote the development of amylolytic populations, which have been

396 related to *anteiso*-BCFA production (Fievez et al., 2012). The lower percentage of *anteiso*-
397 BCFA with sainfoin inclusion was also observed *in vivo* (Baila et al., 2024).

398 **5. Conclusions**

399 The presence of active PAC from sainfoin reduces gas and methane productions and
400 IVOMD, regardless of whether the sainfoin used is fresh or dehydrated included in the
401 concentrate. However, when sainfoin is dehydrated and fed as ingredient in the concentrates,
402 the activity of PAC is not enough to reduce the NH₃-N production and only reduces the minor
403 VFA. The week of harvest involves a phenological evolution of forage, which leads to a lower
404 gas production, total VFA, and IVOMD as the maturation of sainfoin advances, but does not
405 affect NH₃-N formation.

406 The presence of even low quantities of active PAC seems enough to reduce the BH extent
407 of dietary PUFA and the BH completeness while promoting the *trans*-11 BH pathway. The
408 ruminal BH of concentrates with dehydrated sainfoin also lead to higher percentages of many
409 of the *trans*-MUFA, including the *trans*-11 isomer, and lower BH completeness; with the level
410 of inclusion of sainfoin having little effect. The use of sainfoin in the diet of small ruminants
411 can reduce methane production while improving the ruminal FA profile, which could be
412 reflected in healthier edible animal products.

413 **Acknowledgement**

414 Appreciation is expressed to the technical staff of CITA–Aragón Animal Science department
415 for their help in data collection. Special thanks to the staff of the Laboratory of Nutritive Value,
416 M. A. Legua and A. Domínguez for helping with the laboratory analysis and to Servicio General
417 de Apoyo a la Investigación–SAI, Universidad de Zaragoza, for freeze–drying the samples.

418 **Funding sources**

419 This work was supported by the Spanish Ministry of Economy and Competitiveness under
420 Grant RTA2017-00008-C02-01; the Government of Aragon by the Grant Research Group
421 Funds (Group A25_23R); and the AEI by the pre-doctoral grant PRE2018-086670

422 **CRediT authorship contribution statement**

423 **Clàudia Baila-Bigné:** Writing – original draft, Formal analysis, Data curation. **Sandra Lobón:**
424 Writing – review & editing, Validation, Supervision, Methodology, Investigation,
425 Conceptualization **Mireia Blanco:** Writing – review & editing, Methodology, Investigation,
426 Conceptualization. **Isabel Casasús:** Writing – review & editing, Methodology, Investigation,
427 Conceptualization. **Margalida Joy:** Writing – review & editing, Validation, Supervision,
428 Resources, Project administration, Methodology, Investigation, Funding acquisition.

429 **Declaration of Competing Interest**

430 The authors declare that they have no known competing financial interests or personal
431 relationships that could have appeared to influence the work reported in this paper.

432

433 **References**

434 Aldai, N., de Renobales, M., Barron, L.J.R., Kramer, J.K.G., 2013. What are the trans fatty acids issues
435 in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable
436 oils, and synthetic supplements. *Eur. J. Lipid Sci. Technol.* 115, 1378–1401.
437 <https://doi.org/10.1002/ejlt.201300072>.

438 Álvarez-Rodríguez, J., Urrutia, O., Lobón, S., Ripoll, G., Bertolín, J.R., Joy, M., 2022. Insights into the
439 role of major bioactive dietary nutrients in lamb meat quality: a review. *J. Anim. Sci. Biotechnol.*
440 13, 20. <https://doi.org/10.1186/s40104-021-00665-0>.

441 Alves, S.P., Bessa, R.J.B., 2009. Comparison of two gas–liquid chromatograph columns for the analysis
442 of fatty acids in ruminant meat. *J. Chromatogr. A.* 1216, 5130–5139.
443 <https://doi.org/10.1016/j.chroma.2009.04.079>.

444 Alves, S.P., Bessa, R.J.B., 2014. The *trans*-10, *cis*-15 18:2: A missing intermediate of *trans*-10 shifted
445 rumen biohydrogenation pathway? *Lipids* 49, 527–541. <https://doi.org/10.1007/s11745-014-3897-4>.

447 Alves, S.P., Francisco, A., Costa, M., Santos-Silva, J., Bessa, R.J.B., 2017. Biohydrogenation patterns
448 in digestive contents and plasma of lambs fed increasing levels of a tanniferous bush (*Cistus*
449 *ladanifer* L.) and vegetable oils. *Anim. Feed Sci. Technol.* 225, 157–172.
450 <https://doi.org/10.1016/j.anifeedsci.2017.01.018>.

451 Alves, S.P., Santos-Silva, J., Cabrita, A.R.J., Fonseca, A.J.M., Bessa, R.J.B., 2013. Detailed
452 dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate
453 supplemented with soybean oil. *PLoS One* 8, e58386.
454 <https://doi.org/10.1371/journal.pone.0058386>.

455 Azuhnwi, B.N., Boller, B., Martens, M., Dohme-Meier, F., Ampuero, S., Günter, S., Kreuzer, M., Hess,
456 H.D., 2011. Morphology, tannin concentration and forage value of 15 Swiss accessions of sainfoin
457 (*Onobrychis viciifolia* Scop.) as influenced by harvest time and cultivation site. *Grass Forage Sci.*
458 66, 474–487. <https://doi.org/10.1111/j.1365-2494.2011.00811.x>.

459 Baila, C., Joy, M., Blanco, M., Casasús, I., Bertolín, J.R., Lobón, S., 2022. Effects of feeding sainfoin
460 proanthocyanidins to lactating ewes on intake, milk production and plasma metabolites. *Animal*
461 16, 100438. <https://doi.org/10.1016/j.animal.2021.100438>.

462 Baila, C., Lobón, S., Blanco, M., Casasús, I., Ripoll, G., Joy, M., 2024. Sainfoin can be included up to
463 40% in the concentrate of finishing lambs without impairing their performance, rumen
464 fermentation, and carcass quality. *Anim. Feed Sci. Technol.* 312, 115975.
465 <https://doi.org/10.1016/j.anifeedsci.2024.115975>.

466 Baila, C., Joy, M., Bertolín, J.R., Blanco, M., Casasús, I., Lobón, S., 2023a. Effect of sainfoin
467 proanthocyanidins on milk fatty acids from ewes rearing suckling lambs. *Animal* 17, 100862.
468 <https://doi.org/10.1016/j.animal.2023.100862>.

469 Baila, C., Joy, M., Bertolín, J.R., Alves, S., Bessa, R., Blanco, M., Lobón, S., 2023b. Inclusion of
470 sainfoin in the concentrate of finishing lambs: fatty acid profiles of rumen, plasma, and muscle. *J.*
471 *Agric. Food Chem.* 71, 17947–17958. <https://doi.org/10.1021/acs.jafc.3c05902J>.

