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Resumen

El proposito de este Trabajo de Final de Grado (TFG) consiste en el desarrollo una red
neuronal para clasificar caracteres codificados mediante matrices 7x5 pixeles, donde un valor
de 1 representa el color negro y un valor O representa el color blanco.

El software desarrollado tendré la finalidad de ser usado como simulador para la resolucién
de problemas planteados en las sesiones de laboratorio de la asignatura de Inteligencia
Artificial (IA), garantizando asi que el aprendizaje de los alumnos, tanto del Grado en
Ingenieria Informatica (Gll), como del Doble Grado ADE-GII, sea mas facil y provechoso.

Para el desarrollo del trabajo, se han creado distintos conjuntos de datos para realizar el
entrenamiento de la red neuronal artificial creada, un Perceptron Multicapa (MLP) creado con
la libreria de Python denominada PyTorch y comparado con otros modelos creados en la
plataforma H20.

Por ultimo, se han realizado pruebas en ambos entornos, se han expuesto los resultados y
se han obtenido interesantes conclusiones en base a ellos.
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Abstract

The purpose of this Final Degree Project is to develop a neural network to classify characters
encoded using 7x5 pixel arrays, where a value of 1 performs as the color black and a value of
0 performs as the color white.

The developed software will be intended to be used as a simulator to resolve proposed
practicing from laboratory sessions of Artificial Intelligence (Al) subject, an easier student
learning will be secured with it, not only Computer Engineering Degree (GlI), but also Double
Grade ADE-GII.

For the project development, a few datasets have been created to allow neural network
training, which is a Multilayer Perceptron developed with a Python’s library called PyTorch and
compared with some other models from H20O platform.

Finally, many tests have been done in both environments, result have been exposed and some
interesting conclusions have been obtained.
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1. Introduccidn

La Inteligencia Artificial (IA) es uno de los temas de mayor interés, en la actualidad, en
cualquier ambito. Este concepto se refiere a los sistemas informéticos capaces de realizar
tareas que requieren de la inteligencia humana y sus caracteristicas, como el razonamiento
y el aprendizaje.

En la totalidad de lo que aborda la IA, esta el aprendizaje automético o Machine Learning
(ML), que se trata de una disciplina de la IA que, gracias al uso de diferentes algoritmos,
consigue que los ordenadores sean capaces de identificar patrones en base a datos,
relacionarlos y realizar predicciones en funcién de esto.

Dentro del aprendizaje automatico existe el aprendizaje supervisado, donde la maquina recibe
un entrenamiento controlado por humanos, es decir, el aprendizaje del ordenador requiere de
la intervencion de humanos para determinar qué datos, resultados o acciones son correctos.
Esta retroalimentacién permite que la maquina sea capaz de ajustarse al objetivo y mejorar
su rendimiento de gran manera.

Una de las técnicas de aprendizaje automatico mas utilizada y extendida tanto para el
desarrollo de modelos de aprendizaje supervisado, como para otras formas de aprendizaje
automatico, es el aprendizaje profundo o Deep Learning.

El aprendizaje profundo es un conjunto de algoritmos de aprendizaje automatico basado en
capas de redes neuronales que son modelos computacionales inspirados en la estructura y
el funcionamiento del cerebro humano. Estas redes estdn compuestas por unidades de
procesamiento llamadas neuronas que pertenecen a capas de lared y estan conectadas entre
si.

Estas técnicas son idéneas para el desarrollo de este Trabajo de Fin de Grado (TFG), ya que
han demostrado ser de gran utilidad para el procesamiento de lenguaje.

Para la implementacion de este TFG se usaran las tecnologias actuales en este ambito que
hacen uso de las técnicas comentadas. En concreto, se utilizard PyTorch, un marco de
aprendizaje profundo de codigo abierto orientado a la creacién de redes neuronales.

PyTorch se compone de la combinacion de la biblioteca de aprendizaje automatico de Torch
y una API de alto nivel basada en Python (1).

Por otro lado, también se utilizara el entorno H20, una plataforma de cédigo abierto lider en
IA, especializada en aprendizaje profundo y AutoML (2).

Esta plataforma permitira llevar a cabo la implementacion de la red neuronal deseada y su
entrenamiento de una forma muy intuitiva y sencilla. Ademas, proporcionara de manera clara
los resultados obtenidos, detallandolos y empleando esquemas para visualizarlos de mejor
forma.

Es en el &mbito del reconocimiento de texto donde se va a centrar en este Trabajo de Fin de
Grado, tanto a nivel tecnolégico como a nivel educativo, ya que se trata de la puesta a punto
de una red neuronal que permite identificar caracteres descritos con pixeles. La red se
desarrollara junto con un software de simulacion que permite ver la creacion de esta, junto
con sus diferentes parametros y caracteristicas, ademas de los resultados obtenidos y las
optimizaciones realizadas al aplicar estos parametros.



Antes de todo esto y para su desarrollo, se ha llevado a cabo el estado del arte, en el que se
han determinado e investigado los posibles softwares que puedan ofrecer una solucion a lo
gue se plantea en este Trabajo de Fin de Grado.

Se han encontrado diferentes softwares simuladores de redes neuronales. Sin embargo,
todos ellos disponen y hacen uso de tecnologia ya obsoleta y antigua. Como bien puede ser
el software Java Neural Network Simulator (JNNS), que se ha usado a modo orientativo para
el desarrollo de este trabajo.

