
Trabajo Fin de Grado

Monitorización del consumo de agua mediante IoT

Water Consumption Monitoring Using IoT

Autor

Lucas Mallén Zaera

Directores

Julio A. Sangüesa Escorihuela

Pablo Doñate Navarro

Escuela Universitaria Politécnica de Teruel
2024

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

http://zaguan.unizar.es

RESUMEN

La monitorización del consumo del agua en las viviendas es clave para hacer un

uso responsable de este recurso e impedir que se desperdicie. Esto se realiza de manera

manual mediante los contadores de agua, pero la monitorización remota es un campo

para el que hay pocas alternativas, y las que hay son caras o requieren la modificación

del sistema de tubeŕıas.

El propósito principal de este proyecto es desarrollar un sistema eficiente y

económico para la monitorización del consumo de agua en viviendas. Este sistema tiene

como objetivo ofrecer una alternativa asequible a las soluciones comerciales existentes,

permitiendo la monitorización remota del gasto del agua, que es esencial para la gestión

sostenible de este recurso.

Para ello se ha desarrollado un prototipo de bajo coste que captura una imagen del

contador de agua cada cierto tiempo. Este prototipo pretende solucionar los problemas

que se pueden encontrar en los lugares donde están los contadores, como la falta de

iluminación, de espacio o de conexión a una corriente eléctrica, aśı como las malas

comunicaciones con las redes inalámbricas.

Además se ha realizado un sistema que, mediante el uso de detección de objetos y

el reconocimiento de caracteres en imágenes, permite obtener el valor del contador de

agua a partir de la imagen capturada.

Los resultados demuestran que es posible utilizar sistemas diferentes a los que se

utilizan de manera comercial para la monitorización del agua en los hogares. Además,

estos sistemas pueden realizarse con un bajo coste y adaptándose a los posibles

problemas que existen en los entornos en los que están los contadores.

PALABRAS CLAVE

Monitorización del consumo de agua, Contadores de agua, LoRa, LoRaWAN, IoT,

Diseño 3D, OCR, Inteligencia Artificial, AIOT.

I

ABSTRACT

Monitoring water consumption in homes is key to promoting responsible use of

this resource and preventing waste. Currently, this is done manually through water

meters, but remote monitoring is a field with few alternatives, and those that exist are

expensive or require modifications to the existing water supply system.

The primary goal of this project is to develop an efficient and cost-effective system

for monitoring water consumption in homes. This system aims to provide an affordable

alternative to existing commercial solutions, enabling remote control of water usage,

which is essential for the sustainable management of this resource.

To achieve this, a low-cost prototype has been developed that captures an image

of the water meter at regular intervals. This prototype addresses the challenges often

encountered in meter locations, such as poor lighting, limited space, lack of electrical

power, and unreliable wireless network connectivity.

Furthermore, a system has been implemented that utilizes object detection and

optical character recognition (OCR) to extract the water meter reading from the

captured image.

The results demonstrate the feasibility of employing alternative systems for

household water monitoring, distinct from those commercially available. These systems

can be developed at a low cost and adapted to the specific challenges posed by meter

locations.

KEYWORDS

Water consumption monitoring, Water meters, LoRa, LoRaWAN, IoT, 3D design,

OCR, Artificial Intelligence, AIOT.

II

Índice

1. Introducción, motivación y objetivos 1

1.1. Introducción . 1

1.2. Motivación . 4

1.3. Objetivos . 4

2. Estado del arte 6

3. Funcionamiento del sistema 8

3.1. Elementos Hardware y Software . 8

3.1.1. Hardware . 8

3.1.2. Software . 10

3.2. Arquitectura del sistema . 11

3.2.1. Comunicación LoRaWAN . 13

3.2.2. Funcionamiento del dispositivo 14

3.2.3. Funcionamiento del servidor . 18

3.2.4. Visualización de la información 18

4. Resultados 21

4.1. Mecanismo de reconocimiento de caracteres 21

III

4.1.1. Preprocesamiento de los datos 22

4.1.2. Modelo de selección . 25

4.1.3. Modelo de reconocimiento de carácteres 33

4.2. Pruebas reales . 41

5. Conclusiones 47

6. Bibliograf́ıa 49

Anexos I

I. Hardware y Software empleado II

I.1. Hardware . ii

I.2. Software . viii

II. Arquitectura LoRaWAN XV

III. Funcionamiento de los modelos de OCR basados en libreŕıas XVIII

IV. Pruebas Bateŕıa XXI

V. Diseño 3D XXV

V.1. Requisitos técnicos . xxv

V.2. Modelado 3D . xxvi

IV

Lista de Figuras

1. Arquitectura del sistema propuesto . 12

2. Arquitectura del dispositivo . 15

3. Estructura de los paquetes enviados mediante LoRa 16

4. Web de visualización de los datos . 19

5. Muestra del funcionamiento del reconocimiento de caracteres 22

6. Imagen muestra del dataset: (a) Imagen contador (b) Imagen máscara . 23

7. Imagen muestra del dataset procesada: (a) Imagen contador (b) Imagen

máscara . 24

8. Arquitectura de la red VGG16 [1] . 26

9. Gráfica de la pérdida del entrenamiento de la red VGG16 28

10. Ejemplo del resultado de la predicción de la red VGG16 28

11. Arquitectura de la red U-Net [2] . 29

12. Gráfica de la pérdida del entrenamiento de la red U-NET 32

13. Ejemplo del resultado de la predicción de la red U-NET 33

14. Ejemplo de imágen procesada . 36

15. Gráfica de la pérdida del entrenamiento de la red Faster R-CNN 37

16. Ejemplo de imagen tomada con la cámara 39

17. Diseño 3D de las piezas del prototipo 41

V

18. Prototipo impreso en 3D . 42

19. Ejemplo de los contadores: (a) Contador A (b) Contador B 43

20. Imagen capturada del contador de agua en la que el número no está

completo. 44

21. Gráfica que muestra el avance del valor del Contador B con respecto al

tiempo . 44

22. Gráfica que muestra el avance del valor del Contador B con respecto al

tiempo, eliminando los valores erróneos. 45

23. Heltec Wifi Lora 32 V3 . iii

24. ArduCam Mini 2mp Plus . v

25. Arquitectura LoRaWAN [3] . xvi

26. Gráficas del consumo de bateŕıa: (a) 700 mAh (b) 2000 mAh xxii

27. Pieza principal 3D . xxvii

28. Pieza de agarre al contador 3D . xxviii

29. Pieza módulo de la bateŕıa 3D . xxix

VI

Lista de Tablas

1. Resultados de la primera prueba . 38

2. Resultados de la segunda prueba . 39

3. Resultados de la tercera prueba . 40

4. Resultado de la predicción del Contador A con respecto al tiempo . . . 43

5. Especificaciones del Heltec Wifi LoRa 32 V3 iv

6. Tabla consumo de la bateŕıa . xxiii

7. Tabla consumo de la bateŕıa . xxiv

VII

Caṕıtulo 1

Introducción, motivación y
objetivos

1.1. Introducción

El agua es uno de los recursos más importantes para la vida humana, y su gestión

eficiente ha sido un factor crucial en la evolución de la sociedad hasta el d́ıa de hoy.

Gracias a esta gestión, se han conseguido grandes avances que han mejorado la vida de

las personas, proporcionando agua potable en los hogares, ayudando a superar seqúıas

a través de los sistemas de almacenamiento o permitiendo su uso en sectores como la

agricultura y la ganadeŕıa, entre muchos otros.

La importancia de controlar el consumo de agua reside en que, aunque el agua es

un recurso muy abundante en el planeta, el agua potable es relativamente escasa y

hay muchos factores que pueden llevar a una escasez de esta. Su conservación y uso

eficiente son esenciales para garantizar su disponibilidad en todo momento.

Para la correcta gestión del agua es imprescindible llevar a cabo un control de su

consumo, ya sea de manera individual, controlando lo que consume cada persona a lo

largo del tiempo, o por zonas, controlando el agua consumida en un cierto lugar. De

esta manera, se puede saber si este recurso se está utilizando de manera adecuada.

La manera más común mediante la que se monitoriza hoy en d́ıa en los hogares

son los contadores de agua. Estos dispositivos se instalan en las tubeŕıas y miden el

volumen de agua que pasa por ellos, permitiendo aśı conocer la cantidad que se ha

consumido en un periodo de tiempo.

1

Una de las caracteŕısticas de estos sistemas es que se implementan directamente en

la tubeŕıa por la que entra el agua a las viviendas. Esto provoca que, por lo general,

están situados en lugares con muy baja iluminación, falta de corriente eléctrica y a

menudo en espacios reducidos y de dif́ıcil acceso.

Estos dispositivos son esenciales para poder saber el consumo de agua de cada

vivienda, pero tienen un problema: la gran mayoŕıa no permiten conocer el consumo de

manera remota, lo que implica que sea necesario desplazarse f́ısicamente para conocerlo.

El hecho de poder ver los datos a distancia implica una serie de beneficios tanto para

las personas como para las empresas que manejan el agua, ya que permite, por ejemplo,

identificar rápidamente anomaĺıas que indiquen fugas en el sistema de abastecimiento.

Esto permitiŕıa tomar medidas para la detección y la reparación de la fuga y evitar que

se desperdicie agua y dinero innecesariamente. Además, se puede hacer una idea clara

del gasto que implica en la factura de agua, permitiendo ajustar el comportamiento

y adoptar medidas para controlar y reducir el consumo si es necesario, generando aśı

ahorros significativos a largo plazo.

Una de las formas que se podŕıa aplicar para conseguir monitorizar el consumo

del agua de forma remota seŕıa haciendo uso del internet de las cosas (en inglés

Internet of Things, Iot). Este se define como objetos f́ısicos con sensores y capacidad

de procesamiento que son capaces de intercambiar datos a través de una red de

comunicaciones, como puede ser LoRa [4].

LoRa es una tecnoloǵıa de comunicación inalámbrica que se ha diseñado para

permitir la transmisión de datos a largas distancias con un consumo de enerǵıa mı́nimo.

Esto es lo que la posiciona por encima de las demás tecnoloǵıas de comunicación, como

podŕıan ser Wifi o Bluetooth, ya que, a la hora de utilizar un dispositivo que se implante

en un contador de agua, se van a tener en cuenta las caracteŕısticas del entorno en el

que está el contador.

Dicho entorno suele ser parecido en todos los casos, y esta caracterizado por tener

un dif́ıcil acceso a la corriente eléctrica y estar ubicado lugares con muchos obstáculos

y en el que dif́ıcilmente llegan otras redes de comunicaciones, como puede ser un sótano

o una alcantarilla. El bajo consumo de LoRa, junto a su buena capacidad de atravesar

objetos f́ısicos la hacen ideal para este trabajo.

Por su parte, el IoT es un sector que ha tenido un gran crecimiento durante la

última década. En los últimos años ese crecimiento se ha multiplicado, hasta el punto

2

que se considera uno de los sectores de mayor impacto para 2025 [5].

Hoy en d́ıa el Internet de las Cosas se utiliza en casi todos los ámbitos de la vida,

desde el hogar hasta la Industria 4.0. Los sistemas que se utilizan en los hogares tienen

un propósito claro, mejorar la vida diaria de las personas. Por ello se suelen enfocar

en temas como la seguridad, entretenimiento, accesibilidad o, como es el caso de este

trabajo de fin de grado (TFG), la gestión de recursos.

Gracias al IoT en los hogares se puede lograr una gestión más eficiente y precisa

de los recursos. Mediante la implementación de dispositivos IoT, se pueden instalar

sensores en los sistemas de tubeŕıas o contadores de agua, que obtengan y transmitan

datos en tiempo real sobre el consumo de agua a una plataforma centralizada. Esta

plataforma puede ser accesible tanto para los usuarios como para las empresas de

suministro de agua, permitiendo una monitorización constante y detallada.

Una de las formas más conocidas de mejorar un sistema de IoT es implementarlo

junto a un sistema de Inteligencia Artificial (IA) [6] que ofrezca más comodidad en el

d́ıa a d́ıa, por ejemplo, ofreciendo reconocimiento de voz, de imágenes o ayudando a

reducir el espacio de almacenamiento del sistema. Una IA es la capacidad que tiene una

máquina de realizar tareas para las que normalmente haŕıa falta inteligencia humana,

como aprendizaje, adaptación, resolución de problemas etc.

Es de esta unión de donde sale el término Inteligencia Artificial de las Cosas (en

inglés Artificial Intelligence of Things, AIoT), el cual se define como la combinación del

IoT con la Inteligencia Artificial, donde los dispositivos no solo recopilan datos, sino

que también los analizan y actúan sobre ellos de manera inteligente.

Uno de los campos más avanzados de la IA es el reconocimiento óptico de caracteres,

o mejor conocido como OCR (del inglés Optical Character Recognition). Este consiste

en [7] un método cuyo propósito es el de reconocer caracteres de imágenes y convertirlo

a formato digital. Hoy en d́ıa se ha extendido en todo el mundo con usos como la

traducción automática de imágenes, los radares de velocidad o la digitalización de

documentos entre otros. El OCR hace uso de técnicas de aprendizaje automático para

el procesamiento de imágenes y reconocimiento de patrones para la identificación del

texto.

Asimismo, el aprendizaje automático [8] es un área de la Inteligencia Artificial que

permite a los sistemas informáticos mejorar su rendimiento en una tarea espećıfica

mediante el análisis de datos, sin necesidad de ser programados expĺıcitamente para

3

cada situación particular, permitiendo a los sistemas aprender de diferentes patrones

para diferentes situaciones.

1.2. Motivación

Los contadores de agua son comunes y eficaces, pero su limitado acceso a los datos

de manera remota dificulta su monitorización. Aunque a d́ıa de hoy existen contadores

más modernos que śı que lo permiten, no es el caso de la gran mayoŕıa de estos, y si se

quisiera usar uno se tendŕıa que cambiar todo el sistema, algo costoso tanto en tiempo

como en dinero.

Cada vez más ciudades han empezado a sustituir los contadores antiguos por unos

modernos con el objetivo de facilitar su monitorización, pero esto es un proceso muy

invasivo, ya que es necesario ir a cada uno de los contadores y modificar todo el sistema

de tubeŕıas, dejando al propietario sin agua durante un tiempo. Además este es un

proceso largo y que lleva un gran gasto económico.

Por ello, otra posible solución es utilizar un dispositivo externo que, implementado

junto al contador de agua, obtenga el valor de este y la env́ıe a través de la red para

que se pueda monitorizar. El problema de estos dispositivos comerciales es que tienen

un precio muy elevado, lo que hace que no sean muy utilizados.

La monitorización del agua es muy importante por muchas razones, pero el alto

coste de llevarla a cabo y los procesos que hay que realizar para implantar algunos de

los sistemas hacen que no sea tan interesante. Es por eso que este trabajo de fin de

grado se centra en desarrollar una solución que aproveche los beneficios del AIoT para

ofrecer un sistema más económico de fabricar e instalar.

1.3. Objetivos

El objetivo principal de este TFG es la monitorización del consumo del agua en las

viviendas mediante la combinación de IoT e IA, permitiendo ver el consumo que se ha

llevado a cabo a lo largo del tiempo. Se busca desarrollar un prototipo económico, de

fácil implementación y que se adecúe a los posibles problemas que ofrecen los entornos

en los que están instalados los contadores. Para lograr este propósito será necesario

abarcar una serie de objetivos espećıficos:

4

− Desarrollo de un sistema que permita obtener una imagen del contador de agua

periódicamente mediante un dispositivo de bajo coste.

• El sistema ha de permitir obtener imágenes en condiciones de baja

luminosidad.

• El dispositivo deberá tener un bajo consumo energético.

• Se hará uso de redes LoRaWAN (Long Range Wide Area Network) para la

comunicación entre el dispositivo y la aplicación final.

− Diseño de una caja o soporte que permita instalar el dispositivo en los contadores

de agua. Se tendrá que diseñar esta caja para que sea lo más compacta posible.

También deberá permitir la sustitución de la bateŕıa de manera sencilla.

− Realización de un sistema que, mediante técnicas de OCR, permita obtener el

valor del consumo de agua a partir de una imagen del contador y almacenarlo

para su posterior visualización.

− Realización de una plataforma de visualización mediante la que se muestren

los valores del consumo de agua que se han reconocido a lo largo del uso del

dispositivo, con el objetivo de poder monitorizarlos. La plataforma también

permitirá ver el estado de la bateŕıa de los dispositivos.

5

Caṕıtulo 2

Estado del arte

Para poder realizar un sistema que permita la monitorización de los contadores de

agua mediante el uso del internet de las cosas es necesario entender primero la forma en

la que se están monitorizando a d́ıa de hoy los contadores de agua. Es por ello que se ha

realizado una búsqueda sobre los principales dispositivos IoT existentes que sirven para

monitorizar el agua, aśı como contadores de agua inteligentes u otros métodos. Además

se han explorado algunos de los productos comerciales más populares que permiten la

monitorización del agua.

El primer producto “Sensus iPERL” [9] se trata de un contador de agua inteligente

que utiliza tecnoloǵıa electromagnética para medir el consumo del agua de manera

precisa. Además permite el env́ıo de datos de alta granularidad en intervalos de 15

minutos, lo que ayuda a la detección de fugas y a la eficiencia en la gestión de las redes

de distribución.

Otro producto es el “Contador de pulsos Sigfox” [10] , que no es un contador de

agua, sino un dispositivo IoT que, mediante el uso de sensores, es capaz de leer los

pulsos emitidos por los contadores de agua, lo que le permite saber el consumo exacto.