472 Baumgard, L.H., Corl, B.A., Dwyer, D.A., Sæbø, A., Bauman, D.E., 2000. Identification of the
473 conjugated linoleic acid isomer that inhibits milk fat synthesis. *Am. J. Physiol. Regul. Integr.*
474 *Comp. Physiol.* 278, 179–184. <https://doi.org/10.1152/ajpregu.2000.278.1.R179>.

475 Bravo-Lamas, L., Barron, L.J.R., Kramer, J.K.G., Etaio, I., Aldai, N., 2016. Characterization of the fatty
476 acid composition of lamb commercially available in northern Spain: Emphasis on the trans-18: 1
477 and CLA content and profile. Meat Sci. 117, 108–116.
478 <https://doi.org/10.1016/j.meatsci.2016.02.043>.

479 Brinkhaus, A.G., Wyss, U., Arrigo, Y., Girard, M., Bee, G., Zeitz, J.O., Kreuzer, M., Dohme-Meier, F.,
480 2017. In vitro ruminal fermentation characteristics and utilisable CP supply of sainfoin and
481 birdsfoot trefoil silages and their mixtures with other legumes. Animal 11, 580–590.
482 <https://doi.org/10.1017/S1751731116001816>.

483 Buccioni, A., Minieri, S., Rapaccini, S., Antongiovanni, M., Mele, M., 2011. Effect of chestnut and
484 quebracho tannins on fatty acid profile in rumen liquid-and solid-associated bacteria: an in vitro
485 study. Animal 5, 1521–1530. <https://doi.org/10.1017/S1751731111000759>.

486 Buccioni, A., Pauselli, M., Viti, C., Minieri, S., Pallara, G., Roscini, V., Rapaccini, S., Marinucci, M.T.,
487 Lupi, P., Conte, G., 2015. Milk fatty acid composition, rumen microbial population, and animal
488 performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho
489 tannins in dairy ewes. J. Dairy Sci. 98, 1145–1156. <https://doi.org/10.3168/jds.2014-8651>.

490 Calabò, S., Guglielmelli, A., Iannaccone, F., Danieli, P.P., Tudisco, R., Ruggiero, C., Piccolo, G.,
491 Cutrignelli, M.I., Infascelli, F., 2012. Fermentation kinetics of sainfoin hay with and without PEG.
492 J. Anim. Physiol. Anim. Nutr. 96, 842–849. <https://doi.org/10.1111/j.1439-0396.2011.01260.x>.

493 Campidonico, L., Toral, P.G., Priolo, A., Luciano, G., Valenti, B., Hervás, G., Frutos, P., Copani, G.,
494 Ginane, C., Niderkorn, V., 2016. Fatty acid composition of ruminal digesta and longissimus
495 muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy. J. Anim. Sci.
496 94, 1550–1560. <https://doi.org/10.2527/jas.2015-9922>.

497 Cattani, M., Maccarana, L., Rossi, G., Tagliapietra, F., Schiavon, S., Bailoni, L., 2016. Dose-response
498 and inclusion effects of pure natural extracts and synthetic compounds on in vitro methane
499 production. Anim. Feed Sci. Technol. 218, 100–109.
500 <https://doi.org/10.1016/j.anifeedsci.2016.05.014>.

501 Chaney, A.L., Marbach, E.P., 1962. Modified Reagents for Determination of Urea and Ammonia. Clin.
502 Chem. 8, 130–132. <https://doi.org/10.1093/clinchem/8.2.130>.

503 Costa, M., Alves, S.P., Cabo, Â., Guerreiro, O., Stilwell, G., Dentinho, M.T., Bessa, R.J.B., 2017.
504 Modulation of in vitro rumen biohydrogenation by *Cistus ladanifer* tannins compared with other
505 tannin sources. J. Sci. Food Agric. 97, 629–635. <https://doi.org/10.1002/jsfa.7777>.

506 Dewanckele, L., Toral, P.G., Vlaeminck, B., Fievez, V., 2020. Invited review: Role of rumen
507 biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An
508 update. J. Dairy Sci. 103, 7655–7681. <https://doi.org/10.3168/jds.2019-17662>.

509 Ferlay, A., Bernard, L., Meynadier, A., Malpuech-Brugère, C., 2017. Production of trans and conjugated
510 fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 141,
511 107–120. <https://doi.org/10.1016/j.biochi.2017.08.006>.

512 Fievez, V., Colman, E., Castro-Montoya, J.M., Stefanov, I., Vlaeminck, B., 2012. Milk odd-and
513 branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol.
514 172, 51–65. <https://doi.org/10.1016/j.anifeedsci.2011.12.008>.

515 France, J., Dijkstra, J., Dhanoa, M.S., Lopez, S., Bannink, A., 2000. Estimating the extent of degradation
516 of ruminant feeds from a description of their gas production profiles observed in vitro: derivation
517 of models and other mathematical considerations. Br. J. Nutr. 83, 143–150.
518 <https://doi.org/10.1017/S0007114500000180>.

519 Frutos, P., Hervás, G., Giráldez, F.J., Mantecón, A.R., 2004. Tannins and ruminant nutrition, Review.
520 Span. J. Agric. Res. 2, 191–202. <https://doi.org/10.5424/sjar/2004022-73>.

521 Frutos, P., Hervás, G., Natalello, A., Luciano, G., Fondevila, M., Priolo, A., Toral, P.G., 2020. Ability
522 of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed
523 Sci. Technol. 269, 114623. <https://doi.org/10.1016/j.anifeedsci.2020.114623>.

524 Glasser, F., Doreau, M., Maxin, G., Baumont, R., 2013. Fat and fatty acid content and composition of
525 forages: A meta-analysis. Anim. Feed Sci. Technol. 185, 19–34.
526 <https://doi.org/10.1016/j.anifeedsci.2013.06.010>.

527 Grinari, J.M., Dwyer, D.A., McGuire, M.A., Bauman, D.E., Palmquist, D.L., Nurmela, K.V.V., 1998.
528 Trans-Octadecenoic Acids and Milk Fat Depression in Lactating Dairy Cows. J. Dairy Sci. 81,
529 1251–1261. [https://doi.org/10.3168/jds.S0022-0302\(98\)75686-3](https://doi.org/10.3168/jds.S0022-0302(98)75686-3).

530 Guerreiro, O., Alves, S.P., Costa, M., Duarte, M.F., Jerónimo, E., Bessa, R.J.B., 2021. Effects of
531 increasing doses of condensed tannins extract from *Cistus ladanifer* l. On in vitro ruminal
532 fermentation and biohydrogenation. Animals 11, 1–13. <https://doi.org/10.3390/ani11030761>.