Por otro lado, también se ha tomado de referencia una practica existente en 2017 dentro de
la documentacion y el plan de la asignatura de Inteligencia Atrtificial de la Escuela Politécnica
de Teruel (EUPT).

Este Trabajo de Fin de Grado, pretende ser un simulador de redes neuronales desarrollado
con la tecnologia mas actual, para que esta practica pueda ser implementa con él.

Para ello, se parte del dataset que ya existia, encontrdndose con que se trataba de un
conjunto de datos muy limitado, por lo que se ha desarrollado una ampliacion de éste de
manera propia.

El documento concluye con un apartado en el que se indica la licencia software y documental,
asi como las conclusiones obtenidas del proyecto y unas lineas de trabajo futuro.



2.

Objetivos

A la hora del desarrollo de un Trabajo de Fin de Grado, es de gran importancia definir
previamente los objetivos que se quieren alcanzar con este.

En primer lugar, esta la creacion tanto de la red neuronal como del simulador, pero estos
serian los objetivos finales con el TFG ya desarrollado plenamente, por lo que existen otros
objetivos en los que se puede dividir el objetivo final, que serian:

Creacion de una red neuronal en el marco de trabajo de PyTorch.

Desarrollo de una red neuronal en la interfaz H20 Flow.

Creacion de distintos conjuntos de datos o datasets para entrenar las redes
neuronales de los dos puntos anteriores.

Definir en ambos entornos de trabajo los diferentes parametros y atributos de las redes
neuronales.

Realizar pruebas tanto con los datasets creados, como con los parametros de las
redes. Haciendo modificaciones en ellos para buscar la red mas 6ptima.

Crear un entorno en el que el usuario pueda realizar estas pruebas y visualizar los
resultados y las optimizaciones.



3. Estado del Arte

Este estado del arte se ha centrado en la busqueda de programas que permitan la creacion,
manipulacién y entrenamiento de redes neuronales. Por un lado, se han realizado busquedas
de simuladores y, por otro lado, se han llevado a cabo busquedas de entorno de desarrollo
para poder implementar una red neuronal de creacion propia.

Como punto de partida, se ha usado a modo orientativo el programa JNNS (Java Neural
Network Simulator), explicado méas adelante.

En concreto, se han encontrado 3 opciones de simuladores que parecen cumplir con los
requisitos de lo buscado en este TFG y que se van a proceder a analizar en profundidad.
Algunas de sus caracteristicas principales se resumen en la siguiente tabla:

Lenguaje

JNNS https://github.com/mwri/javanns 1999 | Java/C

Interactive Neural | https://interactive-neural-network- 2007 | Java/Java3D
Network Simulator simulator.soft112.com/

Bain https://qgithub.com/OliverColeman/bain 2012 | Java

ANNSIm https://github.com/phaysaal/ANNSim 2015 | Java

Tabla 1. Caracteristicas principales del software encontrado

En primer lugar, se analizara el programa usado como guia para este Trabajo de Fin de Grado
(TFG), “Java Neural Network Simulator” (JNNS).

Se trata de un simulador de redes neuronales que consiste en una interfaz de usuario escrita
en Java, que hace uso del kernel “Stuttgart Neural Network Simulator” escrito en C. Fue
desarrollado en torno al ano 1999, por el “Wilhelm-Schickard-Institute for Computer Science
(WSI)” en Tubingen, Alemania.

JNNS permite crear redes neuronales con diferentes capas de neuronas, incluyendo capas
ocultas. Permite la eleccion de diferentes algoritmos de aprendizaje y archivos con datos de
entrenamiento, asi como diferentes parametros a seguir durante el entrenamiento de la red.

El aspecto mas interesante de este simulador es la facilidad para la obtencion de resultados
y su visualizacion en gréficas en funcién de los ciclos usados para el aprendizaje, siendo
tremendamente didactico.

El problema de JNNS y de los siguientes proyectos presentados, es la obsolescencia de las
tecnologias usadas para crearlos, ya que en este caso hace uso de versiones muy antiguas
de Javay, a su vez, deben ser ejecutados en sistemas operativos también antiguos.

El programa “Interactive Neural Network Simulator”, desarrollado por alumnos de Charles
University de Praga, en el afio 2007. Este software estd disponible para Linux, Mac y
Windows, y es de licencia libre.


https://github.com/mwri/javanns
https://interactive-neural-network-simulator.soft112.com/
https://interactive-neural-network-simulator.soft112.com/
https://github.com/OliverColeman/bain
https://github.com/phaysaal/ANNSim

Se trata de un simulador interactivo de redes neuronales escrito en los lenguajes Java y Java
3D. Este programa seria semejante a JINNS, ya que permite la creacion de redes neuronales
y su entrenamiento de manera interactiva y visual, también permite la carga de datos para
ser usados en el entrenamiento de la red y la programacion de algoritmos de aprendizaje.
Sin embargo, falla al abrir y crear algunas redes neuronales y se cierra inesperadamente sin
mensaje previo de error, presumiblemente por la obsolescencia de la tecnologia usada.

Ademas de esto, el programa en ocasiones es poco intuitivo y dificil de usar, especialmente
a la hora de visualizar resultados.