Gracias a ello puede enviar los datos para su monitorización en tiempo real. Es una

solución eficaz para los contadores que cuenten con salida de pulsos.

El art́ıculo “Smart water meter for automatic meter reading” [11] describe el diseño

y desarrollo de un medidor de agua inteligente basado en Internet de las Cosas (IoT)

para la lectura automática del consumo de agua. El medidor propuesto utiliza un sensor

de flujo de agua que permite a los consumidores determinar y controlar la cantidad

de agua utilizada, además de enviar datos en tiempo real a través de una aplicación

móvil. Este sistema reduce la necesidad de lecturas manuales y mejora la precisión de la

6

medición con un error máximo de 0.03 litros. El diseño incluye una válvula que se cierra

automáticamente cuando se alcanza la cantidad de agua preestablecida, optimizando

aśı la gestión del agua en las ciudades inteligentes.

Otro art́ıculo que se ha encontrado es ”Design and Implementation of a Digital

Water Meter for Remote Monitoring”[12]. En él se describe el diseño y desarrollo de un

medidor de agua digital enfocado en la durabilidad y eficiencia energética. El medidor

utiliza sensores HALL para detectar el consumo de agua mediante la medición del

campo magnético generado por la rotación de un impulsor. Los datos de consumo se

transmiten de manera inalámbrica utilizando ZigBee, lo que permite una comunicación

efectiva incluso desde ubicaciones subterráneas. El diseño se centra en mantener el

consumo de enerǵıa lo suficientemente bajo como para que el medidor funcione durante

más de 8 años sin necesidad de reemplazar la bateŕıa.

Por último el art́ıculo “Compact Smart Water Meter Development for Smart City”

[13] presenta el desarrollo de un medidor de agua inteligente compacto diseñado para ser

implementado en ciudades inteligentes. Utilizando un microcontrolador ESP32-CAM,

el dispositivo se coloca encima del medidor de agua mecánico existente sin necesidad

de reemplazarlo. Este dispositivo captura imágenes del medidor y las env́ıa a través

del wifi a un servidor web donde se procesan utilizando Google Vision para la lectura

de caracteres ópticos (OCR). Los resultados se muestran en una aplicación web que

permite a los usuarios ver sus lecturas y facturas, aśı como realizar pagos en ĺınea. Este

sistema reduce el tiempo y los costes asociados con la gestión de facturas de agua y

ayuda a los usuarios a monitorizar su consumo y detectar fugas.

Con todo esto, se puede llegar a la conclusión de que existen tanto productos

comerciales como estudios que se centran en la monitorización remota del consumo

del agua, ya sea mediante contadores inteligentes o mediante productos que permiten

el control del consumo al integrarlos junto con el contador. Sin embargo, ninguno de

ellos tiene un enfoque en el que contemplen al mismo tiempo el coste reducido, la falta

de iluminación, la falta de corriente eléctrica y la dificultad de conexión a redes.

7

Caṕıtulo 3

Funcionamiento del sistema

En este caṕıtulo se va a explicar en detalle el funcionamiento del sistema. Para ello,

se ha dividido la sección en dos apartados en los que se explicará el hardware y software

que se ha utilizado, aśı como la arquitectura y el funcionamiento del sistema que se ha

desarrollado.

3.1. Elementos Hardware y Software

En esta sección se van a presentar los elementos hardware y software más relevantes

que se han utilizado en este proyecto, explicando cada uno de ellos y justificando su

elección para este trabajo. Por motivos de espacio se puede observar más en detalle

cada uno de los elementos mostrados en este apartado en el Anexo I.

3.1.1. Hardware

En el caso del hardware se han utilizado tres dispositivos: el microprocesador con

el que se manejan y env́ıan los datos, la cámara con la que se obtiene la imagen y un

relé que se utiliza para optimizar el consumo de enerǵıa del dispositivo.

El primer dispositivo hardware que se ha utilizado ha sido el Heltec Wifi LoRa 32

v3 [14], el cual es un módulo de comunicaciones diseñado para aplicaciones en el IoT

que tiene integrado un microcontrolador ESP32, un módulo LoRa y soporte tanto para

el uso de wifi como de bluetooth. También cuenta con una pantalla Oled integrada

que facilita la visualización de los datos. Este dispositivo permite la conexión con

diferentes módulos mediante los que puede obtener información, como puede ser un

8

módulo de cámara. Además permite procesar dicha información y enviarla a través de

LoRa requiriendo un consumo de enerǵıa reducido. j

Otro elemento hardware que se utiliza es el módulo de la cámara, utilizado para

capturar las imágenes del contador. Para la elección de este componente se han

realizado varias pruebas, tanto con diferentes cámaras como con diferentes lentes en la

misma cámara.

Las cámaras que se han evaluado son: Arducam Mini 2mp Plus [15], VGA

OV7670 con FIFO [16] y VGA OV7670 sin FIFO [17]. Entre ellas se ha optado

por utilizar la Arducam Mini 2mp Plus, debido a que ofrece mayor variedad de

resoluciones, comprendidas desde 160x120 ṕıxeles hasta 1600x1200 ṕıxeles. También

permite elegir entre formatos de imagen JPEG, BMP y RAW, lo que hace que no

sea necesario procesar la imagen para transformarla a alguno de estos formatos en

el microcontrolador. Además, ofrece libreŕıas que facilitan el uso de la cámara desde

múltiples lenguajes, entre ellos Arduino IDE.

En el caso de las lentes se han realizado pruebas con las que veńıan integradas con

las cámaras, en concreto se han utilizado la lente por defecto del Arducam Mini 2mp

Plus, la del VGA OV7670 con FIFO, y una lente infrarroja CCTV [18]. Tras realizar

las pruebas se optó por utilizar la lente que veńıa integrada con la Arducam Mini 2mp

Plus debido a que la calidad de la imagen era muy superior a las demás. Además,

gracias a que se ha podido utilizar el led del microcontrolador como si fuera un flash,

se ha optado por no utilizar una cámara infrarroja, ya que para ello seŕıa necesario un

led especial que implicaŕıa un mayor coste económico.

Por último, con la intención de reducir el consumo, dado que la cámara consumı́a

enerǵıa independientemente del estado del microcontrolador, se ha utilizado un relé.

Este se utiliza para conectar el microcontrolador con el módulo de la cámara. Un relé

funciona como un interruptor digital, el cual permite, o no, el paso de la corriente

dependiendo de la señal que le llegue. El relé que se ha utilizado ha sido un relé IM

01 [19], el cual permite alimentar la cámara únicamente cuando se activa el GPIO

correspondiente. De esta manera cuando se quiera encender la cámara únicamente se

tiene que activar dicho GPIO y la corriente pasará del microcontrolador a la cámara,

permitiendo su uso.

9

3.1.2. Software

En el caso del software hay más cantidad de elementos que han de ser mencionados,

como los programas que se han utilizado para programar en el dispositivo, las libreŕıas

de OCR más relevantes, el servidor de red que se ha utilizado para la comunicación

LoRa, MQTT, la base de datos que se ha realizado y la plataforma utilizada para la

visualización de los resultados.

El entorno de desarrollo utilizado ha sido el Arduino IDE (Integrated Development

Environment) [20], este es una plataforma de desarrollo de software diseñada

espećıficamente para la programación de microcontroladores Arduino. Proporciona

un entorno intuitivo y accesible que permite a desarrolladores escribir, compilar y

cargar código en placas Arduino de manera eficiente. Este entorno se ha elegido frente

a otros como MicroPython [21] o PlatformIO [22] ya que tiene un gran soporte y

comunidad que lo respalda, lo que ha generado una gran cantidad de libreŕıas que

simplifican la integración del software y el uso de elementos como la antena LoRa.

Entre estas libreŕıas se pueden destacar sobretodo dos: la de “ArduCAM” [23] y la de

“Heltec ESP32 Lora V3” [24].

Otro elemento importante han sido las libreŕıas utilizadas para llevar a cabo el

reconocimiento óptico de caracteres, entre dichas libreŕıas se pueden destacar dos:

Pytorch [25] y Tensorflow [26]. Ambas se utilizan para la ejecución de las redes

neuronales realizadas para el reconocimiento de los caracteres del contador de agua.

Por un lado, PyTorch es una biblioteca de aprendizaje profundo de código abierto

desarrollada principalmente por Facebook’s AI Research lab (FAIR) [27], que permite

la construcción y modificación dinámica de modelos, facilitando la experimentación y

la depuración.

Por otro lado, TensorFlow es una plataforma de aprendizaje automático de código

abierto desarrollada por Google AI [28]. El funcionamiento de TensorFlow se basa en

la construcción y ejecución de gráficos de flujo de datos, donde los nodos representan

las operaciones matemáticas y los datos, en forma de tensores, fluyen entre ellos.

Como servidor de red para la comunicación LoRa se ha optado por utilizar

ChirpStack [29]. Este es una solución de código abierto diseñado para implementar

y gestionar redes LoRaWAN. Su principal función es actuar como una infraestructura

middleware entre los gateways LoRaWAN y las aplicaciones que consumen los datos

de los dispositivos.

10

ChirpStack es necesario para gestionar los paquetes que se env́ıan por la red, ya que

este los procesa, elimina los duplicados, los decodifica y los publica en MQTT (Message

Queuing Telemetry Transport) [30] entre muchas otras cosas.

En el caso de la base de datos que se ha utilizado para almacenar los resultados del

OCR y las imágenes, se ha optado por InfluxDB [31]. Esta es una base de datos de series

temporales (TSDB) diseñada para gestionar grandes volúmenes de datos generados a

lo largo del tiempo. Organiza los datos en series temporales, donde cada punto tiene

un tiempo asociado. Estos puntos se agrupan en ”measurements”(similares a tablas) y

se pueden etiquetar para facilitar las búsquedas. Utiliza un modelo de almacenamiento

eficiente para escrituras rápidas y ofrece un lenguaje de consulta (InfluxQL) para

analizar los datos temporales de manera efectiva.

Se ha elegido esta base de datos debido a varias razones: la primera es que se basa en

series temporales, lo cual es ideal para almacenar eventos, como es el caso del sistema

que se está realizando. Otra razón es su facilidad de visualización y monitorización, ya

que InfluxDB se integra perfectamente con sistemas de visualización como puede ser

Grafana. La última razón es que ofrece una fácil integración con herramientas como

Chipstack o lenguiajes de programación como Python, lo que facilita el proceso de

añadir datos.

Por último, se ha utilizado Grafana [32] para la visualización de la información.

Grafana es una plataforma de software libre de código abierto diseñada para la

visualización y el análisis de datos en tiempo real. Se utiliza principalmente para crear

gráficos, paneles interactivos y alertas, permitiendo a los usuarios monitorizar métricas

provenientes de diversas fuentes de datos. Grafana cuenta con una integración nativa

con InfluxDB, lo que facilita el proceso de comunicación entre el sistema de visualización

y el de almacenamiento de los datos. Además, cuenta con un sistema de alertas, el cual

permitiŕıa avisar a los usuarios en caso de que se detecte alguna anomaĺıa, permitiendo

aśı actuar lo antes posible ante posibles fugas de agua u otros problemas que se puedan

detectar.

3.2. Arquitectura del sistema

Una vez detallados los elementos hardware y software más importantes que se van

a utilizar en este proyecto, se va a proceder a explicar el funcionamiento del sistema

que se ha realizado.

11

Figura 1: Arquitectura del sistema propuesto

Como se puede observar en la arquitectura mostrada en la Figura 1, el sistema

empieza con el dispositivo obteniendo una imagen del contador y procesándola para

preparar el env́ıo de los paquetes por LoRa. A continuación, env́ıa la imagen y los

gateways que la reciben la reenv́ıan al servidor de ChirpStack. En este servidor se

procesan los paquetes decodificándolos, eliminando duplicados, etc. y son publicados

en MQTT.

La aplicación, que está suscrita a esa comunicación MQTT, obtiene la imagen y

la procesa mediante los modelos implementados para realizar el OCR. Tras obtener el

valor reconocido, almacena en la base de datos de InfluxDB tanto la imagen como el

valor asociado a la misma.

Al mismo tiempo, la aplicación web utiliza el framework de Grafana para mostrar

los datos reconocidos del consumo del agua a lo largo del tiempo, permitiendo aśı su

monitorización.

El funcionamiento del sistema se va a abordar más en detalle en las siguientes

subsecciones.

12

3.2.1. Comunicación LoRaWAN

Para entender el funcionamiento del sistema, es necesario empezar explicando el tipo

de red de comunicaciones que se ha utilizado, ya que de esta depende el rendimiento

del resto del sistema.

Para este proyecto se va a utilizar LoRaWAN (Long Range Wide Area Network),

que es [3] un protocolo de red de área amplia que está estandarizado por la LoRa

Alliance. Se caracteriza principalmente por ofrecer una comunicación de largo alcance

y tener un bajo consumo energético. Esto lo hace ideal para dispositivos que necesitan

mandar datos de manera intermitente. Se puede ver más información en el Anexo II.

El uso de LoRaWAN en este proyecto se debe a varias razones. Para comenzar, es

un sistema de bajo consumo de enerǵıa, lo que lo hace perfecto para los lugares en

los que se van a introducir estos dispositivos, sin conexión eléctrica y de dif́ıcil acceso.

Gracias a ello se podrá ahorrar enerǵıa y alargar más el tiempo de uso de la bateŕıa.

Además, tiene una gran capacidad para sobrepasar objetos f́ısicos, lo que facilita la

comunicación de los dispositivos ubicados en lugares como sótanos o alcantarillas.

Uno de los problemas que se pod́ıan dar a la hora de utilizar una comunicación

LoRa era que, al utilizar una banda abierta, se ha de hacer un uso responsable de la

misma, por lo que se ha establecido que no se puede ocupar la red más del 1% del

tiempo en el que se utiliza el dispositivo [33]. Esto quiere decir que si se env́ıa una

imagen al d́ıa, el tiempo en el que se están enviando paquetes no puede superar los 864

segundos al d́ıa (1% de 24 horas).

Para comprobar la cantidad de imágenes que se pueden enviar en un d́ıa, se han

tenido en cuenta dos factores: la cantidad de paquetes que se necesitan para enviar

una imagen y el tiempo de transmisión de cada uno de ellos (se detalla más el

funcionamiento de este sistema en los siguientes apartados).

Para saber la cantidad de paquetes que se pueden enviar se ha de tener en cuenta

que en la comunicación LoRaWAN es posible ajustar el Spreading Factor (SF), lo que

determina el tamaño del paquete, la velocidad del env́ıo y la distancia de este. Contra

menor sea el Spreading Factor, mayor será el tamaño de los paquetes y la velocidad

del env́ıo, pero menor será la distancia que recorra.

Los dispositivos que se han empleado en este proyecto cuentan con un SF de 7 y

un ancho de banda de 125 kHz. Esto quiere decir que se pueden llegar a transmitir 222

13

Bytes de “payload” por paquete. Se ha decidido utilizar este Spreading Factor ya que,

en estos entornos urbanos, las distancias no van a ser muy grandes.

Además, se ha observado que el tamaño de las imágenes de 160x120 ṕıxeles nunca

ha superado los 3500 Bytes, por lo que, como se pueden enviar hasta 222 Bytes de

payload en cada paquete, se ha supuesto que el máximo número de paquetes necesario

para enviar una imagen es de 16.

Por otra parte, se ha utilizado una calculadora [34] con la que se ha obtenido el

tiempo de transmisión de cada uno de estos paquetes, los cuales contienen 222 Bytes

de payload y se env́ıan en SF 7. El resultado ha sido que cada env́ıo de paquete ocupa

la red 368.9 ms, por lo que se pueden llegar a enviar 81 paquetes por d́ıa. Con todo

ello se puede ver que, a lo largo de un d́ıa, se podŕıan llegar a enviar aproximadamente

cinco imágenes cumpliendo con el uso responsable de la red.

3.2.2. Funcionamiento del dispositivo

El dispositivo es la parte del sistema que se coloca en el contador de agua y

permite obtener el valor del consumo. En concreto, el dispositivo realiza una imagen

del contador para que sea procesada y se pueda obtener dicho valor.

La primera opción que se planteó a la hora de realizar este trabajo fue la de realizar

el procesamiento del OCR directamente dentro del dispositivo, lo que se conoce como

”Edge Computing”. Este método teńıa varias ventajas, como que únicamente seŕıa

necesario enviar un número por la red LoRa y, por ello, tardaŕıa menos en enviar los

datos, ahorrando tiempo de ejecución. Además, no seŕıa necesario toda la lógica del

servidor, en el que se reconstruye la imagen, ya que este solo debeŕıa de almacenar el

valor recibido.

Desde un principio se intentó realizar de esta manera, pero surgió un problema ya

que el almacenamiento del dispositivo era únicamente de 8 MB. Esto implicaba que

el dispositivo no pudiera ni siquiera almacenar la imagen en un formato que no fuera

JPEG. Además, ambas redes neuronales que se han necesitado para el reconocimiento

de caracteres en los contadores de agua, que se explicarán más adelante, superan ese

tamaño por separado, lo cual hace que ni siquiera se haya podido reducir la imagen

antes de enviarla por la red.

Es por ello que se ha acabado optando por la opción de enviar la imagen con la

14

menor resolución posible dividida en varios paquetes y reconstruirla en el servidor.

Como se puede ver en la figura 2, el dispositivo cuenta con cuatro módulos

conectados entre ellos para realizar las funciones de toma, procesamiento y env́ıo de la

imagen. Estos componentes son:

− Heltec Wifi Lora 32 V3: es el microprocesador que tiene el programa que se está

utilizando y controla los demás componentes, cuenta con una antena LoRa para

el env́ıo de mensajes y está conectado al módulo de la cámara mediante el que

obtiene la imagen.