533 Hatew, B., Hayot Carbonero, C., Stringano, E., Sales, L.F., Smith, L.M.J., Mueller-Harvey, I., Hendriks,
534 W.H., Pellikaan, W.F., 2015. Diversity of condensed tannin structures affects rumen in vitro
535 methane production in sainfoin (*Onobrychis viciifolia*) accessions. Grass Forage Sci. 70, 474–490.
536 <https://doi.org/10.1111/gfs.12125>.

537 Hatew, B., Stringano, E., Mueller-Harvey, I., Hendriks, W.H., Carbonero, C.H., Smith, L.M.J.,
538 Pellikaan, W.F., 2016. Impact of variation in structure of condensed tannins from sainfoin
539 (*Onobrychis viciifolia*) on in vitro ruminal methane production and fermentation characteristics. J.
540 Anim. Physiol. Anim. Nutr. 100, 348–360. <https://doi.org/10.1111/jpn.12336>.

541 Hayot Carbonero, C., Mueller-Harvey, I., Brown, T.A., Smith, L., 2011. Sainfoin (*Onobrychis*
542 *viciifolia*): a beneficial forage legume. Plant Genet. Res. 9, 70–85.
543 <https://doi.org/10.1017/S1479262110000328>.

544 Huang, Q.Q., Jin, L., Xu, Z., Acharya, S., McAllister, T.A., Hu, T.M., Iwaasa, A., Schellenberg, M.,
545 Peng, K., Wang, Y., 2016. Effects of conservation method on condensed tannin content, ruminal
546 degradation, and in vitro intestinal digestion of purple prairie clover (*Dalea purpurea* Vent.). Can.
547 J. Anim. Sci. 96, 524–531.

548 Huyen, N.T., Fryganas, C., Uittenbogaard, G., Mueller-Harvey, I., Verstegen, M.W.A., Hendriks, W.H.,
549 Pellikaan, W.F., 2016. Structural features of condensed tannins affect in vitro ruminal methane
550 production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487.
551 <https://doi.org/10.1017/S0021859616000393>.

552 Jayanegara, A., Leiber, F., Kreuzer, M., 2012. Meta-analysis of the relationship between dietary tannin
553 level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol.
554 Anim. Nutr. 96, 365–375. <https://doi.org/10.1111/j.1439-0396.2011.01172.x>.

555 Kramer, J.K.G., Fellner, V., Dugan, M.E.R., Sauer, F.D., Mossoba, M.M., Yurawecz, M.P., 1997.
556 Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special
557 emphasis on conjugated dienes and total trans fatty acids. Lipids 32, 1219–1228.
558 <https://doi.org/10.1007/s11745-997-0156-3>.

559 Lobón, S., Blanco, M., Sanz, A., Ripoll, G., Bertolín, J.R., Joy, M., 2017. Meat quality of light lambs is
560 more affected by the dam's feeding system during lactation than by the inclusion of quebracho in
561 the fattening concentrate. J. Anim. Sci. 95, 4998–5011. <https://doi.org/10.2527/jas2017.1595>.

562 Mannelli, F., Daghio, M., Alves, S.P., Bessa, R.J.B., Minieri, S., Giovannetti, L., Conte, G., Mele, M.,
563 Messini, A., Rapaccini, S., 2019. Effects of chestnut tannin extract, vescalagin and gallic acid on
564 the dimethyl acetals profile and microbial community composition in rumen liquor: an in vitro
565 study. *Microorganisms* 7, 202. <https://doi.org/10.3390/microorganisms7070202>.

566 McSweeney, C.S., Palmer, B., Bunch, R., Krause, D.O., 1999. Isolation and characterization of
567 proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume
568 *Calliandra calothrysus*. *Appl. Environ. Microbiol.* 65, 3075–3083.
569 <https://doi.org/10.1128/AEM.65.7.3075-3083.1999>.

570 Menci, R., Coppa, M., Torrent, A., Natalello, A., Valenti, B., Luciano, G., Priolo, A., Niderkorn, V.,
571 2021. Effects of two tannin extracts at different doses in interaction with a green or dry forage
572 substrate on in vitro rumen fermentation and biohydrogenation. *Anim. Feed Sci. Technol.* 278,
573 114977. <https://doi.org/10.1016/j.anifeedsci.2021.114977>.

574 Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical
575 analysis and in vitro gas production using rumen fluid. *Anim. Res. Dev.* 28, 7–55.

576 Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with
577 refluxing in beakers or crucibles: collaborative study. *J. AOAC Int.* 85, 1217–1240.
578 <https://doi.org/10.1093/jaoac/85.6.1217>.

579 Moorby, J.M., Fraser, M.D., 2021. New feeds and new feeding systems in intensive and semi-intensive
580 forage-fed ruminant livestock systems. *Animal* 15, 100297.
581 <https://doi.org/10.1016/j.animal.2021.100297>.

582 Mueller-Harvey, I., 2006. Unravelling the conundrum of tannins in animal nutrition and health. *J. Sci.*
583 *Food Agric.* 86, 2010–2037. <https://doi.org/10.1002/jsfa.2577>.

584 Niderkorn, V., Mueller-Harvey, I., Le Morvan, A., Aufrère, J., 2012. Synergistic effects of mixing
585 cocksfoot and sainfoin on in vitro rumen fermentation. Role of condensed tannins. *Anim. Feed Sci.*
586 *Technol.* 178, 48–56. <https://doi.org/10.1016/j.anifeedsci.2012.09.014>.

587 Niderkorn, V., Barbier, E., Macheboeuf, D., Torrent, A., Mueller-Harvey, I., Hoste, H., 2020. In vitro
588 rumen fermentation of diets with different types of condensed tannins derived from sainfoin
589 (*Onobrychis viciifolia* Scop.) pellets and hazelnut (*Corylus avellana L.*) pericarps. *Anim. Feed Sci.*
590 *Technol.* 259, 114357. <https://doi.org/10.1016/j.anifeedsci.2019.114357>.

591 Palmquist, D.L., St-Pierre, N., McClure, K.E., 2004. Nutritional models tissue fatty acid profiles can be
592 used to quantify endogenous rumenic acid synthesis in lambs 1,2, *J. Nutr.* 134, 2407–2414.
593 <https://doi.org/10.1093/jn/134.9.2407>.

594 Patra, A.K., Saxena, J., 2011. Exploitation of dietary tannins to improve rumen metabolism and
595 ruminant nutrition. *J. Sci. Food Agric.* 91, 24–37. <https://doi.org/10.1002/jsfa.4152>.