Otro de los softwares a analizar es ANNSIm (Artificial Neural Network Simulator), un simulador
visual de redes neuronales artificiales escrito en Java y desarrollado por Mahmudul FAISAL
Al Ameen en el afio 2015.

Este software tiene el problema de que no ofrece ningun tipo de documentacion y aparenta
ser un trabajo poco profesional. Por otro lado, tampoco ofrece muchas opciones de
configuracién en cuanto a algoritmos de aprendizaje y visualizacién de resultados.

El dltimo software es Bain, un simulador de redes neuronales escrito en Java y desarrollado
por Oliver Coleman sobre el afio 2012 como parte de su doctorado. Este software fue
disefiado para simular redes neuronales y ofrecer un framework para introducir y modificar
diferentes parametros relativos a la red y su entrenamiento, también permite el uso de GPUs.

El problema de este simulador es que usa una version antigua de Java y existen problemas
a la hora de construir el proyecto con los plugins de Gradle, que se trata de un sistema de
automatizacion de construccion de codigo de software del que hace uso Bain.

C:\Users\Bowy\Downloads\bain-master>gradlew withDeps

* Where:
Build file "C:° re\Bowy' 2

= What went

14]

plugin/use/com.jfrog.bintray/1.4".
» peer not auther

* Try:
Run with --stacktrace option to get the stack trace. Runm with --info or --debug option to get more log output.

Total time: 2.2

Figura 1. Problema al construir el proyecto de Bain

Por otro lado, se han analizado 4 entornos de desarrollo dentro del &mbito en el que se
encuentra el problema a resolver.

Para empezar, TensorFlow, la gran alternativa a Pytorch. Se trata de una biblioteca de cédigo
abierto desarrollada por Google para ser utilizada en el aprendizaje automético con redes
neuronales. Es implementado principalmente en el lenguaje de programacion Python.

TensorFlow es multiplataforma, puede ser usado en Windows, Linux, macOS, Android e iOS,
y permite trabajar tanto con CPUs, como con GPUs.

Por otro lado, est4 Keras, que también se trata de una biblioteca de redes neuronales de
cédigo abierto desarrollada en Python. Aunque esta puede funcionar de manera
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independiente, también puede ejecutarse sobre TensorFlow Microsoft Cognitive Toolkit y
Theano.

Fue lanzada en 2015, teniendo como autor principal a Francois Chollet, un ingeniero de
Google. En 2017, TensorFlow de Google ofrecié soporte a Keras, por lo que puede ejecutarse
sobre TensorFlow, asi como sobre Microsoft Cognitive Toolkit y Theano. Pese a esto, Keras
también puede funcionar de manera independiente.

Esta tecnologia esté disefiada y enfocada a ser una interfaz de programacion de aplicaciones
(API), lo mas amigable e intuitiva posible para el usuario.

Otra tecnologia para el aprendizaje automatico es Scikit-learn, también se trata de una
biblioteca de software libre creada para su uso en Python. La primera distribucion publica de
Scikit-learn aparecio en 2010 y su principal autor es David Cournapeau.

El proyecto utiliza diferentes algoritmos de clasificacién, andlisis de grupos y regresion y esta
implementado para interaccionar con las bibliotecas NumPy y SciPy.

Scikit-learn usa Cython en determinados algoritmos para optimizar su rendimiento, ya que se
trata de un lenguaje que implementa C y C++ en Python.

Por ultimo, JAX, que es quiza la opciébn menos conocida de las presentadas. Es también una
biblioteca de Python para el aprendizaje automético. Su computacidbn numérica se
fundamenta en NumPy y dispone de un componente Just-In-Time que optimiza el cédigo para
el compilador, lo que deriva en una gran mejora. JAX es creado, utilizado y mantenido por
Google.

Como conclusidn de este estado del arte, que analiza las tecnologias de aprendizaje profundo
mas actuales y avanzadas, se observa gran predominancia de Python. Todas las tecnologias
presentadas estan ideadas para ser utilizadas en este lenguaje, esto se debe a la simplicidad
y facil comprensién de él, al gran auge que ha tenido y que sigue teniendo, y a la gran cantidad
de librerias y herramientas de tratamiento de datos de las que ya se dispone en Python.

Por otro lado, destacar la presencia de Google en la mayoria de estas herramientas, por lo
gue hay que agradecer los aportes y el interés de esta compafiia en el desarrollo de
aprendizaje automatico y la inteligencia artificial en general.



4. Propuesta

Este apartado supone el bloque principal de este TFG, en él, no solo se desarrollan
explicaciones sobre el origen y la creacion de los datos utilizados en el entrenamiento de las
redes, sino que también se expone el trabajo y desarrollo llevado a cabo para la creacion, el
entrenamiento y la comparacion de estas redes en los entornos de H20 y PyTorch.

4.1. Origenes de los datos

Para realizar el entrenamiento de las redes neuronales propuestas, se necesitan conjuntos
de datos de los que las redes puedan aprender.

Para empezar, se ha partido un fichero perteneciente a una practica académica realizada en
la asignatura de Inteligencia Artificial en el Grado en Ingenieria Informatica de la Escuela
Universitaria Politécnica de Teruel de la Universidad de Zaragoza.