− Arducam Mini 2MP Plus: es el módulo de la cámara que permite tomar fotos,

que son recogidas por el microprocesador. Existe la posibilidad de configurarlo

para modificar valores como la resolución o el formato en el que se van a enviar

las imágenes al microprocesador. No tiene la opción de apagarlo, por lo que se

utiliza un relé para activarla y desactivarla.

− Relé: es un dispositivo que se utiliza para controlar el encendido y apagado de

la cámara. Funciona como un interruptor pero que se enciende y se apaga de

manera electrónica.

− Bateŕıa: se utiliza una bateŕıa de 2000 mAh para alimentar el dispositivo y

permitir que se utilice sin estar conectado a la corriente.

Figura 2: Arquitectura del dispositivo

En un primer momento el dispositivo no iba a contar con un relé, pero tras realizar

una serie de pruebas del consumo de la bateŕıa (que se pueden ver en el Anexo IV), se

15

llegó a la conclusión de que la mejor manera de controlar el consumo de la cámara e

impedir que se malgaste la bateŕıa era haciendo uso de este. Esto se debe a que, si no se

hace uso del relé, el microprocesador está en todo momento dando enerǵıa al módulo,

y esto provoca que, pese a estar en el modo de ahorro de bateŕıa, se siga consumiendo

bateŕıa. Con el uso de el relé, se puede elegir en qué momento el microprocesador le da

enerǵıa al módulo de la cámara, por lo que se puede encender únicamente para obtener

la imagen e inmediatamente después apagarse para ahorrar enerǵıa.

Una vez se ha visto la parte f́ısica del dispositivo, se va a pasar a ver el

funcionamiento del software desarrollado.

Al iniciar el dispositivo, este va a iniciar la cámara y la va a configurar para que se

realicen las imágenes de la manera requerida. Además va a inicializar la comunicación

LoRaWAN y va a enviar un mensaje “JoinRequest” para confirmar que la comunicación

funciona correctamente. Una vez iniciadas correctamente tanto la cámara como la

comunicación, se procede a empezar con el env́ıo de las imágenes.

Como se ha visto en el apartado anterior, las comunicaciones LoRaWAN que se

utilizan sólo soportan el env́ıo de 222 bytes de datos, utilizando un “Spreading Factor”

de 7. Esto afecta a la forma de realizar el sistema ya que, aunque se consiguiera hacer

el OCR de las imágenes más pequeñas que pueda obtener el módulo de la cámara,

superaŕıan el peso máximo de env́ıo de datos de LoRaWAN. Es por ello que es necesario

realizar una segmentación de la imagen para poderla enviar en diferentes mensajes.

Como se puede ver en la Figura 3, esta segmentación se realiza en bloques de 221

bytes, ya que el primer byte de cada paquete se utiliza para indicar el número de

paquete. Con ese byte inicial, el servidor puede reconstruir la imagen y, en caso de que

se haya perdido algún paquete, pedirle al dispositivo el reenv́ıo de ese paquete.

Figura 3: Estructura de los paquetes enviados mediante LoRa

16

Una vez se ha visto cómo se organizan los paquetes que se env́ıan hacia el servidor

se va a explicar el funcionamiento básico del dispositivo. Este funciona en un bucle

constante que se repite cada cierto tiempo. En este bucle lo primero que hace es capturar

la imagen, para ello el microcontrolador env́ıa la señal de tomar una foto a la cámara

y esta le devuelve la foto en formato JPEG.

Tras obtener la imagen, la secciona, añade el número de paquete y lo env́ıa. Una vez

enviado se queda en una pausa que le permite esperar a que se reciba correctamente

el paquete sin gastar un exceso de bateŕıa. Tras esa pausa se despierta y procede a

enviar el siguiente mensaje, añadiendo el número de paquete correspondiente. Realiza

esta acción hasta que finaliza el env́ıo de la imagen.

La manera en la que funciona la comunicación en este dispositivo es que él, nada

más enviar un mensaje por la red, escucha por si se le ha enviado alguno a él. De esta

forma existe una manera de comunicarse con él. Esto es esencial en un sistema en el

que se necesita recibir de manera correcta todos los mensajes que se env́ıan, ya que se

utiliza este sistema para que, en caso de que el servidor no haya recibido alguno de

los paquetes de la imagen, le haga una petición al dispositivo para que se lo vuelva a

enviar.

Una vez enviado el último paquete realiza una pausa más larga, esperando a que

pase el tiempo necesario para enviar otra imagen.

Durante ese tiempo se despierta una última vez, poco después de finalizar el env́ıo

de la imagen y env́ıa un mensaje de confirmación. Este mensaje es necesario ya que

permite al servidor informar al dispositivo si se ha perdido algún paquete. En caso

de que el dispositivo haya finalizado el env́ıo de la imagen y el servidor no la haya

recibido entera, por ejemplo por que falta el último paquete, este aprovecha el env́ıo

del paquete de confirmación, ya que, tras enviarlo, el dispositivo se queda escuchando,

lo que permite que se le pida el paquete que se ha perdido.

Por otro lado, se aprovecha el env́ıo de este mensaje para enviar el estado de la

bateŕıa, permitiendo aśı estimar el tiempo que durará el dispositivo sin necesitar un

cambio de bateŕıa.

Para que el servidor no confunda este mensaje con los mensajes de imágenes se

utiliza un primer byte especial, el 255. En el sistema explicado anteriormente, este

número haŕıa referencia a que es el paquete número 255, pero como se ha visto

anteriormente, las imágenes no van a contener más de 16 paquetes.

17

3.2.3. Funcionamiento del servidor

El servidor es la parte del sistema que se encarga de leer los paquetes enviados por

el dispositivo y procesarlos, consiguiendo aśı obtener los datos de la imagen o el estado

de la bateŕıa.

La aplicación se conecta mediante MQTT para poder leer los paquetes enviados

por el dispositivo y hace una conexión a una base de datos de InfluxDB.

Cada vez que se recibe un paquete lo procesa. Este puede ser de dos tipos: paquete

de env́ıo de imagen o paquete de confirmación. Para seleccionar cuál de los dos tipos

es, se divide el primer byte y se comprueba que número es. Se utiliza el número 255 en

el primer byte del paquete para representar que es un paquete de confirmación, ya que

una imagen nunca va a necesitar tantos paquetes. Si se recibe, se obtiene el número

del estado de la bateŕıa y se almacena. En caso de que la imagen no esté completa se

env́ıa una petición para que se vuelva a mandar el paquete que falte.

En caso contrario, se utiliza ese primer byte para comprobar el número de paquete

que es y se almacenan los datos en la posición correspondiente. Una vez almacenados,

se comprueba si se ha perdido algún paquete para pedir que se vuelva a enviar. En caso

de que se hayan obtenido todos los paquetes de la imagen se procede a reconstruirla

para su procesamiento.

Para ello se colocan los datos de la imagen en el orden correspondiente y se

almacena. Una vez almacenada se realiza el reconocimiento de los números del consumo

del agua a partir de la fotograf́ıa obtenida. Finalmente, se almacenan en la base de datos

tanto la imagen como el valor reconocido.

La base de datos que se utiliza contiene únicamente dos tablas. En la primera

contiene el id del dispositivo utilizado y el estado de la bateŕıa a lo largo del tiempo y

en la segunda tiene el id del dispositivo utilizado, la imagen y el valor de esa imagen a

lo largo del tiempo.

3.2.4. Visualización de la información

Una vez visto el funcionamiento principal del sistema, se va a explicar la aplicación

final que utilizaŕıan los usuarios para ver la información de sus contadores de agua.

Esta es una aplicación web en la que se mostraŕıan los datos obtenidos de todos los

18

dispositivos asociados a cada usuario.

Para la realización de esta aplicación se han creado previamente dos dashboards

de Grafana, uno que contiene una gráfica con los datos obtenidos de la predicción del

consumo de agua, y otro que contiene otra gráfica con los datos obtenidos de la bateŕıa

del dispositivo. Para obtener los datos de cada uno de esos dashboards se ha realizado

una conexión entre InfluxDB y Grafana, mediante el uso de la API de InfluxDB, se han

introducido las credenciales necesarias para el acceso a los datos, aśı como el ”token”de

la aplicación, el cual sirve para identificar el bucket del que se quieren obtener los datos.

Tras ello, se han realizado dos consultas en InfluxQL para obtener una gráfica con los

valores del reconocimiento de los caracteres y otra gráfica con los valores del consumo

de la enerǵıa.

Tras crear los dashboards con las consultas necesarias se han utilizado para integrar

dichas gráficas para realizar la visualización de los datos.

Figura 4: Web de visualización de los datos

Como se observa en la Figura 4, gracias a esta aplicación se puede monitorizar el

consumo de agua, ya que permite ver en tiempo real el valor que se está registrando.

Además, gracias a la gráfica del estado de la bateŕıa, se puede predecir el momento en

el que será necesario reemplazarla o cargarla. Gracias a ello, se puede conseguir que el

dispositivo esté el mı́nimo tiempo posible apagado.

En el caso de ambas gráficas existe la posibilidad de ampliar o reducir la sección

de tiempo en la que se muestran los resultados, permitiendo aśı elegir los d́ıas para los

que se quieren ver los resultados.

19

Existen dos mejoras relevantes que se podŕıan implementar para una posible futura

versión de la aplicación que son:

− La posibilidad de conectar múltiples dispositivos en una misma cuenta. Esto seŕıa

necesario ya que cada persona no tiene únicamente un contador de agua, sino que

puede tener uno o varios por casa. La posibilidad de conectar varios dispositivos

en la misma cuenta facilitaŕıa la monitorización del consumo de agua.

− El uso de un sistema de alertas que avisen a los usuarios en caso de detectar

anomaĺıas. Esto es esencial para el propósito de la monitorización del agua, ya

que avisaŕıa a los usuarios en caso de que el sistema detectara alguna anomaĺıa

como puede ser un cambio muy grande del consumo en poco tiempo. Gracias a

este sistema se podŕıan detectar fallos en las tubeŕıas o robos de agua.

20

Caṕıtulo 4

Resultados

Una vez se ha visto cómo funciona la arquitectura del sistema que se ha propuesto,

se va a comprobar su correcto funcionamiento. Para ello, lo primero que se ha hecho

ha sido obtener los modelos para realizar el OCR y comprobar cuál es el mejor modelo

para el reconocimiento del valor del consumo de agua en los contadores.

Tras obtener el mejor modelo para conseguir saber el valor del consumo del agua

a partir de la imagen de un contador, se ha puesto a prueba en un entorno real,

construyendo un modelo 3D y realizando pruebas sobre un contador de agua.

En este apartado se van a ver las pruebas realizadas, aśı como los resultados que

se han obtenido en cada caso, concluyendo con unas pruebas que pretenden simular el

entorno real en el que se instalaŕıa el dispositivo.

4.1. Mecanismo de reconocimiento de caracteres

Uno de los retos principales de este proyecto ha sido el de crear un sistema que

permita el reconocimiento de los datos del contador a partir de una imagen.

Como se ha podido observar en uno de los apartados anteriores, las redes LoRaWAN

que se han utilizado durante el proyecto solo permiten el paso de 222 Bytes por cada

paquete. Esto condiciona el trabajo y genera un nuevo objetivo, el de crear un sistema

de reconocimiento de caracteres que funcione con imágenes del menor tamaño posible.

Para llevar a cabo el OCR y aumentar las posibilidades de acierto se han realizado

dos modelos diferentes que trabajan en conjunto. El primer modelo se encargará de

seleccionar la zona de la imagen en la que están ubicados los números del contador, a

21

este modelo se le introducirá la fotograf́ıa completa y devolverá una máscara de ésta

con la sección en la que están los números. El segundo modelo será el encargado de

realizar el reconocimiento de los d́ıgitos, se le pasará una imagen, que será la original

recortada en función de lo que haya devuelto el primer modelo, y devolverá el valor del

consumo del agua. En la Figura 5 se puede ver el funcionamiento de este sistema.

Figura 5: Muestra del funcionamiento del reconocimiento de caracteres

Para explicar con más detalle todas las partes del OCR se va a dividir esta sección

en tres apartados, una para explicar el preprocesamiento de los datos, otra para explicar

el modelo de selección y una última parte para explicar el OCR que se ha realizado.

4.1.1. Preprocesamiento de los datos

El dataset que se ha utilizado para entrenar los modelos, tanto el de selección como

el de OCR, ha sido un conjunto [35] que conteńıa imágenes de contadores de agua de

varios tipos. En concreto este dataset contiene 1244 imágenes de contadores con sus

respectivas máscaras de la localización de los datos.

A continuación se muestra una imagen, y su respectiva máscara, del dataset para

que se pueda apreciar el tipo de datos con el que se ha estado trabajando.

22

Figura 6: Imagen muestra del dataset: (a) Imagen contador (b) Imagen máscara

Como se puede observar en la Figura 6, las imágenes cuentan con una muy buena

calidad. Pese a que en el dataset existen algunas con diferentes dimensiones y calidad

entre ellas, por lo general son de 1300x1000 ṕıxeles. Además, como se puede ver en la

Figura 6, están tomadas desde distancias muy alejadas.

Como las imágenes del dataset no se parecen a las imágenes que se van a acabar

tomando por la cámara, se optó por realizar un preprocesado de estas para que se

parecieran lo máximo posible.

Lo primero que se hizo fue comprobar la calidad de imagen de la cámara. La

Arducam Mini 2mp Plus puede ofrecerlas en las siguientes resoluciones: 160x120,

176x144, 320x240, 352x288, 640x480, 800x600, 1024x768, 1280x1024 y 1600x1200.

Como se necesitaba pasar por LoRaWAN el mı́nimo número de datos posible se decidió

utilizar imágenes de 160x120 ṕıxeles.

Tras la realización de una serie de pruebas para comprobar que tamaño ocupaban

este tipo de imágenes al ser comprimidas en JPEG, se pudo observar que dependiendo

de la imagen este variaba entre 1500 bytes y 3500 bytes. Que las imágenes tuvieran un

23

tamaño máximo de 3500 bytes queŕıa decir que para el paso de una de ellas a través

de la red se necesitan, como máximo, once paquetes. Esto era un número asequible de

paquetes, teniendo en cuenta que el número de imágenes que se env́ıan cada d́ıa no va

a ser mayor que dos y que, como se ha visto anteriormente, se podŕıan llegar a enviar

hasta cinco imágenes.

Para convertir las imágenes del dataset en posibles imágenes reales, tomadas con la

cámara, se realizaron tres pasos. En primer lugar, se recortó la imagen para acercarla

al número que se pretend́ıa leer, dejándola en cuatro tercios, que es el formato de la

cámara. Tras eso se redimensionó para dejarla en calidad 160x120 ṕıxeles. Por último

se realizó la misma conversión para las máscaras de cada imagen, haciendo aśı que

coincidieran con estas.

En la Figura 7 se muestra un ejemplo de la misma foto que se ha mostrado en la

Figura 6 pero después de recibir el preprocesamiento.

Figura 7: Imagen muestra del dataset procesada: (a) Imagen contador (b) Imagen
máscara

Por último, con el fin de aumentar los datos del dataset, se realizaron modificaciones

en las imágenes, guardando tanto la original como la modificada en el dataset final.

Las modificaciones que se llevaron a cabo fueron dos.

La primera fue rotar la imagen, donde se observó que, como se estaba trabajando

con fotograf́ıas a baja resolución, si la rotación era diferente a 180º la imagen perd́ıa

demasiada calidad, haciendo que fuera contraproducente para el entrenamiento. Esta

modificación se le hizo también a la máscara, para que coincidiera.

24

La segunda modificación que se hizo fue añadir ruido a las imágenes, al igual que

en el caso anterior si se añad́ıa demasiado ruido la foto quedaba inservible, por lo que

se tuvo que ajustar. En este caso, no se añadió ruido a la máscara, dejándola como la

original, ya que el propósito de añadirlo en las imágenes es que al utilizar el modelo de

selección, aunque la imagen tenga ruido, encuentre de manera correcta la máscara.

Con estas dos modificaciones se quedó un dataset final de 3732 imágenes, el cual

se dividió de manera aleatoria en datos de entrenamiento (70% de las imágenes),

validación (25% de las imágenes) y prueba (5% de las imágenes). Con este conjunto

de imágenes ya se pod́ıan entrenar los modelos seleccionados para obtener el valor del

consumo del agua a partir de la imagen del contador.

4.1.2. Modelo de selección

Una vez se modificó el dataset para conseguir uno que asemejara las imágenes que

se iban a obtener de la cámara, se procedió a la búsqueda y entrenamiento del primer

modelo. Este deb́ıa recibir una imagen y devolver la posición de los números sobre los

que se necesita realizar el OCR posteriormente.

Para este modelo se seleccionaron dos redes neuronales que cumpĺıan con las

necesidades dichas. Estas redes eran la red neuronal VGG16 y la red neuronal U-Net.

Ambas redes reciben una imagen de poco tamaño y policromática y devuelven las

caracteŕısticas que se quieren encontrar en ellas, en este caso, los números del contador.

Ambas redes neuronales se caracterizan por sus buenos resultados a la hora de

obtener algún tipo de caracteŕıstica de las imágenes, como puede ser seleccionar una

zona en concreto de fotos diferentes. Para determinar cuál de las dos se utilizará en el

modelo final se entrenaron ambas y se hicieron pruebas de funcionamiento.