596 Rufino-Moya, P.J., Blanco, M., Lobón, S., Bertolín, J.R., Armengol, R., Joy, M., 2019. The inclusion
597 of concentrate with quebracho is advisable in two forage-based diets of ewes according to the in
598 vitro fermentation parameters. *Animals* 9, 451. <https://doi.org/10.3390/ani9070451>.

599 Rufino-Moya, P. J, Blanco, M., Bertolín, J.R., Joy, M., 2019. Effect of the method of preservation on
600 the chemical composition and in vitro fermentation characteristics in two legumes rich in
601 condensed tannins. *Anim. Feed Sci. Technol.* 251, 12–20.
602 <https://doi.org/10.1016/j.anifeedsci.2019.02.005>.

603 Rufino-Moya, P.J., Blanco, M., Bertolín, J.R., Joy, M., 2019. Methane production of fresh Sainfoin,
604 with or without PEG, and fresh alfalfa at different stages of maturity is similar but the fermentation
605 end products vary. *Animals* 9, 197. <https://doi.org/10.3390/ani9050197>.

606 Rufino-Moya, P.J., Blanco, M., Joy, M., 2021. Condensed tannins of sainfoin and their effect on ruminal
607 fermentation. influence of phenological stage and preservation. A review. *ITEA* 117, 227–246.
608 <https://doi.org/10.12706/itea.2020.026>.

609 Sackmann, J.R., Duckett, S.K., Gillis, M.H., Realini, C.E., Parks, A.H., Eggelston, R.B., 2003. Effects
610 of forage and sunflower oil levels on ruminal biohydrogenation of fatty acids and conjugated
611 linoleic acid formation in beef steers fed finishing diets 1, *J. Anim. Sci.* 81, 3174–3181.
612 <https://doi.org/10.2527/2003.81123174x>.

613 Santos-Silva, J., Alves, S.P., Francisco, A., Portugal, A.P., Dentinho, M.T., Almeida, J., da Silva, J.L.R.,
614 Fialho, L., Cachucho, L., Jerónimo, E., Barradas, A., Rodrigues, A., Rodrigues, N., Teixeira,
615 R.F.M., Domingos, T., Bessa, R.J.B., 2023. Forage based diet as an alternative to a high
616 concentrate diet for finishing young bulls - Effects on growth performance, greenhouse gas
617 emissions and meat quality. *Meat Sci.* 198, 109098.
618 <https://doi.org/10.1016/J.MEATSCI.2023.109098>.

619 Scharenberg, A., Arrigo, Y., Gutzwiller, A., Soliva, C.R., Wyss, U., Kreuzer, M., Dohem, F., 2007.
620 Palatability in sheep and in vitro nutritional value of dried and ensiled sainfoin (*Onobrychis*
621 *viciifolia*) birdsfoot trefoil (*Lotus corniculatus*), and chicory (*Cichorium intybus*). *Arch. Anim.*
622 *Nutr.* 61, 481–496. <https://doi.org/10.1080/17450390701664355>

623 Shingfield, K.J., Chilliard, Y., Toivonen, V., Kairenus, P., Givens, D.I. *Trans* fatty acids and bioactive
624 lipids in ruminant milk. Bioactive components of milk. Ed.: Zsuzsanna Bösze Springer Editors,
625 Netherlands. Vol. 606. p: 3–65, 2008. <https://doi.org/10.1007/978-0-387-74087-4>.

626 Theodoridou, K., Aufrère, J., Niderkorn, V., Andueza, D., Le Morvan, A., Picard, F., Baumont, R.,
627 2011. In vitro study of the effects of condensed tannins in sainfoin on the digestive process in the
628 rumen at two vegetation cycles. *Anim. Feed Sci. Technol.* 170, 147–159.
629 <https://doi.org/10.1016/j.anifeedsci.2011.09.003>.

630 Toral, P.G., Angulo, G.H., Missaoui, H., Llorente, S.A., García, F.J.G., Jellali, S., Frutos, P., 2016.
631 Effects of a tannin-rich legume (*Onobrychis viciifolia*) on in vitro ruminal biohydrogenation and
632 fermentation. *Span. J. Agric. Res.* 14, 12. <https://doi.org/10.5424/sjar/2016141-8989>.

633 Toral, P.G., Hervás, G., Frutos, P., 2024. Invited review: Research on ruminal biohydrogenation:
634 Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. *J.*
635 *Dairy Sci.* 107, 10115–10140. <https://doi.org/10.3168/jds.2023-24591>.

636 Valenti, B., Campidonico, L., Natalello, A., Lanza, M., Salami, S.A., Priolo, A., Serra, A., Pauselli, M.,
637 Luciano, G., 2021. Fatty acid metabolism in lambs supplemented with different condensed and
638 hydrolysable tannin extracts. *PLoS One* 16, e0258265.
639 <https://doi.org/10.1371/journal.pone.0258265>.

640 Vasta, V., Daghio, M., Cappucci, A., Buccioni, A., Serra, A., Viti, C., Mele, M., 2019. Invited review:
641 Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber
642 digestion, and methane emission: Experimental evidence and methodological approaches. *J. Dairy*
643 *Sci.* 102, 3781–3804. <https://doi.org/10.3168/JDS.2018-14985>

644 Vasta, V., Pennisi, P., Lanza, M., Barbagallo, D., Bella, M., Priolo, A., 2007. Intramuscular fatty acid
645 composition of lambs given a tanniniferous diet with or without polyethylene glycol
646 supplementation. *Meat Sci.* 76, 739–745. <https://doi.org/10.1016/j.meatsci.2007.02.015>.

647 Vasta, V., Priolo, A., Scerra, M., Hallett, K.G., Wood, J.D., Doran, O., 2009. $\Delta 9$ desaturase protein
648 expression and fatty acid composition of longissimus dorsi muscle in lambs fed green herbage or
649 concentrate with or without added tannins. Meat Sci. 82, 357–364.
650 <https://doi.org/10.1016/j.meatsci.2009.02.007>.

651 Waghorn, G., 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable
652 sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 147, 116–139.
653 <https://doi.org/10.1016/j.anifeedsci.2007.09.013>.

654 Wang, Y., McAllister, T.A., Acharya, S., 2015. Condensed tannins in Sainfoin: composition,
655 concentration, and effects on nutritive and feeding value of sainfoin forage. Crop Sci. 55, 13–22.
656 <https://doi.org/10.2135/cropsci2014.07.0489>

657 Woods, V.B., Fearon, A.M., 2009. Dietary sources of unsaturated fatty acids for animals and their
658 transfer into meat, milk and eggs: A review. Livest. Sci. 126, 1–20.
659 <https://doi.org/10.1016/j.livsci.2009.07.002>.