En este fichero se definen los datos de entrada que representan los caracteres a identificar
con 1y 0, es decir, un 1 haria semejanza con un pixel de color negro y un 0 con un pixel en
blanco.

Ademas, en este fichero aparece también la salida que va ligada al patron de datos. Dicha
salida es una estructura de 25 ceros y un 1, en la que el 1 se sitla en una posicién entre la
primeray la vigésima sexta, representado a su vez la posicion en orden alfabético de la letra
referenciada.



Las letras representadas en el fichero son las siguientes en el siguiente orden: A, B, C, D, E,
F.G,H LJKLMNOPQR,ST,UVWXY,Z

Archive Edicién  Formato  Ver Ayuda
ENNS pattern definition file V3.2
generated at Mon Apr 25 18:08:5@ 1994

No. of patterns : 26
No. of input units : 35
No. of output units : 26
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Figura 2. Fichero con dataset original

El formato del fichero es “.pat”, por lo que se ha modificado y transformado a un formato més
extendido y popular como es “.csv’, en el que se ha asignado cada digito o pixel a una
columna del fichero.

De esta manera se ha conseguido disponer de un conjunto de datos para realizar el
entrenamiento de la red en un formato méas actual y compatible con las tecnologias del
momento. Por otro lado, también se requiere de un conjunto de test, que se utiliza para
evaluar el rendimiento de la red, y un conjunto de validacion, utilizado para ajustar el modelo
y Sus parametros.



Debido a que el numero de observaciones para el entrenamiento es limitado, se va a
prescindir del conjunto de validacién, por lo que la distribucion de las particiones seré del 80%
para los datos de entrenamiento y el 20% para el conjunto de test. Para hacer el trabajo que
haria el conjunto de validacién, se va a utilizar la validacién cruzada sobre el conjunto de
entrenamiento durante la optimizacion de los hiperparametros del modelo, esto se trata de
una técnica usada para este ajuste del modelo anteriormente mencionado.

La validacion cruzada requiere de un coste computacional muy alto, ya que se ajusta el
modelo repetidas veces (3).

Para el uso del dataset en H20, el patron de salida ha sido modificado en el fichero “.csv”,
convirtiendo dicho patrén en la letra que representa. Por ejemplo, el patrén
“10000000000000000000000000” se ha cambiado por la letra “a”.

Este cambio es meramente aclarativo y estético a la hora de visualizar los resultados. Por
otro lado, no ha sido posible aplicarlo en PyTorch, ya que este trabaja con tensores, que son
objetos matematicos o matrices que almacenan datos numéricos, y en este caso, el valor a
almacenar es un caracter.

Viendo que inicialmente se disponia de un conjunto de observaciones muy limitado, se ha
optado por ampliarlo artificialmente para conseguir 6 datasets distintos, datasets de unas
5000 y unas 10000 observaciones, con dos, tres y cinco posibles errores, explicado de
manera mas esquematica:

5000 observaciones con hasta 2 posibles errores.

5000 observaciones hasta 3 posibles errores.

5000 observaciones con hasta 5 posibles errores.

10000 observaciones con hasta 2 posibles errores.

10000 observaciones hasta 3 posibles errores.

10000 observaciones con hasta 5 posibles errores.

ourwWNE

La creacion de estos datasets se ha conseguido, primero, duplicando de forma manual el
dataset original hasta conseguir el nimero de observaciones deseado.

Después, para crear variedad dentro del dataset, es decir, aplicar errores, se ha desarrollado
un script que, de forma aleatoria, cambiaba uno, dos o ningun digito de cada fila.



Ejemplo del script para 2 posibles errores:

n numero
‘dataletr

s file:
delimiter=";")

abilidad = randint(@,c)
cion seleccion: m.randint(@, 35-1)
ccionada]

babilidad ==
fila[posicion_seleccionada] cambiar_digito(valor_original)

fila[posicion_seleccionada] cambiar_digito(valor_original)

posicion_seleccionadal = random.randint(e, 35-1)

if posicion_seleccionada ==
posicion_seleccionadal

valor_original = fila[posicion_seleccionadal]
fila[posicion_seleccionadal] - cambiar_digito(valor_original)

Figura 3. Script para aplicar errores al dataset

Para la realizacién de las pruebas se han aplicado dos divisiones del conjunto de datos de
entrenamiento distintas, una con una proporcion del 70% para el conjunto de entrenamiento
y 30% para el conjunto de test, y otra division con una proporcién del 80% para conjunto de

entrenamiento y 20% para el conjunto de test.
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Por lo que el dataset quedaria repartido de las siguientes maneras:

Grupo de datasets con un numero de observaciones entorno a las 5.000:

Division Dataset Namero de datos
100% Total 4.940
70% Entrenamiento 3.458
30% Test 1.482

Tabla 2. Divisién de los datos 70-30 en dataset de 5.000 observaciones

Division Dataset Numero de datos
100% Total 4.940
80% Entrenamiento 3.952
20% Test 988

Tabla 3. Divisién de los datos 80-20 en dataset de 5.000 observaciones

Grupo de datasets con un numero de observaciones entorno a las 10.000:

Division Dataset Numero de datos
100% Total 10010
70% Entrenamiento 7.007
30% Test 3.003

Tabla 4. Divisién de los datos 70-30 en dataset de 10.000 observaciones

Division Dataset Namero de datos
100% Total 10010
80% Entrenamiento 8.008
20% Test 2.002

Tabla 5. Division de los datos 80-20 en dataset de 10.000 observaciones




4.2. Implementacion y entrenamiento

Para realizar el desarrollo de este TFG, se han instalado y configurado los entornos
pertinentes y respectivas dependencias.