Modelo VGG16:

VGG [36] es un modelo de red neuronal convolucional propuesto por K. Simonyan

y A. Zisserman, del “Visual Geometry Group” de la universidad de Oxford, que se

hizo famosa al ganar el Desaf́ıo de Reconocimiento Visual a Gran Escala de ImageNet

(ILSVRC), obteniendo una precisión del 92.7%. El ILSVRC es un desaf́ıo que evalúa

algoritmos de detección de objetos y clasificación de imágenes a gran escala. Este

porcentaje de precisión supuso una grán mejora con respecto a los modelos anteriores.

El modelo VGG16 es el nombre que se le dio al modelo VGG que cuenta con 16

25

capas, trece capas convolucionales y de max-pooling, 3 capas totalmente conectadas y

una capa de softmax.

Figura 8: Arquitectura de la red VGG16 [1]

Como se observa en la Figura 8, estas capas están seguidas por una capa de

agrupación (max-pooling) de 2x2 que reduce la dimensión espacial de las caracteŕısticas

extráıdas, manteniendo la información relevante.

Posteriormente, se aplican dos capas convolucionales más, ambas con filtros de

3x3 y produciendo 128 mapas de caracteŕısticas cada una. Estas capas también están

seguidas por una capa de max-pooling de 2x2. Este patrón de dos capas convolucionales

seguidas de una capa de max-pooling se repite en las siguientes fases del modelo, pero

con un número creciente de filtros.

En la tercera etapa, se utilizan tres capas convolucionales con filtros de 3x3,

generando 256 mapas de caracteŕısticas cada una, seguidas por una capa de

max-pooling. Este incremento gradual en el número de filtros permite al modelo

capturar caracteŕısticas más complejas y abstractas de las imágenes.

La cuarta etapa del VGG16 consiste en tres capas convolucionales adicionales, cada

una con filtros de 3x3 y produciendo 512 mapas de caracteŕısticas. Nuevamente, esto

se sigue por una capa de max-pooling de 2x2. Finalmente, la quinta y última etapa

convolucional incluye tres capas convolucionales más, también con filtros de 3x3 y

generando 512 mapas de caracteŕısticas, seguidas por una capa de max-pooling.

26

Después de las capas convolucionales, la arquitectura de VGG16 incorpora

capas completamente conectadas. La primera capa completamente conectada tiene

4096 unidades, seguida por otra capa completamente conectada también de 4096

unidades. Estas capas están diseñadas para realizar una integración completa de las

caracteŕısticas extráıdas y para permitir la clasificación de las imágenes. La última

capa completamente conectada del modelo tiene 1000 unidades, correspondientes a

las 1000 clases de la base de datos ImageNet, sobre la cual el modelo fue entrenado

originalmente. Esta capa utiliza una función de activación softmax para producir

probabilidades de clasificación para cada clase.

En el caso de este modelo, la salida no es una máscara que refleje las caracteŕısticas

de la imagen, sino que son los puntos que forman la figura en el que están las

caracteŕısticas que se han obtenido. En este caso concreto, la salida del modelo son

cuatro pares de posiciones, “x” e “y”, que representan las esquinas.

Como se puede observar en la Figura 8, el modelo recibe una imagen en formato

RGB de 224x224 ṕıxeles, por lo que las imágenes del dataset utilizado se tuvieron que

redimensionar a 224x224 ṕıxeles para este entrenamiento.

Para el correcto entrenamiento del modelo se utilizó el error cuadrático medio (en

inglés Mean Square Error, MSE) para el análisis de la función de pérdida. El MSE es

una medida estad́ıstica que evalúa la calidad de un modelo de predicción al calcular

el promedio de los cuadrados de los errores, donde el error es la diferencia entre la

predicción del modelo y el valor observado.

27

A continuación se puede ver la evolución de la pérdida tanto durante el

entrenamiento como durante la validación.

Figura 9: Gráfica de la pérdida del entrenamiento de la red VGG16

Como se puede observar en la Figura 9, el error cuadrático medio se reduce

significativamente en el caso del entrenamiento, llegando a valores muy pequeños. Pese

a eso, el error en el conjunto de validación solo se reduce al inicio, manteniéndose en

valores muy parecidos durante el resto del entrenamiento.

Al realizar las predicciones sobre el modelo de prueba se pudo observar que los

resultados no coincid́ıan con los esperados.

Figura 10: Ejemplo del resultado de la predicción de la red VGG16

Como se puede ver en la Figura 10, el modelo es capaz de predecir la zona sobre la

28

que están los números que se quieren reconocer, pero no es capaz de reconocerla bien.

Únicamente predice la posición aproximada de esta, pero no llega a predecir la posición

exacta de todas las esquinas.

Debido a esto se decidió entrenar otra red neuronal que también hab́ıa dado buenos

resultados a la hora de analizar imágenes y obtener caracteŕısticas de ellas. La red

U-Net.

Modelo U-Net:

El modelo U-Net es una arquitectura de red neuronal convolucional introducida

en 2015 por Olaf Ronneberger, Philipp Fischer y Thomas Brox en su art́ıculo ”U-Net:

Convolutional Networks for Biomedical Image Segmentation”[37]. Esta red fué diseñada

principalmente para tareas de segmentación de imágenes.

El U-Net fue pensado inicialmente para segmentación de imágenes biomédicas,

facilitando la identificación de estructuras celulares en imágenes de microscoṕıa. No

obstante, su aplicación se ha extendido a múltiples ámbitos como la segmentación de

imágenes satelitales, la detección de objetos en v́ıdeos e imágenes, y la segmentación

de imágenes en la conducción autónoma, entre otros.

En la Figura 11 se puede ver la arquitectura de este modelo. Esta se caracteriza

por su estructura simétrica en forma de U, compuesta por un camino de contracción

y un camino de expansión. Esta configuración permite la captura de caracteŕısticas de

manera eficiente y la combinación de información espacial con precisión.

Figura 11: Arquitectura de la red U-Net [2]

29

El camino de contracción se encarga de extraer caracteŕısticas de la imagen

de entrada y reducir su resolución para capturar información más abstracta. Está

compuesto por varias etapas que incluyen capas convolucionales que aplican múltiples

filtros a la imagen para extraer caracteŕısticas locales como bordes, texturas y patrones.

Estas convoluciones suelen utilizar filtros de 3x3 ṕıxeles, seguidas de una función de

activación no lineal, como ReLU (Rectified Linear Unit). Posteriormente, se aplica una

capa de max pooling, que reduce la resolución espacial de las caracteŕısticas extráıdas

a la mitad. Este proceso de reducción permite capturar información a diferentes niveles

de abstracción y disminuye la carga computacional. El max pooling selecciona el valor

máximo en una ventana de 2x2 ṕıxeles, resumiendo las caracteŕısticas más prominentes.

Con cada etapa de pooling, el número de filtros se duplica, permitiendo a la red

aprender un conjunto de caracteŕısticas más complejo y representativo. Este proceso

de convolución, activación y pooling se repite varias veces, profundizando la red y

reduciendo la resolución de las caracteŕısticas hasta alcanzar el cuello de botella de la

red.

El cuello de botella representa la transición entre el camino de contracción y el

camino de expansión. En este punto, la red tiene la menor resolución espacial pero la

mayor cantidad de canales de caracteŕısticas, lo que permite representar la información

de manera muy abstracta y compacta. Las operaciones en el cuello de botella son

similares a las del encoder, con capas convolucionales y activaciones, pero sin reducción

adicional de resolución.

El camino de expansión se encarga de reconstruir la imagen segmentada a partir de

las caracteŕısticas extráıdas por el encoder. Este camino es simétrico al de contracción

y consta de varias etapas.

Cada etapa del decoder comienza con una capa de upsampling que incrementa la

resolución espacial de las caracteŕısticas. Esto se puede hacer mediante interpolación

(upsampling) o mediante convoluciones transpuestas (deconvolución), como es el caso

de la red que se ha utilizado. Estas operaciones recuperan la resolución espacial perdida

durante el pooling.

Una caracteŕıstica clave del U-Net es el uso de conexiones de salto que concatenan

las caracteŕısticas del encoder correspondiente con las caracteŕısticas del decoder en

cada etapa. Estas conexiones ayudan a preservar la información espacial detallada que

se perdió durante el pooling, mejorando la precisión de la segmentación.

30

Después de la concatenación, se aplican capas convolucionales adicionales para

refinar las caracteŕısticas combinadas y reducir la dimensionalidad, integrando la

información de alta y baja resolución de manera efectiva. Este proceso de upsampling,

concatenación y convoluciones se repite varias veces, aumentando la resolución de las

caracteŕısticas gradualmente hasta que se alcanza la resolución original de la imagen

de entrada.

La última capa del U-Net es una capa convolucional que genera el mapa de

segmentación final. Esta capa tiene tantos canales de salida como clases haya en la

tarea de segmentación. Se utiliza una función de activación sigmoidal para segmentación

binaria, para producir una probabilidad para cada clase en cada ṕıxel.

Para el trabajo que se teńıa que realizar, obtener las caracteŕısticas de una foto

de 160x120 ṕıxeles, se decidió que la mejor opción era utilizar una red U-Net con una

imagen de entrada de 128x128 ṕıxeles. Esto provocaŕıa una disminución de la calidad

de la imagen de entrada, pero también una disminución de las capas necesarias, y por

ende, una disminución del tamaño de la red.

En el caso del entrenamiento de esta red se utilizó la función de pérdida “Binary

Cross-Entropy”. Esta función mide la diferencia entre las funciones de probabilidad

predichas por la red neuronal y las reales. Se utiliza en problemas de clasificación

binaria, como la red U-Net, y su objetivo es clasificar cada ṕıxel de la imagen en una

de dos clases: pixel de interés o ṕıxel de fondo.

Para el entrenamiento de esta red se hizo uso de las máscaras mencionadas

anteriormente, las cuales funcionaban de manera idónea para representar los datos

de salida de la red ya que utilizaba los ṕıxeles a cero para los datos de fondo y los

ṕıxeles a uno para los datos que eran relevantes.

31

A continuación se puede ver la evolución de la pérdida tanto durante el

entrenamiento como durante la validación:

Figura 12: Gráfica de la pérdida del entrenamiento de la red U-NET

Como se puede observar en la Figura 12, y a diferencia del modelo VGG16, tanto

la pérdida del entrenamiento como la pérdida de la validación disminuyen hasta ser

valores muy cercanos a cero.

Al realizar las pruebas sobre el conjunto de imágenes de prueba se pudo observar

que la red devolv́ıa unos resultados que se asemejan en gran medida a las máscaras

reales. Pese a no ser perfectas, las máscaras que devolv́ıa la red eran completamente

funcionales para el propósito que se les pretend́ıa dar. El porcentaje de acierto que se

obtuvo fue de un 90,79%.

32

En la Figura 13 se muestra un ejemplo de resultado de la predicción:

Figura 13: Ejemplo del resultado de la predicción de la red U-NET

Con esta red neuronal completamente funcional solo quedaba un paso para poder

empezar a realizar el OCR, redimensionar la máscara y aplicarla a la imagen original.

Para ello se creó un script que obteńıa la máscara y la redimensiona de 128x128 a

160x120 utilizando interpolación bilineal, y una vez se tienen la foto original y la

máscara en las mismas dimensiones se mantiene el color de los ṕıxeles de la imagen

original que coincidan con unos en la máscara y se eliminan los que coincidan con ceros.

Con este procedimiento ya se tiene todo lo necesario para realizar el OCR sobre la

imagen.

4.1.3. Modelo de reconocimiento de carácteres

Una vez se ha procesado la imagen y se ha conseguido obtener únicamente una

imagen de los d́ıgitos del contador de agua, se necesita obtener los números de dicha

imagen. Para ello se realizó una búsqueda de diferentes métodos de OCR que pudieran

servir para este propósito.

En este apartado se va a explorar el funcionamiento y resultados de los diferentes

modelos seleccionados, con el fin de seleccionar uno de ellos para su uso en el prototipo

final. Se va a dividir esta sección en un apartado de explicación de los modelos más

relevantes y otro de comparación de los resultados obtenidos.

33

Modelos utilizados

Los modelos que han sido probados para el reconocimiento de los carácteres son

de tres tipos diferentes. Los primeros son libreŕıas de python que contienen modelos

dedicados al OCR, estos modelos no han sido entrenados con las imágenes obtenidas

por el modelo de selección visto anteriormente, sino que han sido entrenados por los

creadores de las libreŕıas y son utilizados directamente. En concreto se han realizado

pruebas sobre las libreŕıas Aspore [38], EasyOCR y PyTesseract [39]. El funcionamiento

interno de estos modelos se especifica en el Anexo III.

El segundo tipo de modelo que se ha probado son APIs de webs dedicadas al

reconocimiento de caracteres. Al igual que el modelo anterior, estas no han sido

entrenadas con mis imágenes. Las aplicaciones que se han utilizado han sido OCRbest

y 2OCR.

Por último se ha utilizado un tipo de modelo que ha sido directamente entrenado

con las imágenes del dataset, trás ser convertidas por el modelo anterior. En este caso

se ha entrenado una red neuronal Faster R-CNN realizando un ajuste fino.

Faster R-CNN:

Las Faster R-CNN son [40] una evolución avanzada dentro de la serie de Redes

Neuronales Convolucionales diseñadas para abordar la tarea de detección de objetos

en imágenes. A diferencia de sus predecesoras, las Faster R-CNN introducen una mejora

significativa en la eficiencia y precisión mediante la incorporación de una Red de

Propuestas de Regiones (RPN, por sus siglas en inglés).

En términos de funcionamiento, las Faster R-CNN operan en dos fases principales.

Primero, una RPN se encarga de generar propuestas de regiones. Esta red toma como

entrada una imagen y produce un conjunto de regiones candidatas que probablemente

contengan objetos. La RPN está diseñada para ser extremadamente rápida, ya que

reutiliza las caracteŕısticas extráıdas por las primeras capas de la red convolucional.

La segunda fase consiste en refinar estas propuestas utilizando una red de detección

de objetos. Aqúı, las propuestas generadas por la RPN son evaluadas y clasificadas

en diferentes categoŕıas de objetos mediante una red neuronal que también ajusta

con mayor precisión las cajas delimitadoras alrededor de los objetos detectados. Esta

red realiza una clasificación fina y una regresión de las coordenadas de las cajas

delimitadoras, mejorando tanto la exactitud en la identificación de los objetos como en

34

la delimitación espacial de los mismos.

En el caso que nos ocupa, se ha utilizado una red neuronal de Detectron2 [41],

una plataforma de código abierto creada por Facebook AI Research que permite la

implementación de algoritmos de detección de objetos o segmentación de imágenes.

Esta plataforma ofrece múltiples opciones de redes neuronales entrenadas previamente

para la detección de objetos en imágenes o la segmentación de estas.

En este caso se ha utilizado una de estas redes entrenadas y se ha realizado un

ajuste fino (en inglés, fine tuning) con los datos del dataset tras ser procesados por la

red neuronal de selección. El ajuste fino es [42] un término que se refiere a utilizar una

red neuronal que ya ha sido entrenada con un gran conjunto de datos, como pueden

ser imágenes con palabras y textos, y entrenarla adicionalmente con un conjunto de

datos más espećıficos, como pueden ser imágenes de contadores.

El modelo que se ha utilizado es el Faster R-CNN X101-FPN. Este modelo añade a

la arquitectura Faster R-CNN una red piramidal de caracteŕısticas (en inglés Feature

Pyramid Network, FPN) y una red residual ResNet. Una FPN es una arquitectura de

red neuronal muy similar a el modelo U-Net, visto anteriormente, pero con la diferencia

de que en este caso se realiza una predicción por cada capa del camino de expansión.

El generador de propuestas de regiones es responsable de identificar posibles

regiones de interés en la imagen. Este componente está compuesto por una cabeza

RPN estándar que incluye una capa convolucional para el mapeo de caracteŕısticas y

capas adicionales para la predicción de las regiones.

Las propuestas de regiones generadas por el RPN son procesadas por los cabezales

de regiones de interés(en inglés Regions of Interest, ROI) estándar, que realizan una

alineación precisa de las regiones mediante el uso de un conjunto de niveladores ROI.

Estos niveladores ajustan las regiones propuestas a una resolución estándar, facilitando

la posterior clasificación y regresión de las cajas delimitadoras por la red.

La predicción de las categoŕıas de los objetos de las cajas delimitadoras es llevada

a cabo por las capas de salida. Estas capas incluyen unidades lineales y funciones

de activación ReLU para asegurar una clasificación precisa y la regresión de las

coordenadas de las cajas delimitadoras.

Estas últimas capas se han ajustado de manera que coincidan con las categoŕıas

de los números del uno al nueve. De esta manera, la red se puede entrenar para

35

detectar números y establecer sus ubicaciones en la imagen, permitiendo aśı reconstruir

el número completo del contador de agua.

Con el objetivo de obtener una red neuronal que acertara lo máximo posible se

ha entrenado este modelo con las imágenes del dataset que se ha utilizado durante el

desarrollo de este proyecto.

Para ello se ha procesado el dataset con la red de selección, obteniendo un dataset

de imágenes en las que se ven únicamente los números del contador que representan el

valor del consumo del agua. Este dataset contiene 3732 imágenes de diferentes tamaños,

por lo que se decidió establecer un tamaño para todas y rellenar las imágenes con fondo

negro para que se ajustaran a él, el tamaño se estableció en 160x160 ṕıxeles.

Además se decidió realizar un último procesado de las imágenes antes de entrenar

la red, se optó por reajustar las imágenes que teńıan los números girados o torcidos

para que estuvieran todos rectos. De esta manera se ayudaba a la red ya que solo deb́ıa

de reconocer los números en una posición.