660

661

662 **Table 1**

663 Effect of presence of active proanthocyanidins (PAC)¹ and week of harvest of sainfoin on the pH, production of gas and methane (CH₄), the kinetics of
 664 fermentation, *in vitro* organic matter degradation (IVOMD), ammonia (NH₃-H), and total volatile fatty acids (VFA) after 72 h of incubation of sainfoin (Assay
 665 1).

	PAC ¹			Week					P-value ²	
	SF	SF+PEG	s.e.m. ³	1	2	3	4	s.e.m. ³	PAC	Week
Final pH	6.51	6.48	0.028	6.46	6.49	6.52	6.52	0.040	0.338	0.707
Total gas production, mL/g DM	154	163	5.1	163 ^a	165 ^a	158 ^{ab}	149 ^b	5.7	0.006	0.009
Potential gas production (<i>A</i>), mL	170	182	4.8	180 ^a	182 ^a	173 ^{ab}	168 ^b	5.3	0.001	0.010
Rate of gas production (<i>c</i>), mL/h	0.17	0.19	0.006	0.19 ^{ab}	0.18 ^{bc}	0.17 ^c	0.19 ^a	0.007	<0.001	0.031
Total CH ₄ production, mL/g DM	9.36	10.6	0.624	10.25	10.28	9.96	9.32	0.694	0.008	0.383
CH ₄ :gas	0.061	0.064	0.0021	0.063	0.062	0.063	0.063	0.0024	0.076	0.965
IVDMO, %	82.0	82.8	0.63	88.3 ^a	83.7 ^b	80.7 ^c	76.8 ^d	0.69	0.031	<0.001
NH ₃ -N, mg/L	234	288	24.1	255	282	253	254	26.8	0.002	0.551
Total VFA, mM	76.3	79.2	3.22	82.2 ^a	80.7 ^{ab}	75.4 ^{bc}	72.7 ^c	3.51	0.150	0.004

666 Within a parameter and effect, means with different superscript (a, b, c, or d) differ at *P* < 0.05.

667 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

668 ² The interaction was never significant.

669 ³ Standard error of the mean.

670

671

672 **Table 2**

673 Effect of presence of active proanthocyanidins (PAC)¹ and inclusion of dehydrated sainfoin (SF)² in the finishing concentrate of lambs on the pH, production of
 674 gas and methane (CH₄), the kinetics of fermentation, *in vitro* organic matter degradation (IVOMD), ammonia (NH₃-N), and volatile fatty acids (VFA) after 48
 675 h of incubation (Assay 2).

	PAC ¹			SF ²				P-value ³	
	SF	SF+PEG	s.e.m. ⁴	0SF	20SF	40SF	s.e.m. ⁴	PAC	SF
Final pH	6.35	6.32	0.012	6.31 ^b	6.33 ^{ab}	6.34 ^a	0.013	0.001	0.011
Total gas production, mL/g DM	190	207	5.1	206 ^a	195 ^b	194 ^b	5.4	<0.001	0.007
Potential gas production (<i>A</i>), mL	188	209	5.5	208 ^a	193 ^b	194 ^b	5.9	<0.001	0.003
Rate of gas production (<i>c</i>), mL/h	0.12	0.15	0.004	0.13 ^b	0.14 ^a	0.14 ^a	0.004	<0.001	<0.001
Total CH ₄ production, mL/g DM	10.0	12.1	0.72	11.8 ^a	11.1 ^{ab}	10.2 ^b	0.77	<0.001	0.034
CH ₄ :gas	0.05	0.06	0.003	0.06	0.06	0.05	0.003	0.038	0.249
IVDMO, %	92.5	92.8	0.18	94.6 ^a	92.7 ^b	90.8 ^c	0.19	0.010	<0.001
NH ₃ -N, mg/L	197	225	21.4	235	194	203	22.5	0.06	0.068
Total VFA, mM	71.7	75.9	3.38	75.6	73.1	75.6	3.56	0.069	0.545

676 Within a parameter and effect, means with different superscript (a, b, c, or d) differ at *P* < 0.05.

677 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

678 ² 0SF- 0% sainfoin; 20SF- 20% sainfoin; 40SF- 40% sainfoin in the finishing concentrate.

679 ³ The interaction was never significant.

680 ⁴ Standard error of the mean.

683 Effect of the presence of active proanthocyanidins (PAC)¹ and the inclusion of dehydrated sainfoin (SF)²
 684 in the finishing concentrate on fatty acid (FA) profile in ruminal fluid of the *in vitro* trial (Assay 2).