Una vez que se ha dispuesto tanto de H20, como de PyTorch de forma totalmente
funcional, se ha realizado el desarrollo de las redes neuronales, los entrenamientos y las
pruebas realizadas para comprobar su comportamiento.

4.2.1. Instalacion y configuracion de H20

El primer entorno en el que se va a trabajar es H20. Se trata de una plataforma de
codigo abierto de inteligencia artificial, especializada en aprendizaje automatico.

H20 ofrece gran cantidad de herramientas, tanto a nivel de investigacién, como a nivel
empresarial. Por ejemplo, H20-3, una herramienta de codigo abierto disefiada para construir
y desplegar modelos de aprendizaje automatico a gran escala, que integra el uso de lenguajes
de programaciéon como R, Python y Java.

Ademas, soporta gran variedad de algoritmos de aprendizaje profundo y es capaz de ajustar
de manera automatica los hiperparametros.

Para este caso, se ha utilizado H20 Flow, una interfaz de usuario de cédigo abierto para H20,
gue consiste en un entorno web interactivo que permite al usuario combinar ejecucion de
cbdigo, texto, matematicas, etc., en un solo documento.

H20 Flow ofrece una REST API y diferentes scripts en R que permiten a cualquier usuario

implementar redes neuronales y seguir su desarrollo, incluso si este no tiene experiencia en
la programacion (4).
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Para su instalacibn, se ha accedido a la web de descargas Oficial
https://h20.ai/resources/download/ , y se ha hecho click en la ultima version estable de H20.

Pird =~ ®
[

C O 8 nhttpsy//h20.ai/resources/download £ @ ® 9

& Google Cloud

H20 Direct Downloads Cloud Downloads
ml Vicrosoft
H20 works with R, Python, Scala on Hadoop/Yarn, Spark e e W Azure
or your laptop.
. . aws
H20 is licensed under the Apache License, Version 2.0 Nightly Bleeding Edge p —
Prior Releases & Google Cloud

Figura 4. Web de descargas oficial de H20

Después en la siguiente pagina se ha descargado dicha version y se han seguido los pasos
especificados para ejecutar H20 y acceder a su interfaz web. Que son los siguientes:

1. Descomprimir el fichero .zip descargado.

2. Acceder a la carpeta descomprimida.

3. Ejecutar el fichero .jar de H20 con la instruccion:

java —jar h2o.jar

4. Abrir el navegador y acceder a http://localhost:54321.
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4.2.2. Instalacion y configuracion de PyTorch

El segundo entorno utilizado para el entrenamiento de la red neuronal es PyTorch. Como se
comentaba en la introduccion, este entorno es un marco de aprendizaje profundo de cAdigo
abierto basado en software utilizado para la creacién de redes neuronales.

PyTorch combina la biblioteca de aprendizaje automatico de Torch con una API de alto nivel
basada en Python. Se ha consagrado como tecnologia lider para las comunidades
académicas y de investigacion gracias a su flexibilidad y su facilidad de uso, entre otras cosas.

Esta biblioteca es principalmente desarrollada por el Laboratorio de Investigacion de
Inteligencia Artificial de Facebook (FAIR) (5).

PyTorch permite la creacion de diferentes tipos de redes neuronales, desde las mas simples,
hasta las redes neuronales convolucionales mas complejas. Ademas, ofrece procesamiento
en GPU, ya que hace uso de tensores, que son estructuras de datos multidimensionales que
tienen la capacidad de ser procesados en GPU, lo que permite acelerar sus célculos.

Debido a que se trata de una libreria de Python, lo primero que se debe hacer es descargar
el lenguaje, para ello se ha accedido a las descargas ofrecidas por la web oficial de Python
https://www.python.org/downloads/ , y se ha descargado la versién 3.11.8, relativa al
06/02/2024.

python.org

Looking for a specific release?

Python releases by version number:

Release version Release date Click for more

Python 3.12.3 April 9, 2024 & Download Release Notes 2
Python 3.11.9 April 2, 2024 & Download Release Notes

Python 3.10.13 March 19, 2024 & Download Release Notes

Python 3.9.19 March 19, 2024 & Download Release Notes

Python 3.8.19 March 19, 2024 & Download Release Notes

Python 3.11.8 Feb. 6, 2024 & Download Release Notes

Python 3.12.2 Feb. 6, 2024 & Download Release Notes

View older releases

Figura 5. Web de descargas oficial de Python
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Después, se ha seleccionado el archivo de descarga “Windows installer (64-bits)”, la descarga
recomendada por la web.

python.org

Files

Version Operating Description MD5 Sum File GPG Sigstore
System Size

Gzipped source tarball Source release TfbObfaa2f6aae4aadcdb51abed57825 253MB  SIG  sigstore

XZ compressed source Source release b353b8433e560e1af2b130f56dfbd973  19.1MB  SIG  sigstore

tarball

macOS 64-bit universal2 mac0s formac0S109and  0903e86fd2c61efT61c94cb226e9e72e  42TMB  SIG  sigstore

installer later

Windows installer (64-bit) Windows Recommended 77d17044fd0de05e6f2cf4f90e87a0a2 249MB  SIG _Sigstore