En la Figura 14 se muestra una imagen del dataset resultante:

Figura 14: Ejemplo de imágen procesada

36

Tras el entrenamiento, salieron los siguientes resultados:

Figura 15: Gráfica de la pérdida del entrenamiento de la red Faster R-CNN

Como se puede observar en la Figura 15, existen tres datos relevantes que vaŕıan

durante el entrenamiento. Esto se debe al funcionamiento de la red, ya que esta primero

reconoce las zonas en las que puede haber números y luego reconoce los números de

cada una de esas zonas.

El valor de “Reconocimiento de la zona” indica la pérdida que se ha producido

durante el entrenamiento a la hora de reconocer las zonas que existen en cada imagen. El

valor de “Reconocimiento de la ubicación de la zona” indica la pérdida que ha habido en

el momento de ubicar las zonas predichas anteriormente. Y el valor de “Reconocimiento

de número” se refiere a la pérdida a la hora de seleccionar el número que hay en cada

zona.

Comparación de resultados

Tras mostrar los modelos con los que se iban a realizar las pruebas para determinar

el algoritmo que se utilizará en el modelo final, se va a pasar a comparar los resultados

obtenidos por ellos.

Para ello se va a explicar las pruebas de funcionamiento que se han llevado a cabo

para determinar el modelo que mejor funciona.

37

La primera prueba que se ha realizado ha sido sobre el dataset utilizado durante el

proyecto. Para llevarla a cabo se han seleccionado varias imágenes de manera aleatoria

y se han redimensionado cada una de ellas para obtener las imágenes de las cuatro

resoluciones más pequeñas que puede generar la cámara (160x120, 176x144, 320x240

y 352x288). Utilizar estas cuatro resoluciones es un método que se va a llevar a cabo

en el resto de las pruebas ya que permite comprobar el tamaño mı́nimo que se puede

utilizar para la captura de la imagen.

Tras la realización de las pruebas los resultados fueron los siguientes:

Método 160x120 176x144 320x240 352x288
Aspore 0% 0% 0% 0%
PyTesseract 0% 0% 0% 0%
EasyOCR 37.53% 39.12% 42.77% 41.75%
OCRbest 65.15% 64.25% 70.09% 69.12%
2OCR 60.12% 63.42% 66.30% 68.78%
Faster R-CNN 83.17% 82.64% 83.66% 85.13%

Tabla 1: Resultados de la primera prueba

Como se puede observar en la Tabla 1, el reconocimiento correcto del valor de los

contadores de agua no es sencillo. Los modelos de Aspire y PyTesseract no han sido

capaces de reconocer ningún número a partir de las imágenes proporcionadas.

En el caso de EasyOCR, se realiza de manera correcta el reconocimiento de los

números en algunas imágenes, pero en la mayoŕıa de los casos se realiza una lectura

incorrecta de los d́ıgitos. Ambos modelos basados en una APIs de webs dedicadas al

reconocimiento de caracteres han dado unos resultados positivos, pero se ve que son

muy afectados por la calidad de la imagen, ya que contra mayor es esta, menor es el

porcentaje de acierto.

Por último, la red Faster R-CNN ha dado unos resultados de acierto de más del

80%. Se consideraŕıa el mejor modelo de los que se han probado si no fuera porque esta

red ha sido entrenada con las mismas imágenes con las que se ha realizado la prueba.

Es por ello que se ha optado por realizar una segunda prueba, en la que en vez

de utilizar imágenes del dataset se van a utilizar unas tomadas directamente con la

cámara. Esta prueba tiene como objetivo utilizar las mismas imágenes que se van a

usar en el proyecto final.

Para la realización de esta prueba se decidió no utilizar ninguna imagen del dataset

38

que se hab́ıa creado, sino utilizar imágenes de contadores realizadas directamente con

la cámara, para conseguir información real. Al igual que en el caso anterior, para cada

contador se hicieron fotos en cuatro resoluciones diferentes.

La Figura 16 de las imágenes que se tomaron para esta prueba es el siguiente:

Figura 16: Ejemplo de imagen tomada con la cámara

Los resultados de esta prueba fueron los siguientes:

Método 160x120 176x144 320x240 352x288
Aspore 0% 0% 0% 0%
PyTesseract 0% 0% 0% 0%
EasyOCR 33.82% 35.23% 35.98% 36.18%
OCRbest 57.34% 59.87% 58.76% 61.02%
2OCR 56.43% 60.25% 57.98% 59.65%
Faster R-CNN 87.54% 85.45% 85.63% 86.33%

Tabla 2: Resultados de la segunda prueba

Como se puede observar en la Tabla 2, los valores obtenidos con respecto a la

prueba anterior no vaŕıan en gran manera, bajando el porcentaje de acierto en todos

ellos con excepción del modelo Faster R-CNN, que no sólo no ha disminuido, sino que

ha aumentado el porcentaje de acierto.

Con esta prueba ya se puede observar que el modelo que mejor resultados está

dando es el que se ha entrenado directamente con imágenes de contadores.

Como en este último caso se han tomado las imágenes con la mejor iluminación

posible, se ha realizado una última prueba para ver cómo cambia el porcentaje de

acierto en función de la iluminación que existe a la hora de realizar la imagen. Esta

última prueba se realiza ya que, en caso de necesitar una luz muy potente para el

correcto funcionamiento de la red Faster R-CNN, esto implica un gasto mayor, por

39

lo que se tendrán que buscar nuevas soluciones, ya sea utilizando otro de los modelos

vistos en caso de que funcionen bien con baja iluminación o buscando nuevas soluciones.

Para ello se obtienen imágenes de varios contadores con tres tipos de iluminación,

una intensa desde un punto muy cercano al contador, otra con iluminación más leve y

una última con una iluminación muy tenue. Todas las imágenes con las que se realizó

esta prueba estaban en una resolución de 160x120 ṕıxeles.

En este caso se va a comprobar únicamente la tasa de acierto de los modelos que

más aciertos han dado en las pruebas anteriores, por lo que se realizó sobre OCRbest,

2OCR y la red Faster R-CNN.

Una vez realizada se obtuvieron los siguientes resultados:

Método Alta iluminación Iluminación
neutra

Baja iluminación

OCRbest 56.93% 57.12% 43.82%
2OCR 56.88% 55.49% 46.16%
Faster R-CNN 86.45% 86.78% 57.38%

Tabla 3: Resultados de la tercera prueba

Viendo los resultados obtenidos en la Tabla 3, existe una gran bajada de los aciertos

al utilizar imágenes con poca iluminación, esto se debe a que hay menos contraste entre

los números en la imagen y el fondo. Pese a eso no se ve ninguna diferencia entre el

uso de una iluminación muy intensa y el uso de una iluminación más leve.

Tras la realización de las pruebas que han permitido observar el funcionamiento de

los diferentes modelos vistos a la hora de reconocer los carácteres de los contadores, se

puede deducir que el mejor modelo y el que se va a utilizar para el proyecto final es el

modelo Faster R-CNN. Esto se debe a su grán diferencia de acierto con respecto a los

demás modelos y a que no se ve afectado por una falta de luminosidad.

A parte de obtener el modelo que se va a utilizar finalmente, estas pruebas han

servido para comprobar que se van a poder realizar la toma de las imágenes en la

menor calidad posible, lo que permite un menor paso de bytes por la red.

40

4.2. Pruebas reales

Una vez se tiene un sistema funcional que permite registrar el consumo del agua

a partir de una imagen enviada por un dispositivo colocado en el contador, se han

realizado unas pruebas para comprobar su correcto funcionamiento en un entorno real.

Se han realizado unas pruebas del consumo de bateŕıa, que se pueden ver en el Anexo

IV y unas pruebas de funcionamiento que se verán a lo largo de este apartado.

Para ello se ha creado un prototipo en 3D el cual es utilizado para ayudar al módulo

de la cámara y al microprocesador a realizar la toma de la imagen y enviarla a través

de la red. En la figura 17 se puede ver el diseño 3D del prototipo y el prototipo impreso

se puede ver en la Figura 18. Los detalles de este diseño y la creación de este prototipo

se pueden ver en el Anexo V

Figura 17: Diseño 3D de las piezas del prototipo

41

Figura 18: Prototipo impreso en 3D

Una vez se tiene un prototipo funcional, con un sistema que permite registrar el

consumo del agua a partir de un módulo que se coloca en el contador, se han realizado

unas pruebas para comprobar su correcto funcionamiento en un entorno real.

Los contadores sobre los que se han realizado las pruebas no contaban con números

decimales, lo que quiere decir que para observar una variación se teńıan que consumir

1000 litros de agua. Es por ello que se han recogido datos durante un mes en uno de los

contadores (Contador B), mientras que en el otro únicamente se han recogido durante

una semana (Contador A).

42

Figura 19: Ejemplo de los contadores: (a) Contador A (b) Contador B

En la Figura 19 se observan dos imágenes, una tomada del Contador A y otra del

Contador B.

Una vez mostrados los contadores sobre los que se van a hacer pruebas se van a

mostrar las tablas con los resultados obtenidos.

Dı́as 1 2 3 4 5 6 7
Predicción 100412 412 412 412 41 413 413

Tabla 4: Resultado de la predicción del Contador A con respecto al tiempo

Como se puede observar en la Tabla 4, en el caso del Contador A da un pequeño

error en la primera imagen que toma, prediciendo un valor “1” al inicio de los d́ıgitos

que provoca un gran cambio en la predicción real. Además, tiene otro error en el quinto

valor, en el que no detecta bien el último número, esto se debe a que el modelo de OCR

no funciona tan bien en las imágenes en las que el d́ıgito está a mitad camino, ya que

no reconoce ni el número anterior ni el siguiente. Pese a eso, en el resto de imágenes

da el valor exacto que marca el contador.

43

Figura 20: Imagen capturada del contador de agua en la que el número no está completo.

La imagen del contador mostrada en la Figura 20 muestra un ejemplo en el que el

OCR no funciona del todo bien debido a que en el último d́ıgito únicamente se ve la

mitad del número anterior y la mitad del número siguiente.

Para las pruebas en el Contador B se obtuvieron los siguientes resultados:

Figura 21: Gráfica que muestra el avance del valor del Contador B con respecto al
tiempo

44

Como se puede observar en la gráfica 21, al ser una cantidad mayor de números

reconocidos, falla más a menudo. Estos fallos que se obtienen son, al igual que en el

caso anterior, por culpa de que intenta reconocer un valor de una imagen en la que se

ve la mitad de dos números, pero ninguno completo.

Para observar la gráfica que se hubiera obtenido sin esos errores se ha realizado un

procesado manual en el que se han eliminado los valores erróneos.

Figura 22: Gráfica que muestra el avance del valor del Contador B con respecto al
tiempo, eliminando los valores erróneos.

Como se puede observar en la Figura 22, el consumo de agua que se ha registrado

en este contador es de unos 15 metros cúbicos de agua en todo el mes, lo que supondŕıa

unos 500 litros de agua al d́ıa.

Tras la realización de estas pruebas se puede decir que el sistema funciona

correctamente. Pese a que tiene algún fallo, son fallos que tienen una fácil solución.

Una de las propuestas de mejora que se podŕıa realizar a la hora de implementar

este sistema en un entorno real seŕıa la de que el técnico que instale el dispositivo en el

contador anote y env́ıe al servidor de alguna manera el valor del consumo del agua que

hay en ese momento. De esta manera se podŕıan detectar posibles fallos del modelo y

corregirlos. De manera que si el resultado del reconocimiento de caracteres devuelve un

resultado que es imposible se podŕıa realizar un procesado del resultado para eliminar

los datos erróneos y obtener aśı el dato real.

45

Otra propuesta de mejora relacionada con el error explicado seŕıa cambiar la

lógica del sistema para que, en caso de que de un resultado que no tuviera sentido,

comparándolo con los datos recibidos hasta el momento, se env́ıe un mensaje desde el

servidor hasta el dispositivo para que vuelva a realizar la captura de la imagen y la

vuelva a enviar.

46

Caṕıtulo 5

Conclusiones

En este trabajo se ha desarrollado un nuevo sistema para facilitar la monitorización

del consumo del agua. Este sistema utilizaba un módulo con una cámara y un

microcontrolador para realizar la toma de una imagen, la cual se enviaba a través

de una red LoRaWAN para ser procesada en el servidor. En este servidor se utilizan

diferentes técnicas de detección de objetos y OCR para obtener el valor del consumo

del agua, y poder aśı mostrárselo al usuario.

Para la realización de este sistema se ha buscado desarrollar un prototipo económico,

de fácil implementación, y que se adecúe a los posibles problemas que ofrecen los

entornos en los que están instalados los contadores.

Tras realizar el proyecto se puede determinar que se han cumplido los objetivos

especificados, pese a no haber sido posible realizar el OCR directamente en el

dispositivo por la falta de almacenamiento.

Por una parte, se ha conseguido solventar dicho problema gracias a la

implementación de un sistema que permite obtener la imagen de un contador de agua

y la env́ıa a través de una red LoRaWAN hacia el servidor. Además, se han conseguido

enviar imágenes de manera consistente y sin provocar una gran pérdida de datos.

Por otra parte, se ha creado un sistema mediante el cual se ha podido obtener

el valor del contador de agua mediante la imagen proporcionada por el prototipo.

Consiguiendo obtener dicho valor de imágenes lo más pequeñas posibles, en este caso

de 160x120 ṕıxeles.

El prototipo que se ha creado para este proyecto cuenta con soluciones a los

principales problemas que existen en los entornos en los que están los contadores de

47

agua, como pueden ser falta de espacio, falta de iluminación o falta de conexión a una

corriente eléctrica.

Por último, se han conseguido cumplir los objetivos con elementos de bajo coste, lo

que era fundamental para la realización de este proyecto.

Gracias al uso de AIoT se puede confirmar que se pueden utilizar diferentes

tecnoloǵıas para la monitorización del agua, como un sistema que utiliza inteligencia

artificial para procesar una imagen tomada. Además confirma que esta monitorización

se puede realizar con un coste económico más bajo que las soluciones que existen

actualmente en el mercado.

48

Caṕıtulo 6

Bibliograf́ıa

[1] Shuying Liu and Weihong Deng. Very deep convolutional neural network based

image classification using small training sample size. In 2015 3rd IAPR Asian

Conference on Pattern Recognition (ACPR), pages 730–734, 2015.

[2] Bumshik Lee, Nagaraj Yamanakkanavar, and Jae Choi. Automatic segmentation

of brain mri using a novel patch-wise u-net deep architecture. PLOS ONE,

15:e0236493, 08 2020.

[3] Mehmet Ali Ertürk, Muhammed Ali Aydın, Muhammet Talha Büyükakkaşlar, and

Hayrettin Evirgen. A survey on lorawan architecture, protocol and technologies.

Future internet, 11(10):216, 2019.

[4] Somayya Madakam, Ramya Ramaswamy, and Siddharth Tripathi. Internet of

things (iot): A literature review. Journal of Computer and Communications,

3(5):164–173, 2015.

[5] Juan Manuel Cueva Lovelle, Jose Ignacio Rodriguez Molano, and Carlos Enrique

Montenegro Marin. IntroducciÓn al internet de las cosas. Redes de Ingenieŕıa, 6,

sep. 2015.

[6] Subhas Chandra Mukhopadhyay, Sumarga Kumar Sah Tyagi, Nagender Kumar

Suryadevara, Vincenzo Piuri, Fabio Scotti, and Sherali Zeadally. Artificial

intelligence-based sensors for next generation iot applications: A review. IEEE

Sensors Journal, 21(22):24920–24932, 2021.

[7] Sánchez Fernández, Carlos Javier, and V Sandońıs Consuegra. Reconocimiento

óptico de caracteres (ocr). Univ. Carlo, 3(7):2008, 2008.

49

[8] Jorge Dı́az-Ramı́rez. Aprendizaje automático y aprendizaje profundo. Ingeniare.

Revista chilena de ingenieŕıa, 29(2):180–181, 2021.

[9] Sensus contadores de agua iperl. https://www.xylem.com/es-es/

products--services/metrology-equipment-for-utilities/meters/

iperl-international-water-meter/. Accedido el 11 de septiembre de 2024.

[10] Contador de pulsos sigfox. http://productos-iot.com/

monitorizacion-del-contador-fiscal-de-agua/. Accedido el 11 de

septiembre de 2024.

[11] A Amir, R Fauzi, and Yusnaini Arifin. Smart water meter for automatic meter

reading. In IOP Conference Series: Materials Science and Engineering, volume

1212, page 012042. IOP Publishing, 2022.

[12] Young-Woo Lee, Seongbae Eun, and Seung-Hyueb Oh. Wireless digital water

meter with low power consumption for automatic meter reading. In 2008

International Conference on Convergence and Hybrid Information Technology,

pages 639–645, 2008.

[13] Luthfi Muhammad Ramadhan, Rina Pudji Astuti, and Hanif Fakhrurroja.

Compact smart water meter development for smart city. In 2023

IEEE International Conference on Communication, Networks and Satellite

(COMNETSAT), pages 677–682, 2023.

[14] Heltec wifi lora 32 v3. https://heltec.org/project/wifi-lora-32-v3/.

Accedido el 11 de septiembre de 2024.

[15] Arducam mini 2mp plus. https://www.arducam.com/product/

arducam-2mp-spi-camera-b0067-arduino/. Accedido el 11 de septiembre

de 2024.