Item	PAC ¹			SF ²				P-value ³	
	SF	SF+ PEG	s.e.m ⁴	0SF	20SF	40SF	s.e.m ⁴	PAC	SF
Total FA, mg/g DM	32.2	33.7	2.6	30.6	34.8	33.5	2.77	0.423	0.218
SFA ⁶ , % FA ⁵	82.6	86.7	0.58	85.3	84.1	84.5	0.67	<0.001	0.341
C10:0	0.27	0.81	0.053	0.53	0.55	0.55	0.057	<0.001	0.923
C11:0	0.11	0.10	0.01	0.11	0.12	0.1	0.011	0.206	0.264
C12:0	0.36	0.40	0.018	0.41 ^a	0.35 ^b	0.37 ^b	0.188	0.008	0.006
C13:0	0.20	0.19	0.013	0.15 ^a	0.14 ^b	0.14 ^{ab}	0.007	0.241	0.031
C14:0	1.84	1.96	0.134	2.01	1.75	1.94	0.144	0.269	0.167
C15:0	1.78	1.94	0.091	1.94 ^a	1.82 ^b	1.82 ^b	0.091	<0.001	0.001
C16:0	30.7	30.8	0.38	31.2 ^a	30.1 ^b	31.0 ^a	0.4	0.687	0.005
C17:0	0.84	0.93	0.047	0.92 ^a	0.88 ^{ab}	0.87 ^b	0.047	<0.001	0.041
C18:0	41.1	44.3	1.18	42.2	43.2	42.7	1.25	0.005	0.629
C20:0	0.67	0.75	0.037	0.72	0.69	0.72	0.037	<0.001	0.161
C22:0	0.16	0.16	0.021	0.18	0.17	0.13	0.025	0.666	0.643
BCFA ⁷ , % FA	5.15	5.11	0.315	5.68 ^a	4.90 ^b	4.80 ^b	0.329	0.829	0.007
<i>iso</i> -BCFA	2.19	2.14	0.153	2.35 ^a	2.08 ^b	2.07 ^b	0.157	0.487	0.015
<i>iso</i> -C13:0	0.2	0.19	0.013	0.21 ^a	0.18 ^b	0.18 ^{ab}	0.013	0.241	0.035
<i>iso</i> -C14:0	0.34	0.33	0.022	0.37 ^a	0.33 ^b	0.32 ^b	0.023	0.34	0.008
<i>iso</i> -C16:0	0.75	0.72	0.059	0.83 ^a	0.70 ^{ab}	0.68 ^b	0.063	0.469	0.036
<i>iso</i> -C17:0	0.90	0.91	0.062	0.95 ^a	0.88 ^b	0.89 ^b	0.062	0.836	0.011
<i>anteiso</i> -BCFA	2.11	2.03	0.135	2.41 ^a	1.94 ^b	1.86 ^b	0.15	0.561	0.014
<i>anteiso</i> -C15:0	0.97	0.93	0.063	1.14 ^a	0.87 ^{ab}	0.84 ^b	0.075	0.63	0.022
<i>anteiso</i> -C17:0	1.14	1.10	0.087	1.28 ^a	1.07 ^b	1.02 ^b	0.091	0.472	0.007
MUFA ⁸ , % FA	12.5	10.7	0.53	11.1	11.6	12.1	3.57	0.33	0.18
<i>cis</i> -MUFA	6.56	5.28	0.328	6.29	5.56	5.92	0.369	0.004	0.259
C16:1 c7/t3 ⁹	0.09	0.07	0.005	0.08	0.07	0.09	0.007	0.024	0.058
C16:1 c9	0.06	0.04	0.011	0.06	0.05	0.05	0.011	0.035	0.242
C18:1 c9 ¹⁰	3.70	2.71	0.179	3.22	2.97	3.43	0.204	<0.001	0.202
C18:1 c11	0.37	0.27	0.028	0.35	0.31	0.3	0.031	0.002	0.255
C18:1 c12	0.14	0.10	0.013	0.12	0.13	0.11	0.014	0.006	0.262
C18:1 t16/c14 ¹¹	0.03	0.02	0.014	0.04	0.03	0.01	0.016	0.325	0.259
C18:1 c15	0.12	0.11	0.007	0.12	0.1	0.12	0.008	0.235	0.093
C18:1 c16	0.05	0.05	0.004	0.05	0.05	0.05	0.005	0.785	0.468
<i>trans</i> -MUFA	5.82	5.28	0.241	4.68 ^b	5.91 ^a	6.05 ^a	0.271	0.056	0.002
C18:1 t5	0.04	0.04	0.008	0.05	0.03	0.04	0.009	0.292	0.359
C18:1 t6/t7/t8 ¹²	0.27	0.27	0.013	0.24 ^b	0.26 ^{ab}	0.32 ^a	0.016	0.842	0.013
C18:1 t9	0.23	0.22	0.014	0.19 ^b	0.23 ^a	0.26 ^a	0.015	0.26	<0.001
C18:1 t10	0.29	0.32	0.017	0.26 ^b	0.33 ^a	0.33 ^a	0.018	0.103	0.01
C18:1 t11	4.4	3.87	0.229	3.45 ^b	4.45 ^a	4.51 ^a	0.251	0.028	0.003

C18:1 t12	0.33	0.32	0.013	0.28 ^b	0.36 ^a	0.35 ^a	0.015	0.31	0.004
C18:1 t15	0.24	0.24	0.019	0.21 ^b	0.25 ^a	0.25 ^a	0.02	0.616	0.009
C18:1 t10/C18:1 t11	0.07	0.08	0.007	0.08	0.07	0.07	0.008	<0.001	0.441
PUFA ¹³ , % FA	2.92	2.20	0.096	2.61	2.45	2.62	0.118	<0.001	0.559
C18:2 n-6	1.92	1.28	0.096	1.74	1.52	1.55	0.116	<0.001	0.372
C18:2 t11,c15/t10,c15 ¹⁴	0.05	0.04	0.004	0.04 ^b	0.04 ^{ab}	0.06 ^a	0.005	0.065	0.02
C18:3 n-3	0.69	0.57	0.025	0.58 ^b	0.59 ^b	0.72 ^a	0.03	0.004	0.011
CLA ¹⁵	0.26	0.31	0.025	0.26	0.29	0.29	0.028	0.078	0.393
CLA c9,t11	0.07	0.08	0.004	0.07	0.08	0.09	0.005	0.320	0.078
CLA t10,c12	0.18	0.23	0.023	0.19	0.22	0.21	0.026	0.100	0.643

685 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

686 ² 0SF- 0% sainfoin; 20SF- 20% sainfoin; 40SF- 40% sainfoin in the finishing concentrate.

687 ³ Probability of significant differences due to the presence of PAC in the concentrate.

688 ⁴ Standard error of the mean.

689 ⁵ Total identified FA.

690 ⁶ Saturated FA.

691 ⁷ Branched-chain FA.

692 ⁸ Monounsaturated FA.

693 ⁹ C16:1 c7 and C16:1 t3 might coelute.

694 ¹⁰ C18:1 c9 might coelute with the pair C18:1 t13 and t14.

695 ¹¹ C18:1 t16 coelutes with C18:1 c14 as a minor isomer.

696 ¹² C18:1 t6, C18:1 t7, and C18:1 t8 might coelute.

697 ¹³ Polyunsaturated FA.

698 ¹⁴ C18:2 t11,c15 and C18:2 t10,c15 might coelute.

699 ¹⁵ Conjugated linoleic acid.

700

701

702 **Table 4**

703 Effect of the presence of active proanthocyanidins (PAC)¹ and the inclusion of dehydrated sainfoin (SF)²
 704 in the finishing concentrate on biohydrogenation intermediates (BI) and biohydrogenation (BH) in
 705 ruminal fluid of the *in vitro* trial (Assay 2).

	PAC ¹			SF ²				P-value ³	
	SF	SF+PEG	s.e.m. ⁴	0SF	20SF	40SF	s.e.m. ⁴	PAC	SF
BI ⁵	6.72	6.18	0.225	5.54 ^b	6.84 ^a	6.97 ^a	0.260	0.065	0.002
C18:1t10/BI	0.043	0.052	0.0038	0.048	0.048	0.047	0.0038	<0.001	0.909
C18:1t11/BI	0.65	0.62	0.014	0.62	0.65	0.65	0.015	0.013	0.069
BH extent, %									
C18:1 c9	77.8	83.4	2.00	79.4	81.3	81.2	2.09	0.001	0.378
C18:2 n-6	91.7	94.2	1.08	92.9	93.7	92.4	0.12	<0.001	0.194
C18:3 n-3	77.3	82.5	1.19	68.9 ^b	84.0 ^a	86.7 ^a	1.45	0.009	<0.001
Completeness, %	83.9	85.7	0.49	86.3 ^a	84.3 ^b	83.9 ^b	0.52	<0.001	0.001

706 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

707 ² 0SF: 0% sainfoin; 20SF: 20% sainfoin; 40SF: 40% sainfoin in the finishing concentrate.