Windows installer (ARMG4) Windows Experimental aelb38fa57409d9a0088a031f50ba625 24.2MB SIG  .sigstore

Windows embeddable Windows 9199879fbad4884ed93ddfT7e8764920 107TMB SIG  _sigstore

package (64-bit)

Windows embeddable Windows 104bf63ef10c06298024a61676a11754 9.6 MB SIG  _sigstore

package (32-bit)

Windows embeddable Windows 6b989558c662f8TTe2eT0TdB40673877 100MB  SIG  sigstore

package (ARM&4)

Windows installer (32 -bit) Windows 45d4b29f26ca02blccf13451eal36654 23 TMB  SIG _Sigstore

Figura 6. Web de descargas disponibles de la version Python 3.11.8
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Se ha ejecutado el Setup descargado con las siguientes opciones y se ha elegido “Install
Now”.

® Python 3.11.8 (64-bit) Setup — X

Install Python 3.11.8 (64-bit) ,

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

¥ Install Now
ChUsers\Bowy'AppDatatLocal\Programs\Python' Python311

Includes IDLE, pip and documentation I
Creates shortcuts and file associations

= Customize installation
Choose location and features

Use admin privileges when installing py.exe
[ Add python.exe to PATH Cancel

windows “

Figura 7. Herramienta de instalacion de Python 3.11.8

pgthgn

Esta instalacion realizada también incluye “pip”, un sistema de gestion de paquetes utilizado
para instalar y administrar paquetes de software escritos en Python.

Para la instalacion de la libreria PyTorch en concreto, se ha accedido también a la web oficial,
la cual proporciona un esquema que en funcion de la version que se quiere descargar y el
entorno en el que se va a usar, muestra el comando requerido para la instalacion.

Para el caso se ha descargado la version estable, la 2.3.0, para Windows, usando el paquete
“pip” comentado anteriormente para lenguaje Python.
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Ademas, vemos que en la web se especifica que la Ultima version de PyToch requiere de la

version Python 3.8 o en adelante.

PyTorch

pytorch.org

NOTE: Latest PyTorch requires Python 3.8 or later.

PyTorch Build Preview (Nightly)
Your OS Linux Mac m
Package Conda _ LibTorch Source

Compute Platform CUDA 118 CUDA 121 S CPU

Run this Command- pip3 install torch torchvision torchaudio

Previous versions of PyTorch >

Figura 8. Web de descargas oficial de PyTorch

Instruccion a ejecutar:

pip3 install torch torchvision torchaudio

Después de realizar esto, para utilizar esta libreria bastara con hacer una importacion de ésta
en el codigo a desarrollar:

import torch

Pip también se ha utilizado para la descarga de los siguientes paquetes usados en el
desarrollo del software:

e Numpy

o Matplotlib

e Scikit-learn

Todos estos paguetes se han instalado con el siguiente comando:

pip install “nombre de paquete”
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Numpy se ha utilizado para la importacion del dataset y el manejo de los conjuntos de datos,
ya que se trata de una biblioteca que da soporte para crear vectores y matrices de gran
tamafio y varias dimensiones, también dispone de gran variedad de funciones matematicas.

Por otro lado, esta Matplotlib, una biblioteca que ha permitido generar graficos para hacer
mas visibles y accesibles los resultados.

Y, por altimo, Scikit-learn, la biblioteca con la que se ha calculado la regresion lineal y el
coeficiente de determinacion.

4.2.3 H20

El uso de H20 viene dado principalmente para realizar una comparacion entre los resultados
obtenidos en esta plataforma y en PyTorch.

Por otro lado, uno de los objetivos de su utilizacién es que aquellos estudiantes que no se
vean preparados para implementar o desarrollar cddigo relativo a las redes neuronales,
puedan también hacer uso de una red para aprender modificando los pardmetros de ésta
observando los resultados que conlleva.

Para empezar a hacer uso de H20 Flow, lo primero es haber realizado su instalacion y haber
accedido a la interfaz web en http://localhost:54321.

La interfaz gréfica proporcionada por H20 Flow consta de un menu superior con el que se
pueden realizar distintas acciones, como importar archivos o crear modelos, que son las que
atafien en este caso.

m
=]
1

H20 Flow~ Cell~ Data~ Model + Score  Admin~ H

Figura 9. Barra de menu de H20 Flow

Debajo de este menu, aparece un proyecto por defecto con una barra de tareas para realizar
acciones sobre este y un asistente con las acciones méas recomendadas e importantes.
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Por ultimo, a la derecha de la pagina web, aparece una seccién de ayuda en la que se puede
aprender sobre el uso de H20.