[16] Cámara ov7670 fifo al422 (ref: 0180). https://electronperdido.com/shop/

sensores/luz/camara-ov7670-fifo/. Accedido el 11 de septiembre de 2024.

[17] Cámara ov7670 (ref: 0011). https://electronperdido.com/shop/sensores/

luz/camara-ov7670/. Accedido el 11 de septiembre de 2024.

[18] Lente cctv de 8 mm con montura de 1/2,5 ” lente de 5mp de alta definición

compatible con visión nocturna por infrarrojos con alta definición. https://www.

amazon.es/Montura-definici%C3%B3n-Compatible-Nocturna-Infrarrojos/

dp/B08YNJNL8Q/. Accedido el 11 de septiembre de 2024.

50

https://www.xylem.com/es-es/products--services/metrology-equipment-for-utilities/meters/iperl-international-water-meter/
https://www.xylem.com/es-es/products--services/metrology-equipment-for-utilities/meters/iperl-international-water-meter/
https://www.xylem.com/es-es/products--services/metrology-equipment-for-utilities/meters/iperl-international-water-meter/
http://productos-iot.com/monitorizacion-del-contador-fiscal-de-agua/
http://productos-iot.com/monitorizacion-del-contador-fiscal-de-agua/
https://heltec.org/project/wifi-lora-32-v3/
https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/
https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/
https://electronperdido.com/shop/sensores/luz/camara-ov7670-fifo/
https://electronperdido.com/shop/sensores/luz/camara-ov7670-fifo/
https://electronperdido.com/shop/sensores/luz/camara-ov7670/
https://electronperdido.com/shop/sensores/luz/camara-ov7670/
https://www.amazon.es/Montura-definici%C3%B3n-Compatible-Nocturna-Infrarrojos/dp/B08YNJNL8Q/
https://www.amazon.es/Montura-definici%C3%B3n-Compatible-Nocturna-Infrarrojos/dp/B08YNJNL8Q/
https://www.amazon.es/Montura-definici%C3%B3n-Compatible-Nocturna-Infrarrojos/dp/B08YNJNL8Q/

[19] Te relay products. https://www.mouser.com/datasheet/2/418/ENG_

SS_108-98001_S[1]-1210543.pdf?srsltid=AfmBOorbxjpbyCyMcu_yiZQ_

GdSnkfLWk-uD7fFEZ5-RMf-EymeRpQgK. Accedido el 11 de septiembre de 2024.

[20] Arduino ide. https://docs.arduino.cc/software/ide-v1/tutorials/

arduino-ide-v1-basics/. Accedido el 11 de septiembre de 2024.

[21] Micropython. https://micropython.org/. Accedido el 11 de septiembre de 2024.

[22] Plataformio. https://platformio.org/. Accedido el 11 de septiembre de 2024.

[23] Libreŕıa arducam. https://www.arduino.cc/reference/en/libraries/

arducam/. Accedido el 11 de septiembre de 2024.

[24] Libreŕıa lorawan. https://www.arduino.cc/reference/en/libraries/heltec_

esp32_lora_v3/. Accedido el 11 de septiembre de 2024.

[25] Pytorch. https://pytorch.org/. Accedido el 11 de septiembre de 2024.

[26] Tensorflow. https://www.tensorflow.org/?hl=es-419. Accedido el 11 de

septiembre de 2024.

[27] Noelia Hernández. Facebook pone su inteligencia artificial de código

abierto al servicio de la ciencia. https://www.elespanol.com/

invertia/disruptores/grandes-actores/tecnologicas/20210701/

facebook-inteligencia-artificial-codigo-abierto-servicio-ciencia/

593191230_0.html. Accedido el 11 de septiembre de 2024.

[28] Google ai. https://es.wikipedia.org/wiki/Google_AI. Accedido el 11 de

septiembre de 2024.

[29] Chirpstack, open-source lorawan® network server. https://www.chirpstack.

io/. Accedido el 11 de septiembre de 2024.

[30] Mqtt. https://mqtt.org/. Accedido el 11 de septiembre de 2024.

[31] Influxdb time series database. https://www.influxdata.com/. Accedido el 11 de

septiembre de 2024.

[32] Grafana. https://grafana.com/. Accedido el 11 de septiembre de 2024.

[33] Lora y el duty cycle. https://lpwan.es/lora/lora-y-el-duty-cycle/.

Accedido el 11 de septiembre de 2024.

51

https://www.mouser.com/datasheet/2/418/ENG_SS_108-98001_S[1]-1210543.pdf?srsltid=AfmBOorbxjpbyCyMcu_yiZQ_GdSnkfLWk-uD7fFEZ5-RMf-EymeRpQgK
https://www.mouser.com/datasheet/2/418/ENG_SS_108-98001_S[1]-1210543.pdf?srsltid=AfmBOorbxjpbyCyMcu_yiZQ_GdSnkfLWk-uD7fFEZ5-RMf-EymeRpQgK
https://www.mouser.com/datasheet/2/418/ENG_SS_108-98001_S[1]-1210543.pdf?srsltid=AfmBOorbxjpbyCyMcu_yiZQ_GdSnkfLWk-uD7fFEZ5-RMf-EymeRpQgK
https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics/
https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics/
https://micropython.org/
https://platformio.org/
https://www.arduino.cc/reference/en/libraries/arducam/
https://www.arduino.cc/reference/en/libraries/arducam/
https://www.arduino.cc/reference/en/libraries/heltec_esp32_lora_v3/
https://www.arduino.cc/reference/en/libraries/heltec_esp32_lora_v3/
https://pytorch.org/
https://www.tensorflow.org/?hl=es-419
https://www.elespanol.com/invertia/disruptores/grandes-actores/tecnologicas/20210701/facebook-inteligencia-artificial-codigo-abierto-servicio-ciencia/593191230_0.html
https://www.elespanol.com/invertia/disruptores/grandes-actores/tecnologicas/20210701/facebook-inteligencia-artificial-codigo-abierto-servicio-ciencia/593191230_0.html
https://www.elespanol.com/invertia/disruptores/grandes-actores/tecnologicas/20210701/facebook-inteligencia-artificial-codigo-abierto-servicio-ciencia/593191230_0.html
https://www.elespanol.com/invertia/disruptores/grandes-actores/tecnologicas/20210701/facebook-inteligencia-artificial-codigo-abierto-servicio-ciencia/593191230_0.html
https://es.wikipedia.org/wiki/Google_AI
https://www.chirpstack.io/
https://www.chirpstack.io/
https://mqtt.org/
https://www.influxdata.com/
https://grafana.com/
https://lpwan.es/lora/lora-y-el-duty-cycle/

[34] Airtime calculator for lorawan. https://avbentem.github.io/

airtime-calculator/ttn/eu868/222. Accedido el 11 de septiembre de 2024.

[35] Water meters dataset. https://www.kaggle.com/datasets/tapakah68/

yandextoloka-water-meters-dataset. Accedido el 11 de septiembre de 2024.

[36] Sheldon Mascarenhas and Mukul Agarwal. A comparison between vgg16,

vgg19 and resnet50 architecture frameworks for image classification. In

2021 International Conference on Disruptive Technologies for Multi-Disciplinary

Research and Applications (CENTCON), volume 1, pages 96–99, 2021.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation, 2015.

[38] Aspose.words for python. https://docs.aspose.com/words/python-net/.

Accedido el 11 de septiembre de 2024.

[39] Pytesseract. https://pypi.org/project/pytesseract/. Accedido el 11 de

septiembre de 2024.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:

Towards real-time object detection with region proposal networks. In C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[41] Detectron 2. https://ai.meta.com/tools/detectron2/. Accedido el 11 de

septiembre de 2024.

[42] Saheb Chhabra, Puspita Majumdar, Mayank Vatsa, and Richa Singh. Data

fine-tuning. Proceedings of the AAAI Conference on Artificial Intelligence,

33(01):8223–8230, Jul. 2019.

[43] Arducam shield rev.c. https://www.arducam.com/hardware-2/. Accedido el

11 de septiembre de 2024.

[44] Python. https://www.python.org/. Accedido el 11 de septiembre de 2024.

[45] Assefaw H Gebremedhin and Andrea Walther. An introduction to algorithmic

differentiation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 10(1):e1334, 2020.

[46] Torchvision. https://pytorch.org/vision/stable/index.html. Accedido el

11 de septiembre de 2024.

52

https://avbentem.github.io/airtime-calculator/ttn/eu868/222
https://avbentem.github.io/airtime-calculator/ttn/eu868/222
https://www.kaggle.com/datasets/tapakah68/yandextoloka-water-meters-dataset
https://www.kaggle.com/datasets/tapakah68/yandextoloka-water-meters-dataset
https://docs.aspose.com/words/python-net/
https://pypi.org/project/pytesseract/
https://ai.meta.com/tools/detectron2/
https://www.arducam.com/hardware-2/
https://www.python.org/
https://pytorch.org/vision/stable/index.html

[47] Easyocr: A comprehensive guide. https://medium.com/@adityamahajan.work/

easyocr-a-comprehensive-guide-5ff1cb850168. Accedido el 11 de septiembre

de 2024.

[48] Roberto Omar Andrade and Sang Guun Yoo. A comprehensive study of the use

of lora in the development of smart cities. Applied Sciences, 9(22), 2019.

53

https://medium.com/@adityamahajan.work/easyocr-a-comprehensive-guide-5ff1cb850168
https://medium.com/@adityamahajan.work/easyocr-a-comprehensive-guide-5ff1cb850168

Anexos

i

Anexo I

Hardware y Software empleado

En este Anexo se va a realizar una explicación más detallada tanto del hardware

como del software que se ha utilizado para llevar a cabo este proyecto.

I.1. Hardware

En este apartado se exponen los elementos de hardware que se han utilizado en el

proyecto, mostrando una descripción detallada de ellos, aśı como el motivo por el que

se han seleccionado.

Heltec Wifi LoRa 32 V3:

El Heltec Wifi LoRa 32 v3 es un módulo de comunicaciones diseñado para

aplicaciones en el internet de las cosas que tiene integrado un microcontrolador ESP32,

un módulo LoRa y soporte tanto para el uso de wifi como de bluetooth. También cuenta

con una pantalla oled integrada que facilita la visualización de los datos.

ii

Figura 23: Heltec Wifi Lora 32 V3

Este dispositivo cuenta con múltiples pines que son imprescindibles para su

propósito, permitiendo una gran variedad de comunicaciones y conexiones con otros

dispositivos. Entre ellos destacan los pines de entrada salida de propósito general

(GPIO) que proporcionan interfaces flexibles que pueden configurarse tanto para

entrada como para salida, facilitando la interacción con sensores, actuadores y otros

dispositivos electrónicos. Otro tipo de pines necesarios para este proyecto son los

de circuito integrado (I2C), que incluyen el SDA, para el paso de datos y el SCL,

para el reloj, y permiten la comunicación con múltiples dispositivos en un bus

de datos compartido, como pantallas OLED, sensores ambientales y módulos de

almacenamiento. Por último, destacar los pines de la interfaz periférica en serie (SPI),

que son esenciales para la comunicación rápida y eficiente entre el microcontrolador

ESP32 y el módulo LoRa, aśı como otros periféricos compatibles con SPI, como la

cámara que se utiliza en este proyecto.

iii

Especificaciones técnicas del Heltec Wifi LoRa 32 V3:

Parámetros Descripción
Chip maestro ESP32-S3FN8 (Xtensa® 32-bit lx7 dual core

processor)
Nodo del chip LoRa SX1262
USB a chip serie CP2102
Frecuencia 470 510MHz, 863 928MHz
Máxima potencia de transmisión 21±1dBm
Máxima sensibilidad de recibo -136dBm@SF12 BW=125KHz
Wi-Fi 802.11 b/g/n, up to 150Mbps
Bluetooth Bluetooth 5 (LE)
Especificaciones Hardware 7*ADC1 + 2*ADC2; 7*Touch; 3*UART; 2*I2C;

2*SPI; etc.
Memoria 384KB ROM; 512KB SRAM; 16KB RTC SRAM;

8MB SiP Flash
Interfaz Type-C USB; 2*1.25 lithium battery interface;

LoRa ANT(IPEX1.0); 2*18*2.54 Header Pin
Bateŕıa 3.7V lithium battery power supply and charging
Dimensiones 50.2 * 25.5 * 10.2 mm

Tabla 5: Especificaciones del Heltec Wifi LoRa 32 V3

Las especificaciones técnicas del Heltec Wifi LoRa 32 V3 (vistas en la Tabla 5) son

útiles en el propósito de este proyecto debido a que:

− El microprocesador ESP32-S3FN8 cuenta con un procesador Xtensa® de 32 bits

con doble núcleo LX7 y una estructura de pipeline de cinco etapas, operando a

una frecuencia de hasta 240 MHz. Este procesador ofrece un gran rendimiento y

capacidad de procesamiento.

− Cuenta con un chip SX1262, el cual permite las comunicaciones LoRa, ideales

para los entornos en los que se pretende establecer el dispositivo, y que permite

transmitir datos con un poder de salida de 21 ± 1 dBm a una frecuencia de entre

470 510MHz y 863 928MHz.

− La interfaz de bateŕıa SH1.25-2 es un sistema de gestión de bateŕıa de litio que

permite la carga y descarga, protege contra la sobrecarga y permite la carga

automática de la bateŕıa desde el USB.

− Cuenta con una sensibilidad de recepción de hasta 125 KHz, lo que le permite

captar señales débiles y asegurar una comunicación fiable incluso en entornos con

alta interferencia y a largas distancias. Esta alta sensibilidad es fundamental para

iv

aplicaciones IoT, ya que optimiza el rendimiento en escenarios donde la robustez

y la eficiencia energética son cruciales, permitiendo a los dispositivos operar con

una potencia de transmisión más baja y prolongando la vida útil de la bateŕıa.

Arducam Mini 2mp Plus:

El Arducam Mini 2mp Plus es un módulo de cámara diseñado para ser utilizado

con microcontroladores. Cuenta con 2mp, lo que permite capturar imágenes en una

resolución de hasta 1600x1200 ṕıxeles. También permite la toma de imágenes en tres

formatos diferentes: JPEG, BMP y RAW.

Figura 24: ArduCam Mini 2mp Plus

Este módulo es una versión optimizada del ArduCAM shield Rev.C [43]. Es una

cámara SPI de alta definición con una resolución de 2MP, diseñada para simplificar

la interfaz de control de la cámara. Incluye un sensor de imagen CMOS OV2640 de

2MP y tiene un tamaño compacto. El ArduCAM mini puede funcionar con múltiples

plataformas como Arduino, Raspberry Pi o Maple, siempre que tengan interfaces SPI

e I2C y sean compatibles con las placas Arduino estándar. El ArduCAM mini no

solo permite añadir una cámara a microcontroladores de bajo coste que no tienen

esta capacidad, sino que también permite conectar múltiples cámaras a un solo

microcontrolador.

v

Este dispositivo se caracteriza por:

− Contar con un sensor de imagen de 2mp OV2640 el cual permite capturar

imágenes con una resolución de hasta 1600x1200 ṕıxeles. El OV2640 es conocido

por su bajo consumo de enerǵıa y su alta calidad de imagen, incluso en

resoluciones muy bajas, lo que lo hace perfecto para este proyecto.

− Todos los puertos de entrada y salida (E/S) del sensor pueden manejar señales

tanto de 5V como de 3.3V. Esto hace que el sensor sea compatible con una amplia

gama de microcontroladores y dispositivos electrónicos.

− Permite la compresión en JPEG, lo que reduce significativamente el tamaño de

las imágenes y las hace más fáciles para mandarlas por la red.

− Tiene modo de disparo único o múltiple, lo que permite tomar una sola foto o

una serie de fotos en rápida sucesión.

− Tiene la opción de lectura en ráfaga, que permite la captura y lectura continua

de imágenes.

− Utiliza un modo de bajo consumo, lo que es esencial en este trabajo para que se

ahorre la enerǵıa y se pueda utilizar una bateŕıa por más tiempo.

− Cuenta con una libreŕıa de código abierto para plataformas como STM32,

Chipkit, Raspberry Pi y BeagleBone Black.

− Tiene un tamaño compacto, lo que es imprescindible para que el tamaño del

prototipo sea lo más pequeño posible.

− La lente cuenta con un campo de visión horizontal (HFOV) de 60 grados y una

distancia focal efectiva (EFL) de 4.9mm. Esto implica que la imagen se pueda

tomar lo suficientemente cerca del contador sin que pierda calidad.

Esta pieza se conecta al dispositivo mediante dos interfaces, I2C y SPI. Utiliza la

interfaz I2C para la configuración del sensor, con él se pueden ajustar la configuración

de la cámara y los parámetros de esta, como la exposición, el balance de blancos,

el brillo, el contraste y otras configuraciones de imagen. La interfaz SPI se utiliza

principalmente para la transferencia de datos de la fotorgaf́ıa entre el módulo de la

cámara y el microcontrolador conectado, a parte, a través de esta interfaz se controlan

las funciones de la cámara, como iniciar y detener la captura de imágenes o configurar

la resolución.

vi

Los pines que utiliza son:

− CS: Entrada de selección de chip esclavo SPI. Este pin se usa para seleccionar

el dispositivo esclavo espećıfico al que el maestro quiere comunicarse en una

configuración SPI con múltiples esclavos.

− MOSI: Salida del maestro y entrada del esclavo en la comunicación SPI. Los datos

se env́ıan desde el maestro al esclavo a través de este pin.

− MISO: Salida del maestro y entrada del esclavo en la comunicación SPI. Los datos

se env́ıan desde el esclavo al maestro a través de este pin.