708 ³ The interaction was never significant.

709 ⁴ Standard error of the mean.

710 ⁵ All C18 FA except C18:0, C18:1 c9, C18:1 c11, C18:2 n-6, and C18:3 n-3.

711

712 **FIGURE CAPTIONS**

713

714 **Fig. 1.** Chemical composition of fresh sainfoin during 4 weeks of harvest (Assay 1) (adapted from Baila
715 et al., 2022).

716 NDFom: neutral detergent fiber exclusive of residual ash; ADFom: acid detergent fiber exclusive of
717 residual ash; CP: crude protein; PAC: proanthocyanidins

718

719 **Fig. 2.** Fermentation kinetics of fresh sainfoin according to the presence of active proanthocyanidins
720 (PAC¹; A) and week of harvest (B) during 72 hours of incubation (Assay 1).

721 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

722

723 **Fig. 3.** Effect of the presence of active PAC¹ and week of harvest on the proportions of volatile fatty
724 acids in the *in vitro* assay at 72 h of incubation (Assay 1).

725 Within a parameter and week or treatment, means with different letter differ at $P < 0.05$.

726 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).

727

728 **Fig. 4.** Neutral detergent fiber exclusive of residual ash (NDFom), acid detergent fiber exclusive of
729 residual ash (ADFom), lignin (sa), starch, total proanthocyanidins (PAC), and percentages of C16:0,
730 C18:0, C18:1 c9, C18:2 n-6, and C18:3 n-3 of concentrates with different inclusion of dehydrated
731 sainfoin¹ (Assay 2) (adapted from Baila et al., 2024).

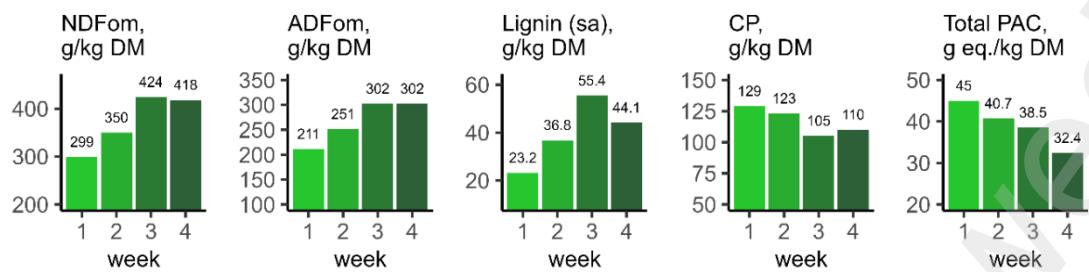
732 ¹0SF: 0% sainfoin; 20SF: 20% sainfoin; 40SF: 40% sainfoin.

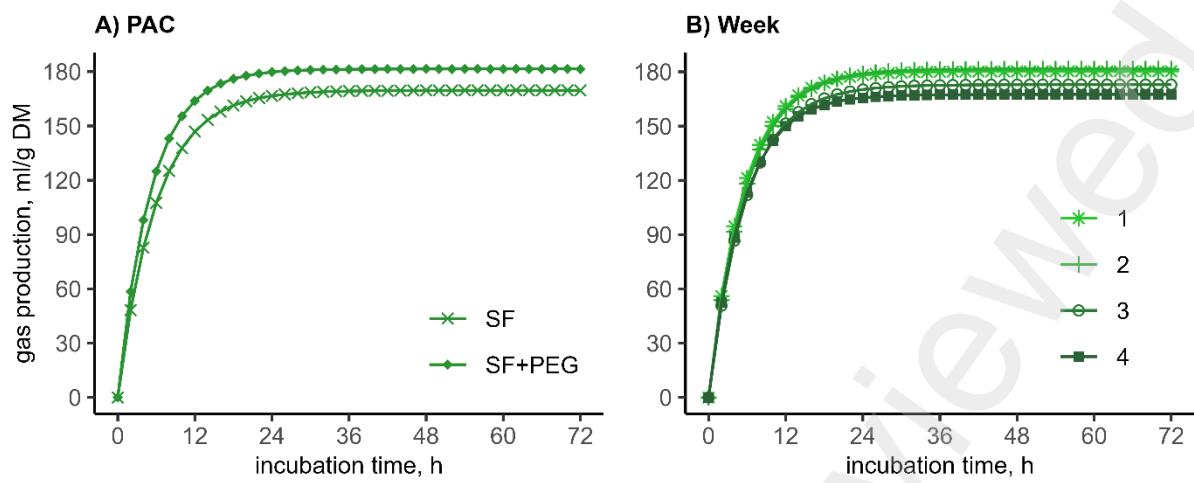
733

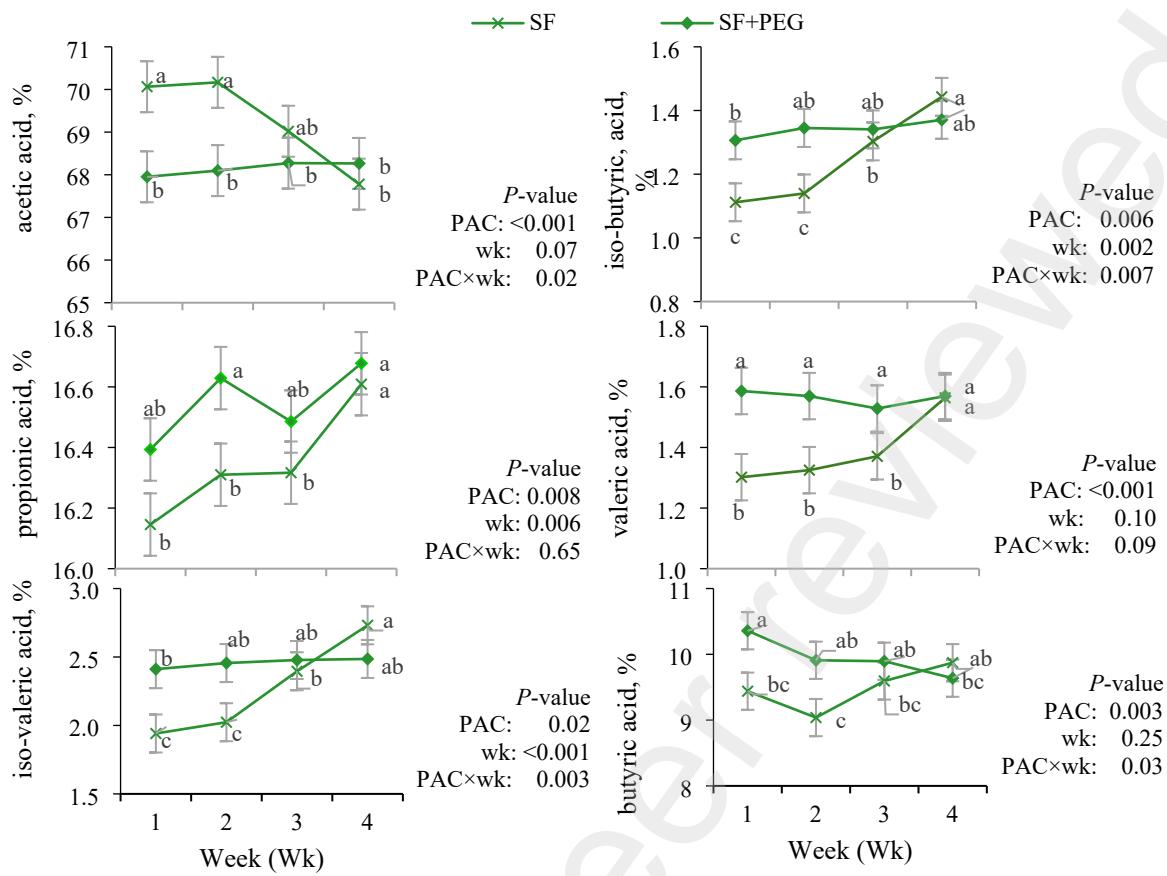
734 **Fig. 5.** Fermentation kinetics according to the presence of active proantocyanidins¹ (PAC; A) and the
735 inclusion of dehydrated sainfoin² (SF; B) in the fattening concentrate during 48 h of incubation (Assay
736 2).