O localhost

Hzo OW Flow~ Cell~ Data~ Model = Score~ Admin~ Help~
Untitled Flow
Dea +4++y XEOaT MW P» 6 »
= W i & OUTLINE FLOWS cLIPS HELP
Z Q Help
. Using Flow for the first time?
© Assistance
Routine Description B Quickstart Videos
@ importFiles Import file(s) into H20
B importSqlTzble Import SQL table into H20 Or, view example Flows to explore and learn
H50.
B getFrames Get a list of frames in H2O 20
® splitFrame 5plit 2 frame into two or more frames AR 120 ON GITHUES
& nmergeFrames Merge two frames into one O star
& getModels Get a list of models in H20
B getGrids Get a list of grid search results in H20 GENERAL
L4 getPredictions Get alist of predictions in H20 + Flow Web Ul
= getlobs Get a list of jobs running in H20 * ... Importing Data
. . .. Building Is
i%s runAutoML Automatically train and tune many models * ... Building Models
« ... Making Predictions
K buildModel Build a model e ... Using Flows
¥ importModel Import a saved model « ...Troubleshooting Flow
¥ predict Make a prediction
EXAMPLES
Flow packs are a great way to explore and
learn HzO. Try out these Flows and run them
in your browser.
Browse installed packs..
Hz0 REST API
« Routes
« Schemas
@ Ready Connections: 0 Hy,0

Figura 10. Interfaz grafica H20 Flow

Para el desarrollo de la red que se busca, lo primero que se ha hecho ha sido importar los
archivos con los conjuntos de datos, es decir, los diferentes dataset. Y después se ha hecho
“Parse” de los ficheros, donde se ha indicado el tipo de fichero que es, en este caso “csv’, y

el separador de columnas dentro del fichero, “;”.
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También, se ha indicado el nombre de las columnas y el tipo de dato de éstas. Esto se ha
hecho debido a que la estructura del fichero es la siguiente:

=
=
=

oW

OW 3 3O ; Lrow;orow; 7row W ; 1irow; 1
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Y

B ma
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[

..
@ e |
-
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5w
s ma
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-
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s ma

[

-
Y

..
@
-

-
s
s ma
[

e
.

s

..
LR R~ R S S R S T
-

Y

=
-

-

)
W R S R e

1. Estructura de los datasets utilizados en H20

Ademas, se seleccionado la opcion de que la primera linea del fichero contenga los nombres
de las columnas.

£ Setup Parse 8

PARSE CONFIGURATION
Sources @ nfs\C:\Users\Bowy'\Desktophdatasets\letra\letraSk2.csv
1D letra5k2.hex
Farser |(:5.\!’7v|

Separator | ::'059 v |

Escape Character 0
Column Headers () Auto
(®) First row contains column names

() First row contains data

Options 7] Enable single quotes as a field quotation character

Delete on done

EDIT COLUMN NAMES AMD TYPES

Search by column name...

1 lrow (Numeric v/ © 106 11106 10
2 2row [Numer'l'c v| 111111111
3 3row (Numeric v/ 111111161
4 4row [Numer'l'c v| 1111111481
5  Srow (Numeric v/ © 6 6 6 1 1.0 10
[ Brow [Numer'l'c v| 111111118
7 7Trow |:m:|ae@e@@@aa
8 Brow [Numer'l'c v| g 80 6 88 06 0 1
9 grow [Numeric v| © @ @ 06 0 0 0 0 O
18 1@row [Numer'l'c v| 11118 0118
11 1lrow [Numeric | 111111110
12 12row [Numer'l'c v| G 80 06 8 8 0 6 0 8
13 13row [Numeric v| © @ 0 8 0 0 0 0 1
14 14row |'Numer'|'c v'| @ 1 6 0 0 06 @8 00 v

Figura 12. Opcién “Parse” de H20
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Seguido de esto y de visualizar el fichero, se ha procedido a hacer la divisién del fichero en
conjunto de entrenamiento y conjunto de validacion.

H20 permite seleccionar el porcentaje que se quiere de divisién, fraccionando asi el dataset
en dos conjuntos de datos distintos: el conjunto de entrenamiento, que se encargara de
proporcionar a la red neuronal los distintos ejemplos u observaciones de los que esta
aprendera patrones y caracteristicas para realizar sus predicciones; y el conjunto de
validacién, que se ocupa de encontrar los mejores hiperpardmetros posibles de la red
neuronal para mejorar su rendimiento.

= assist splitFrame, "letra5k2.hex" &
.
X Split Frame
Frame: |letraSk2.hex w
Splits:  Ratio Key
0.75 frame_0.750 x
0.250 frame_0.250

Add a new split

Seed: 389212

¥ Create

Figura 13. Opcién “Split” de H20

Una vez se han tenido los conjuntos de datos disponibles en la plataforma para que ésta los
use, se ha creado el modelo.

H20 ofrece variedad en cuanto a los tipos de modelos de aprendizaje automéatico disponibles
para implementar, como, por ejemplo, bosque de aislamiento (Isolation Forest) o modelos
lineales generalizados (Generalized Linear Modeling).

En este caso, se ha seleccionado el modelo de aprendizaje profundo (Deep Learning), ya que

este tipo de técnica es capaz de procesar grandes cantidades de datos y aprender de ellos
para realizar diferentes tareas, como puede ser identificar patrones.
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H:O Flow = Cell- Data~ Model = Score- Admin~- Help-

Untitled Flow Run AutoML...

Oea +++ XEDODe&@ M
Aggregator...

- Next 20 Columns AMOVA for Generalized Linear Model... ou

Cox Proportional Hazards...

» CHUNK COMPRESSION SUMMARY . 21
Deep Learning... F

» FRAME DISTRIBUTION SUMMARY Distributed Random Forest...
Extended Isolation Forest...
Gradient Boosting Machine...

assist splitFrame, "letraSk2.hex"
Generalized Linear Modeling...