− SCLK: Entrada del reloj serie SPI. Este pin proporciona la señal de reloj que

sincroniza la transferencia de datos entre el maestro y el esclavo.

− GND: Conexión a tierra. Este pin se utiliza para establecer un punto de referencia

común para el voltaje y completar el circuito eléctrico.

− +5V: Suministro de enerǵıa de 5V. Este pin proporciona la alimentación necesaria

para el funcionamiento del dispositivo.

− SDA: Ĺınea de datos de la interfaz serie de dos hilos (I2C). Este pin se utiliza para

la transferencia de datos bidireccional entre los dispositivos en la comunicación

I2C.

− SCL: Ĺınea de reloj de la interfaz serie de dos hilos (I2C). Este pin proporciona

la señal de reloj que sincroniza la transferencia de datos entre los dispositivos en

la comunicación I2C.

Relé:

Se ha utilizado un relé para controlar el momento en el que la cámara está encendida.

Esto se ha hecho ya que, de no utilizarlo, la cámara consumı́a una gran cantidad de

enerǵıa pese a no estar enchufada ni en uso. El relé que se ha utilizado es un relé

IM 01, este cuenta con varias entradas necesarias para su correcto funcionamiento. La

primera, es la entrada de la corriente que se quiere llevar a la salida, en caso de que la

cámara requiera de 3,3 V para funcionar, se conectará el pin 3V3 del microprocesador

a esta entrada y el pin VCC de la cámara a una de las salidas. Dichas salidas son

dos, una que permite el paso de la corriente cuando el interruptor está apagado y otra

que permite el paso de la corriente cuando el interruptor está encendido. Por último,

vii

la manera en la que se enciende y se apaga el interruptor es encendiendo o apagando

el relé, de manera que cuando el relé está encendido el interruptor está enchufado y

cuando el relé no está encendido el interruptor esta cerrado.

Este componente cuenta con las siguientes especificaciones:

− Voltaje nominal: 3 VDC

− Voltaje operativo: 2.25 VDC

− Voltaje de liberación; 0.45 VDC

− Resistencia a la bobina: 64 Omios

− Potencia: 140 mW

− Intensidad: 42 mA

Se ha seleccionado este relé debido a que necesita menos de 3.3 V para poder

funcionar y, a su vez, menos de 42 mA. Estos datos son importantes ya que la manera

en la que se va a utilizar va a ser conectando su alimentación a un GPIO para poder

apagar y encender la cámara cuando se necesite. Los GPIOs del Heltec Wifi Lora 32

V3 pueden ofrecer un voltaje máximo de 3.3 V y una intensidad de hasta 45 mA, es

por ello que el relé se va a poder utilizar mediante un GPIO.

I.2. Software

En este apartado se va a explicar el software que ha sido necesario para llevar a cabo

la realización de este proyecto. Se va a explorar el software que se ha utilizado dentro

del microcontrolador, el que se ha utilizado para realizar el OCR de las imágenes y la

base de datos en la que se han guardado los resultados.

Arduino IDE:

El Arduino Integrated Development Environment (IDE) es una plataforma

de desarrollo de software diseñada espećıficamente para la programación de

microcontroladores Arduino. Proporciona un entorno intuitivo y accesible que permite a

desarrolladores escribir, compilar y cargar código en placas Arduino de manera eficiente.

viii

El IDE incluye una variedad de caracteŕısticas útiles, como un editor de código con

resaltado de sintaxis, autocompletado y verificación de errores en tiempo real, permite

buscar e importar libreŕıas de una forma sencilla o lo posibilidad de ver los datos que

se transmiten a través de la interfaz serial desde la propia aplicación.

A pesar de que el Heltec WiFi LoRa v3 no es una placa oficial de Arduino, es

compatible con el Arduino IDE gracias a la comunidad de desarrolladores que ha

creado y mantenido una biblioteca espećıfica para esta placa, permitiendo a los usuarios

programarla y configurarla de manera sencilla utilizando el entorno del Arduino IDE.

La preferencia de este entorno frente a otros como MicroPython o PlatformIO

se debe a varias razones clave, entre las que se puede destacar su amplio soporte

y la gran comunidad que lo apoya. Esta base de usuarios activa ha contribuido

al desarrollo de una gran colección de bibliotecas, documentación y recursos. Estas

libreŕıas simplifican la integración de hardware y la implementación de funcionalidades

complejas. Las principales libreŕıas por las que se ha decidido utilizar Arduino IDE son

la de “ArduCAM” y la de “Heltec ESP32 Lora V3”.

La libreŕıa de “ArduCAM” es una herramienta especializada diseñada para

interactuar con los módulos de cámaras desarrollados por Arduino. Gracias a ella

se puede manejar de manera sencilla todos los parámetros de la cámara, incluyendo

configuraciones avanzadas de resolución, formato de salida, control de exposición, y

otras caracteŕısticas espećıficas del sensor de imagen. Mediante métodos definidos en

la API, se puede gestionar la inicialización de la cámara, el inicio y detención de la

captura de imágenes y v́ıdeo, la calidad que se desea obtener, aśı como la manipulación

y transmisión de los datos capturados a través de interfaces de comunicación como SPI

o I2C.

La libreŕıa de “Heltec ESP32 Lora V3” sirve para facilitar la implementación y

gestión de comunicaciones utilizando el protocolo LoRaWAN en dispositivos Arduino

compatibles con módulos LoRa. Esta libreŕıa permite realizar la configuración de los

parámetros necesarios para la comunicación, como la frecuencia de operación, el factor

de esparcimiento (spreading factor), la potencia de transmisión y otros ajustes de red.

Además facilita la gestión de sesiones de conexión y autenticación con el servidor

LoRaWAN. También proporciona métodos para enviar y recibir mensajes de datos

en formato LoRaWAN.

Reconocimiento óptico de caracteres:

ix

Para la realización del reconocimiento óptico de caracteres se ha utilizado el lenguaje

de programación Python [44], ya que ofrece una amplia variedad de bibliotecas y

herramientas especializadas que facilitan el desarrollo de aplicaciones de procesamiento

de imágenes y análisis de textos.

En este apartado se van a mostrar y explicar todas las bibliotecas que se han

utilizado para realizar el OCR en este proyecto, estas son tanto PyTorch como

Tensorflow. Ambas se utilizan para la ejecución de las redes neuronales realizadas para

el reconocimiento de los caracteres del consumo del agua. Pese a que en el trabajo final

tan solo se utiliza PyTorch, se ha visto conveniente explicar ambas ya que alguno de

los modelos que se han probado se han realizado con Tensorflow.

− PyTorch:

PyTorch es una libreŕıa de python que se utiliza para la creación y entrenamiento

de modelos de aprendizaje automático y aprendizaje profundo. Desarrollada por

Facebook’s AI Research lab (FAIR), PyTorch ofrece una serie de herramientas

que facilitan la creación y el entrenamiento de las redes neuronales.

Una de las funciones más importantes que ofrece esta libreŕıa es el “tensor

computation”, la cual es una API que se utiliza para realizar cálculos numéricos

con tensores, que son los objetos básicos que representan los datos y los cálculos.

Esta libreŕıa permite aprovechar la GPU y el “autograd”, que se refiere a la

capacidad de PyTorch para realizar diferenciación automática. La diferenciación

automática es [45] un conjunto de técnicas que se utilizan para evaluar de manera

eficiente las derivadas de las funciones. En el contexto del aprendizaje profundo, se

calculan las derivadas de las funciones de pérdida para poder actualizar los valores

de la red y que, de esa manera, aprenda con cada iteración del entrenamiento.

Además esta libreŕıa ofrece una extensión llamada TorchVision [46], la cual

ofrece conjuntos de datos, modelos predefinidos y funciones de transformación

de imágenes que son comúnmente utilizados.

− TensorFlow:

TensorFlow es una libreŕıa de software de código abierto desarrollada por Google

Brain, una sección dentro de Google AI, para el aprendizaje automático y

la inteligencia artificial. Se utiliza principalmente para la construcción y el

entrenamiento de redes neuronales profundas, aunque también es adecuada para

una amplia variedad de tareas de aprendizaje automático.

x

El funcionamiento de TensorFlow se basa en la construcción y ejecución

de gráficos de flujo de datos, donde los nodos representan las operaciones

matemáticas y los datos, en forma de tensores, fluyen entre ellos.

Además TensorFlow permite aprovechar al máximo las Unidades de

Procesamiento Gráfico (GPU) para acelerar el entrenamiento y la inferencia de

modelos de aprendizaje automático. Las GPU están diseñadas para manejar

cálculos matemáticos en paralelo, lo que las hace ideales para tareas de

aprendizaje profundo que involucran operaciones intensivas con matrices y

tensores.

ChirpStack:

ChirpStack es una plataforma de código abierto diseñada para implementar redes

LoRaWAN (Red de Área Amplia de Baja Potencia). Actúa como el sistema encargado

de gestionar estas redes, ofreciendo una infraestructura para poder desplegar y

administrar dispositivos IoT que utilizan LoRaWAN.

El funcionamiento de ChirpStack se basa en una arquitectura modular, lo que

permite una integración flexible con diferentes componentes de la red. En su núcleo

tiene el ChirpStack Network Server. Este es el componente central de la plataforma,

donde se procesa la mayor parte de la lógica de la red. Su función principal es gestionar

las conexiones de los dispositivos LoRaWAN, verificar la autenticidad y la integridad

de los mensajes recibidos, y garantizar la correcta encriptación y autenticación de los

datos, conforme a las especificaciones del protocolo LoRaWAN. El servidor de red es

responsable de gestionar el espectro de frecuencias y programar la retransmisión de

mensajes, optimizando el uso de los recursos de red.

Otro componente fundamental es el ChirpStack Application Server, que se encarga

de recibir los datos procesados por el Network Server y traducirlos en un formato útil

para las aplicaciones que los necesitan. Este servidor es el que finalmente distribuye los

datos a las aplicaciones de usuario final mediante el uso de protocolos como MQTT.

De esta manera, cuando se env́ıa un mensaje mediante LoRaWAN los gateways lo

env́ıan a ChirpStack, el cual filtra y traduce los mensajes para hacerlos más accesibles

para las aplicaciones que lo necesiten. A su vez los publica mediante protocolos como

MQTT para que estas aplicaciones lo obtengan y lo utilicen.

MQTT es un protocolo de comunicación ligero diseñado para la transmisión de

datos entre dispositivos con baja potencia y conectividad limitada. Es ampliamente

xi

utilizado en aplicaciones del Internet de las Cosas.

Una de las principales caracteŕısticas de MQTT es su modelo de

publicación/suscripción. Esto significa que los dispositivos, conocidos como clientes,

pueden publicar mensajes en temas espećıficos y, a su vez, otros dispositivos pueden

suscribirse a estos temas para recibir la información relevante. Este enfoque reduce

la necesidad de conexiones punto a punto entre los dispositivos, lo que lo hace

especialmente adecuado para redes con muchos dispositivos interconectados.

InfluxDB:

InfluxDB es una base de datos de series temporales (TSDB) diseñada para gestionar

grandes volúmenes de datos generados a lo largo del tiempo. Esta base de datos

se distingue por su capacidad para almacenar, consultar y analizar datos que son

recolectados en intervalos regulares, lo cual es particularmente útil en aplicaciones

de monitorización, anaĺıtica y gestión de métricas. Este tipo de datos es común en

entornos donde se requiere el seguimiento continuo de eventos, como en sistemas de

monitorización de infraestructuras, Internet de las Cosas (IoT), aplicaciones financieras

y análisis de rendimiento de aplicaciones.

La forma en la que trabaja InfluxDB es empleando un motor de almacenamiento

optimizado para añadir y consultar datos temporales. Los datos se organizan en

series temporales compuestas por puntos de datos, cada uno de los cuales tiene un

tiempo asociado. Los puntos de datos se almacenan en una estructura denominada

”measurement”, qué es análoga a una tabla en una base de datos relacional, y

pueden ser etiquetados con ”tags”para facilitar su consulta. InfluxDB utiliza un

modelo de almacenamiento basado en LSM (Log-Structured Merge) para optimizar las

operaciones de escritura, y ofrece una API de consulta basada en el lenguaje InfluxQL,

que permite ejecutar consultas eficientes sobre los datos temporales almacenados.

La elección de InfluxDB como base de datos para series temporales en este proyecto

se basa en tres razones clave. En primer lugar, InfluxDB es ideal para aplicaciones de

monitorización debido a su enfoque en series temporales. Las bases de datos de series

temporales están diseñadas espećıficamente para gestionar datos que cambian con el

tiempo, lo que las hace perfectas para almacenar y analizar métricas de rendimiento,

registros de eventos y datos de sensores.

Otra razón para utilizar InfluxDB es su facilidad de visualización y monitorización

de los datos. InfluxDB se integra perfectamente con sistemas de visualización

xii

como Grafana, lo que permite crear dashboards interactivos y personalizables.

Estos dashboards son esenciales para monitorizar y analizar datos en tiempo real,

proporcionando una visión clara y concisa del estado y rendimiento de los sistemas.

Finalmente, InfluxDB ofrece una fácil integración con herramientas como Chipstack

y lenguajes de programación como Python. Esta capacidad de integración es crucial

para el desarrollo de aplicaciones de monitorización y análisis de datos, ya que permite

a los desarrolladores aprovechar las libreŕıas y frameworks existentes en Python,

facilitando aśı el procesamiento y análisis de datos en tiempo real.

Grafana:

Grafana es una plataforma de software libre de código abierto diseñada para la

visualización y el análisis de datos en tiempo real. Se utiliza principalmente para crear

gráficos, paneles interactivos y alertas, permitiendo a los usuarios monitorizar métricas

provenientes de diversas fuentes de datos.

Grafana destaca por su capacidad para conectarse a una amplia variedad de

fuentes de datos, tales como bases de datos SQL, NoSQL, sistemas de monitoreo como

Prometheus, o incluso APIs externas. Esto permite que los usuarios puedan centralizar

la visualización de sus métricas en un único lugar, sin importar la diversidad de sus

oŕıgenes.

Otra funcionalidad de Grafana es su capacidad de personalización de los

dashboards. Se pueden construir dashboards a medida, combinando distintos tipos

de visualizaciones como gráficos de ĺıneas, barras, tablas, mapas de calor, entre otros.

Además, Grafana ofrece opciones avanzadas de configuración, permitiendo modificar

aspectos visuales, definir filtros globales o variables, y organizar las visualizaciones en

múltiples capas o paneles.

Una caracteŕıstica importante es el sistema de alertas. Grafana permite configurar

alertas basadas en condiciones espećıficas de las métricas monitorizadas. Estas alertas

pueden ser enviadas a través de distintos canales de comunicación, como correo

electrónico, Slack, o integraciones personalizadas mediante webhook. Esto asegura que

los equipos responsables sean notificados inmediatamente en caso de que alguna métrica

supere umbrales predefinidos, facilitando la toma de decisiones rápidas.

La elección de Grafana para la visualización de los datos se debe a dos razones

principales:

xiii

− Su integración nativa con InfluxDB. Esta integración facilita el proceso de

conexión y extracción de datos, permitiendo que la información almacenada

en InfluxDB sea visualizada de manera rápida y eficiente en los dashboards de

Grafana.

− Su sistema de alertas. El cual es esencial para avisar a los usuarios en caso de que

se detecte alguna anomaĺıa, permitiendo aśı actuar lo antes posible ante posibles

fugas de agua u otros problemas que se puedan detectar.

xiv

Anexo II

Arquitectura LoRaWAN

LoRaWAN es una capa de enlace que organiza cómo los dispositivos LoRa se

comunican entre śı y con los servidores. LoRa (Long Range) por su parte, es la capa

f́ısica de la tecnoloǵıa, desarrollada por Semtech Corporation. Utiliza una modulación

por espectro ensanchado que permite comunicaciones de largo alcance con bajo

consumo de enerǵıa, a costa de una velocidad de datos relativamente baja.

La arquitectura de LoRaWAN sigue un modelo en estrella donde los dispositivos

finales (sensores, actuadores, etc.) se comunican directamente con puertas de enlace

(gateways) mediante el protocolo LoRa. Estas puertas de enlace actúan como

intermediarios, retransmitiendo los datos a un servidor de red central a través de una

conexión de backhaul (que puede ser Internet, 3G, Ethernet, etc.). El servidor de red

procesa y gestiona los datos, aplicando poĺıticas de red, autenticación y administración

de dispositivos. Finalmente, los datos son enviados a servidores de aplicaciones donde

se procesan y se utilizan para fines espećıficos.

xv

Figura 25: Arquitectura LoRaWAN [3]

Como se puede ver en la Figura 25, el proceso de comunicación sigue una serie de

pasos. Lo primero que ocurre es que el dispositivo final, equipado con un módulo LoRa,

transmite los datos. La transmisión se realiza en frecuencias sub-GHz, que vaŕıan según

la regulación regional (por ejemplo, 868 MHz en Europa y 915 MHz en América del

Norte).

Tras eso, las puertas de enlace, también llamadas gateways, están ubicadas

estratégicamente para cubrir áreas amplias. Cada transmisión de un dispositivo final

puede ser recibida por múltiples puertas de enlace si están dentro del alcance. Estas

puertas de enlace no realizan ningún procesamiento de datos, sino que simplemente

actúan como repetidores, enviando las señales recibidas al servidor de red. La

redundancia en la recepción de señales por múltiples puertas de enlace aumenta la

fiabilidad del sistema.