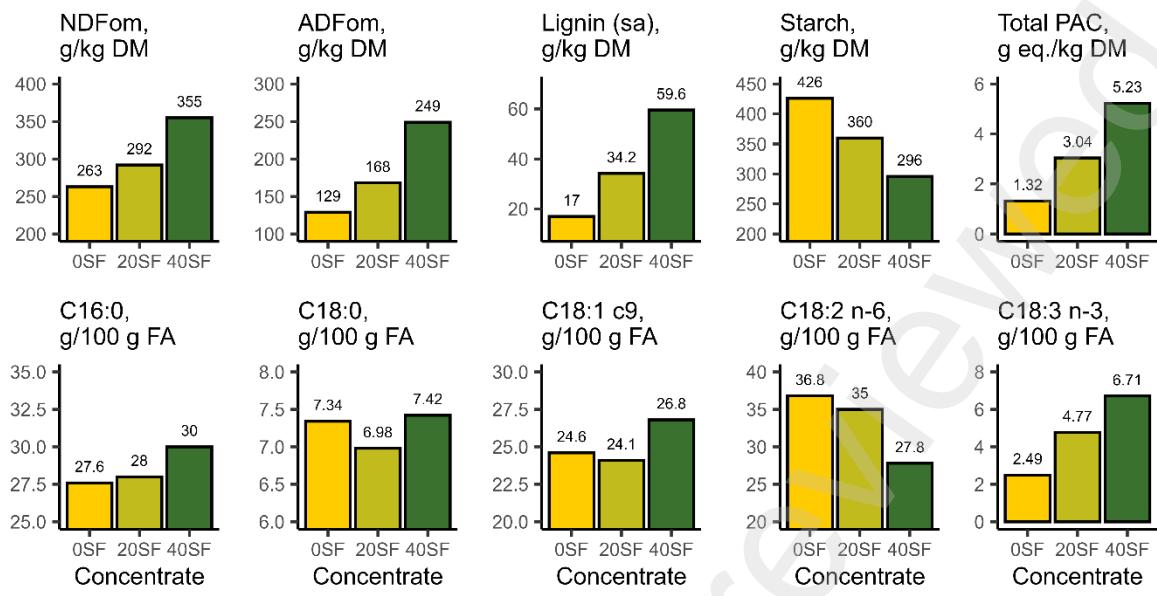
737 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).).

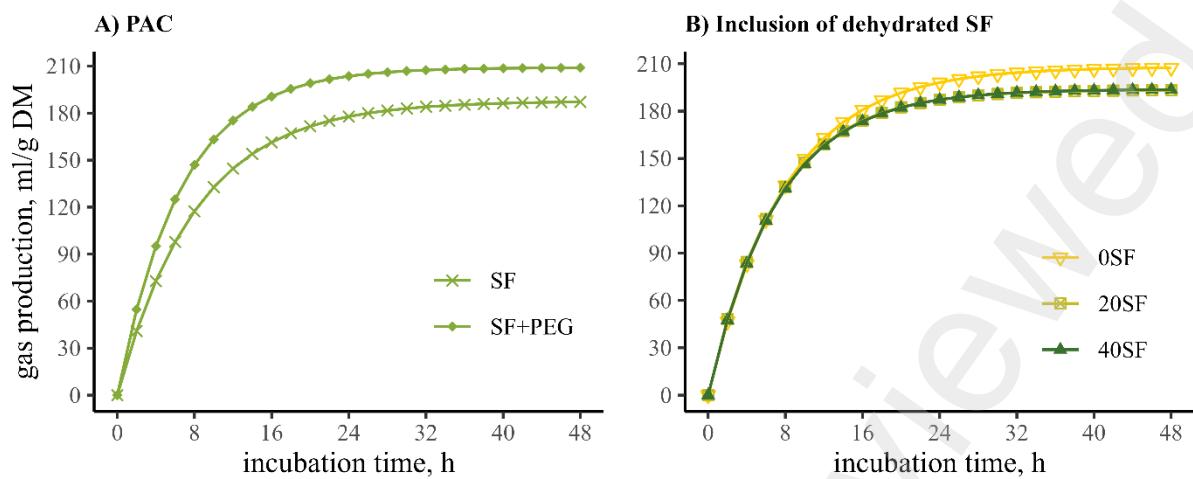
738 ² 0SF- 0% sainfoin; 20SF- 20% sainfoin; 40SF- 40% sainfoin in the finishing concentrate.


739


740 **Fig. 6.** Effect of the presence of active proantocyanidins¹ (PAC; A) and the inclusion of dehydrated
741 sainfoin² (SF; B) in the fattening concentrate on the proportions of volatile fatty acids
742 in the in vitro assay at 48 h of incubation (Assay 2) .


743 ¹ Study of the presence of PAC through the non-addition (SF) or addition of PEG (SF+PEG).


744 ² 0SF- 0% sainfoin; 20SF- 20% sainfoin; 40SF- 40% sainfoin in the finishing concentrate.


745