Una vez llegan los datos a las puertas de enlace, estas los transmiten al servidor

de red utilizando conexiones de backhaul, que pueden ser a través de Internet,

redes celulares (3G, 4G) o conexiones Ethernet. El servidor de red es el corazón del

sistema LoRaWAN, encargado de coordinar y gestionar toda la comunicación entre los

dispositivos finales y las aplicaciones.

El servidor de red recoge los datos de todas las puertas de enlace y elimina los

duplicados y verifica la autenticidad de los mensajes. Una vez que los datos son

validados y procesados en el servidor de red, son enviados a los servidores de aplicación

espećıficos a través de una interfaz de aplicación.

xvi

Para gestionar de manera eficiente la red LoRaWAN, se ha utilizado el servidor de

red ChirpStack [29], una plataforma de código abierto que facilita la administración,

monitorización y configuración de dispositivos LoRaWAN. ChirpStack actúa como

el intermediario que recoge los datos de los dispositivos LoRaWAN a través de las

gateways y los procesa antes de enviarlos a las aplicaciones de los usuarios finales.

En la comunicación LoRa existen tres términos esenciales que describen como va

a ser la comunicación. Estos son el “Spreading Factor”, el ”Data Rate” y el ancho de

banda.

− Spreading Factor (SF): Determina la relación entre la velocidad de transmisión

y el alcance de la señal. LoRa permite utilizar SF entre 6 y 12, y contra más alto

el valor mayor, más se reduce la cantidad de Bytes que se pueden enviar pero

mayor es el alcance de la comunicación. Con SF10, SF11 y SF12 se pueden enviar

51 Bytes de datos, con SF9 123 Bytes y con SF8, SF7 y SF6 hasta 222 Bytes de

datos.

− Data Rate (DR): Es la velocidad a la que se env́ıan los datos, generalmente se

mide en bits por segundo (bps). Una tasa de datos más alta reduce la sensibilidad

del receptor, lo que puede limitar el alcance de la comunicación. Se pueden utilizar

desde DR0 hasta DR5. Contra menor sea el Data rate, menor será la velocidad

y, a su vez, mayor será la distancia.

− Ancho de banda (BW): El ancho de banda es el rango de frecuencias utilizado

para la transmisión de la señal LoRa. Un ancho de banda mayor permite una

tasa de datos más alta.

DR = SF × 1
|2×SF |
BW

bits/sec

xvii

Anexo III

Funcionamiento de los modelos de
OCR basados en libreŕıas

En este anexo se van a explicar en detalle el funcionamiento de los modelos basados

en libreŕıas de Python con los que se han realizado las pruebas del OCR. Estos modelos

son Aspore, EasyOCR y PyTesseract.

Aspore:

Aspore (Adaptive Sparse Online Regression) es un método avanzado de aprendizaje

automático diseñado para resolver problemas de regresión y clasificación. Utiliza

técnicas de regresión escasa (en inglés, sparse regresion) y adaptación en ĺınea, lo que

permite que el modelo se ajuste continuamente a nuevos datos sin necesidad de ser

entrenado desde cero. Esto es particularmente útil en contextos donde los datos llegan

en tiempo real y el modelo debe mantenerse actualizado de manera eficiente.

La regresión escasa es una técnica que, a diferencia de los métodos tradicionales de

regresión que pueden incluir una gran cantidad de variables predictoras, se centra en

seleccionar un subconjunto pequeño de variables relevantes. Esta selección se hace de

tal manera que el modelo resultante sea más interpretable y menos propenso al sobre

ajuste.

Una de las aplicaciones de Aspore, y la que se le ha dado en este proyecto,

es el reconocimiento de d́ıgitos, un problema clásico en el campo de la visión por

computadora y el procesamiento de imágenes. Este problema implica identificar

correctamente los d́ıgitos del 0 al 9 a partir de imágenes digitalizadas.

xviii

EasyOCR:

EasyOCR es [47] una biblioteca de código abierto diseñada para realizar el

reconocimiento óptico de caracteres. Desarrollada por Jaided AI, EasyOCR permite

a los usuarios extraer texto de imágenes con alta precisión. Es compatible con más

de 80 idiomas, incluyendo aquellos que utilizan alfabetos no latinos, como el chino,

japonés, coreano y árabe.

El reconocimiento de caracteres en EasyOCR se basa en una combinación

de técnicas avanzadas de procesamiento de imágenes y aprendizaje profundo,

espećıficamente redes neuronales convolucionales (CNN) y modelos secuenciales como

las redes neuronales recurrentes (RNN).

PyTeseract:

PyTesseract es una biblioteca de código abierto que proporciona una interfaz para

el motor Tesseract OCR, desarrollado por Google. Esta herramienta permite extraer

texto de imágenes utilizando las capacidades de Tesseract. PyTesseract es altamente

valorada por su capacidad para manejar una amplia variedad de idiomas y su fácil

integración con aplicaciones de Python.

El reconocimiento óptico de caracteres en PyTesseract se basa en una combinación

de técnicas avanzadas de procesamiento de imágenes y algoritmos de aprendizaje

automático. El proceso se inicia con el preprocesamiento de la imagen, que incluye

la conversión a escala de grises, la normalización del contraste y la eliminación de

ruido. Luego, Tesseract analiza la imagen para identificar patrones de texto, utilizando

técnicas de segmentación para dividir la imagen en bloques de texto, ĺıneas y caracteres

individuales.

Tesseract utiliza redes neuronales para reconocer cada carácter, comparándolo con

patrones almacenados en su base de datos interna. Al igual que EasyOCR, el modelo

que utiliza esta libreŕıa se basa en una RNN, en concreto utilizan un modelo de memoria

a largo plazo (Long Short-Term Memory, LSTM) el cual, a parte de la función de

las RNN que permiten acordarse de valores anteriores y utilizarlos, permite recordar

durante largos periodos de tiempo valores que considera importantes.

Este enfoque permite una alta precisión en la detección de texto, incluso en

imágenes con baja calidad o con fondos complejos. Una vez que se ha extráıdo el

texto, PyTesseract puede aplicar técnicas de postprocesamiento para corregir errores

xix

y mejorar la legibilidad del resultado final.

xx

Anexo IV

Pruebas Bateŕıa

Uno de los requisitos que se pretenden cumplir en este proyecto es el realizar un

prototipo el cual se adapte a las dificultades de los lugares en los que suelen estar los

contadores de agua. Una de esas dificultades es el dif́ıcil acceso a la corriente eléctrica

y para ello era necesario que el dispositivo consumiera muy poca bateŕıa, ya que en

caso de que se tuviera que cambiar la bateŕıa a menudo, el prototipo no seŕıa útil.

En este anexo se van a explicar las pruebas realizadas y los problemas que se han

encontrado con respecto al consumo de la bateŕıa.

Al enviar muy pocos mensajes al d́ıa y únicamente realizar una o dos fotos por

d́ıa, que es lo que más bateŕıa consume, se puso el objetivo de que la bateŕıa utilizada

durara entorno a medio año o un año entero. Ya que de este modo no es necesita que

el usuario esté cambiándola constantemente.

Lo primero que se ha hecho ha sido comprobar el tiempo que dura el dispositivo

encendido, y para ello se han utilizado dos bateŕıas diferentes. Una de ellas era de 700

mAh y la otra de 2000 mAh. Se han obtenido los siguientes resultados:

xxi

Figura 26: Gráficas del consumo de bateŕıa: (a) 700 mAh (b) 2000 mAh

Como se puede ver en la Figura 26 ninguna de los dos consumos cumple con los

requerimientos. En el caso de la bateŕıa de 700 mAh se puede ver que dura entorno

a las cinco horas con el programa encendido, mientras que en el caso de la bateŕıa de

2000 mAh este tiempo aumenta hasta doce horas.

Estos resultados no solo no se acercan a los resultados que se quieren obtener, sino

que ni siquiera se asemejan a los resultados realizados con otro programa que no haćıan

uso del módulo de la cámara. Este programa que se menciona env́ıa mensajes LoRa

de manera intermitente cada minuto, lo que quiere decir que está mucho más tiempo

despierto que el programa que se utiliza en este proyecto. Pese a eso, con la bateŕıa de

700 mAh, llega a durar varios d́ıas encendido.

Tras ver que la bateŕıa no duraba lo que debeŕıa, se optó por utilizar un medidor de

consumo para observar cuanto consumı́a en cada momento. Para ello se probaron con

los dos programas mencionados y se hicieron diferentes pruebas. Los resultados fueron

los siguientes:

xxii

Prueba Consumo
(miliamperios)

Programa final con la cámara conectada, enviando 280 - 320
Programa final con la cámara conectada, dormido 150 - 170
Programa final sin la cámara conectada, dormido 0
Programa final sin la cámara conectada, enviando 200 - 230
Programa de prueba con la cámara conectada, enviando 250 - 300
Programa de prueba con la cámara conectada, dormido 150
Programa de prueba sin la cámara conectada, enviando 190 - 230
Programa de prueba sin la cámara conectada, dormido 0

Tabla 6: Tabla consumo de la bateŕıa

Como se puede observar en la Tabla 6 la diferencia de consumo cuando la cámara

está conectada y cuando no lo está no se nota en gran medida mientras el programa

está en funcionamiento. El problema viene cuando el programa está dormido, ya que

cuando la cámara no está conectada al dispositivo, este consume prácticamente cero

Amperios, mientras que al estar conectada consume entre 15 y 17.

Este problema se debe a que el pin utilizado para la alimentación de la cámara en

el Heltec Wifi Lora 32 V3 (uno de los pines 3V3) está directamente conectado a la

bateŕıa de este, lo que provoca que no se pueda controlar su apagado y, por ello, que

siempre que haya un dispositivo conectado le esté dando enerǵıa.

Se han probado diferentes soluciones para este problema mediante software como

poner el dispositivo en ”deep sleep” o cambiar el pin de alimentación a un GPIO, y

controlarlo. Pero ninguna ha dado resultados.

Es por ello que se acabó optando por la opción de utilizar un relé, el cual, controla

la corriente que se le da a la cámara mediante el GPIO 7. De esta manera cuando el

GPIO 7 está activado, la cámara recibe corriente, por lo que se puede encender y ser

utilizada. Cuando se deja de utilizar la cámara, el relé corta la corriente e impide que

la cámara consuma enerǵıa.

Con este cambio en el diseño se consiguió que la cantidad que consumı́a el dispositivo

cuando estaba en estado de reposo pasara de entre 15 y 17 Amperios a 0 Amperios,

mejorando en gran medida su rendimiento y permitiendo alargar la duración de la

bateŕıa.

xxiii

Prueba con el uso de un relé Consumo (miliamperios)
Cámara conectada, enviando 290
Cámara conectada, dormido 0
Cámara desconectada, dormido 0
Cámara desconectada, enviando 230 - 250

Tabla 7: Tabla consumo de la bateŕıa

En la Tabla 7 se puede ver el consumo de bateŕıa de los diferentes estados del

dispositivo tras añadirle el relé.

xxiv

Anexo V

Diseño 3D

Los entornos en los que están situados los contadores de agua, sobre todo en zonas

rurales, tienden a tener unas condiciones muy limitadas, estando en zonas pequeñas,

sin acceso a la corriente eléctrica, con ningún tipo de iluminación y dif́ıcil acceso.

Para la correcta realización de este proyecto se ha tenido que desarrollar un

prototipo personalizada, la cual se ha producido con una impresora 3D. En concreto

se ha utilizado una Bambu Lab X1-Carbon, la cual destaca por su alta velocidad,

precisión y capacidad para producir piezas detalladas con diversos materiales.

Este prototipo se ha creado teniendo en cuenta los problemas que se han visto

durante el desarrollo del proyecto, como la iluminación a la hora de realizar una foto

o la distancia a la que debeŕıa estar la cámara. Además se han tenido en cuenta las

condiciones del entorno en el que se va a utilizar este modelo.

En este apartado de la memoria se va a abarcar el desarrollo que se ha llevado a

cabo para la creación del prototipo, tanto necesidades que tiene que cubrir el prototipo,

como la explicación de este.

V.1. Requisitos técnicos

En este apartado se detallan los requisitos técnicos necesarios para el correcto

funcionamiento del proyecto final, abordando tanto los necesarios para la realización

del reconocimiento de los d́ıgitos, como los que lo son para facilitar su uso en entornos

de condiciones limitadas.

Primero, hay que tener en cuenta que la cámara ha de estar centrada con el contador,

xxv

para poder realizar la foto de manera correcta sin perder ninguno de los d́ıgitos de este.

Además esta ha de estar a una distancia lo más reducida posible de los d́ıgitos, ya que

al hacer fotos de muy baja calidad no se puede permitir perder ṕıxeles en elementos

que no son relevantes.

Otro requisito está relacionado con el OCR es el de la iluminación. Como se ha

podido observar en uno de los apartados anteriores la iluminación no afecta en gran

medida al OCR, pero es necesario que exista. Es por eso que se decidió utilizar el led

que lleva integrado el Heltec Wifi Lora 32 V3 con el fin de ahorrar costes. El problema

viene dado a la hora de la posición de este led, ya que si está centrado puede llegar a

deslumbrar la cámara y provocar que no se pueda ver bien la imagen.

Debido a que los entornos en los que se va a utilizar este prototipo son pequeños,

se requiere crear una dispositivo lo suficientemente compacto y pequeño para que se

pueda adaptar a ellos.

Por último, como en la mayoŕıa de los casos no existe una forma de mantenerlos

cargados continuamente, se requiere crear un módulo de bateŕıa fácil de cambiar.

Permitiendo al usuario cambiar la bateŕıa sin necesidad de entender en detalle el

funcionamiento del dispositivo.

V.2. Modelado 3D

En esta subsección se explica el prototipo que se ha llevado a cabo, y cómo se han

implementado los requisitos vistos en el apartado anterior.

Para la realización de este prototipo se ha utilizado el software llamado Autodesk

Fusion 360. Este software es una plataforma de diseño 3D basada en la nube ofrece

capacidades de modelado paramétrico, directo, de superficies y de malla, facilitando el

diseño de piezas y ensamblajes complejos.

Para explicar el prototipo realizado se va a dividir este en tres partes, cada una de

las cuales tiene una función en espećıfico dentro del prototipo.

La primera, y la principal, es la parte que contiene tanto la cámara como el Heltec

Wifi Lora 32 V3.

xxvi

Figura 27: Pieza principal 3D

En la Figura 27 se muestra esta parte del prototipo, la cual está compuesta por

una caja y una tapa. En la caja se pueden observar varios elementos, a la izquierda

cuenta con un módulo para incrustar la cámara y que se quede fija en esa posición.

Justo a la derecha de este módulo tiene otro, este sirve para el Heltec Wifi Lora 32

V3 en vez de para la cámara. Está organizado de esta manera y no al revés, con el

módulo Heltec a la izquierda, debido a que de hacerlo aśı el led que se utiliza como flash

daŕıa directamente a los d́ıgitos del contador de agua y los deslumbrará, dificultando

enormemente el OCR.

En la parte inferior de la caja se puede ver un agujero, este es el que se utiliza para

colocar la antena de LoRa, facilitando aśı las conexiones.

Finalizando con la caja, en la parte exterior derecha de esta se puede ver un saliente,

el cual es utilizado para unir esta pieza con la parte que agarra el contador.

La segunda parte es, como se ha mencionado antes, el agarre con el contador. Su

función es la de mantener la pieza anterior a cierta distancia del contador y la de

someterla a él.

xxvii

Figura 28: Pieza de agarre al contador 3D

En la Figura 28, se puede ver el diseño 3D de esta pieza, la cual se basa en un

cilindro partido, este rodeará el contador de agua y se utiliza la parte rota para ajustar

la medida, permitiendo hacerlo a medida de cada contador. Cuenta con un brazo que

será el que se agarra a la cámara.

Por último, está el módulo de la bateŕıa, cuyo diseño 3D se muestra en la Figura

29. Este es una simple caja que aguanta la bateŕıa. Cuenta con un pequeño agujero

para conectarla con la pieza principal. Este módulo se agarra a la parte superior de

esta pieza, donde está la tapa, permitiendo aśı minimizar el espacio que ocupa.

Cuenta con unas pequeñas ranuras en la parte que lo une con el módulo principal

que permiten que se retire de manera rápida y sencilla, haciendo aśı que se facilite el

cambio de bateŕıa.

xxviii

Figura 29: Pieza módulo de la bateŕıa 3D

Con estas tres piezas unidas se obtiene un prototipo que cumple en gran medida con

las especificaciones requeridas, siendo de un tamaño reducido para minimizar problemas

a la hora de utilizarlo, con un módulo de bateŕıa intercambiable que permite mantener

cargado el dispositivo, una iluminación que no entorpezca la toma de la imagen y

una cámara centrada y a una distancia lo suficientemente grande para que se vean los

d́ıgitos y lo suficientemente pequeña para que la calidad no de problemas.

xxix

	Introducción, motivación y objetivos
	Introducción
	Motivación
	Objetivos

	Estado del arte
	Funcionamiento del sistema
	Elementos Hardware y Software
	Hardware
	Software

	Arquitectura del sistema
	Comunicación LoRaWAN
	Funcionamiento del dispositivo
	Funcionamiento del servidor
	Visualización de la información

	Resultados
	Mecanismo de reconocimiento de caracteres
	Preprocesamiento de los datos
	Modelo de selección
	Modelo de reconocimiento de carácteres

	Pruebas reales

	Conclusiones
	Bibliografía
	Anexos
	Hardware y Software empleado
	Hardware
	Software

	Arquitectura LoRaWAN
	 Funcionamiento de los modelos de OCR basados en librerías
	 Pruebas Batería
	Diseño 3D
	Requisitos técnicos
	Modelado 3D