Generalized Low Rank Modeling... LAY

Information Diagram... g0

x Split Frame Isolation Forest... b
—_— K-means...

Frame: |letraSk2.hex v | D

Model Selection...

Splits:  Ratio Key ) L
Naive Bayes... 3
0.75 frame_0.750 n
Principal Components Analysis... |
0.250 frame_0.250 ) |
RuleFit...
Add a new split [
Stacked Ensemble...
Seed: 389212 ¥~
TargetEncoder... i..
Uplift Distributed Random Forest... r.
X Create Word2Vec...
AM
Import MOJO Model PV
splitFrame "letrask2.hex", [©8.75], List All Models a;cr
n nn "
["frame_8.758","frame_8.250"], 389212 List Grid Search Results Fov
Import Model...
. Export Model... i
BB Split Frames . R
-
Type Key Ratio
B frame_0.750 0.75
B frame_0.250 0.25

Figura 14. Menu de tipos de modelos disponibles en H20

Para su creacion, se han indicado los conjuntos de entrenamiento y validacion anteriormente
comentados, y en la opcién “response_column”, se ha indicado la columna “output”, ya que
es ésta la que contiene las etiquetas con los valores reales, es decir, los que el modelo
intentara predecir.

Por otro lado, la plataforma permite seleccionar gran cantidad de parametros, de los cuéles
se ha hecho uso principalmente de los siguientes:

e Hidden: indica las capas ocultas y el nimero de neuronas que se estan introduciendo.
Por ejemplo, si se introduce “200, 100”, el modelo tendra 2 capas ocultas, la primera
de 200 neuronas y la segunda de 100 neuronas.

e Epochs: es el numero de veces que el modelo va a ser iterado durante el
entrenamiento.
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e Loss: especifica la funcion de pérdida a utilizar por el modelo, manera de cuantificar
las diferencias entre las predicciones hechas por la red y los valores reales.

Todos los demas parametros se mantendran como los proporciona la plataforma por defecto.
De entre todos estos, cabe destacar que se va a usar la funcion de activacion “Rectifier”,
también conocida como “RelLU”.

& Build a Model

Select an algorithm: | Deep Learning v

PARAMETERS

model_id deeplearning-74ed3fe8-0998-4ac7 Destination id for this model; auto-generated if not specified.

training_frame | frame_0.750 « Id of the training data frame.
validation_frame | frame_0.250 Id of the validation data frame.
nfolds 0 Number of folds for K-fold cross-validation (0 to disable or >= 2),
response_column | output v Response variable column.
ignored_columns  Search... MNames of columns to ignore for training.

Showing page 1 of 4.-36 ignored.

1row
2row
Jrow
4row
Srow
Srow
Trow
8Brow
Frow

10row

(=
O None <> Next 10

Only show columns with more than 0 %

missing walues.

ignore_const_cols Ignore constant columns.
activation | Rectifier v Activation function.
hidden 200, 200 Hidden layer sizes (e.g. [100, 100]).

Figura 15. Construccion de un modelo en H20

Las funciones de activacion son funciones mateméticas que se aplican a los nodos o
neuronas de la red, su propésito es transformar la sefial de entrada que el nodo recibe, en
una sefial de salida.

Estas funciones permiten aplicar la no linealidad a las redes neuronales, lo que permite que
estas aprendan patrones complejos.
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En este caso se ha usado la funcion “RelLU”, que se define como:
f(z) = max(0, z)

Donde “x” es la entrada de la neurona.

A la hora de construir el modelo, la plataforma muestra una barra de progreso, una vez que
ésta se ha completado, es cuando se puede visualizar el entrenamiento del modelo.

v=Job
RunTime 00:00:02.915

Remaining Time (0:00:00.0
Type Model
Key Q, deeplearning-74ed3fe8-0998-dac7-bf63-c46830e28ab0
Description DeeplLearning
Status DONE
Progress  100%
Done.

Actions Q View

Figura 16. Entrenamiento de un modelo en H20
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A la hora de visualizar el entrenamiento del modelo, H20O ofrece distintas acciones a realizar
sobre el modelo y gran cantidad de informacion, como, por ejemplo, graficos con informacion
sobre el “loss” e informacién sobre los parametros y las variables.

& Model

Model ID: deeplearning-74ed3fe8-0998-4ac7-bf63-c46830e28ab0
Algorithm: Deep Learning
Actions: | g Refresh | % Predict.. & Download POJO
X Download Model Deployment Package (MOJO) B Export = Inspect
[ Delete 2. Download Gen Model

P MODEL PARAMETERS

* SCORING HISTORY - LOGLOSS
@.8287]
B.0264

B.8164
B.8144
B.8124

B.8184

training_logless, validation_leogless

B. o886+

.084

P WVARIABLE IMPORTANCES

P TRAINING METRICS - CONFUSION MATRIX ROW LABELS: ACTUAL
CLASS, COLUMM LABELS: PREDICTED CLASS

Figura 17. Resultados de un entrenamiento en H20
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Para efectuar las predicciones y comprobar que el modelo las realiza correctamente se ha

utilizado la accién “Predict...”.

Ademads, se ha elegido el frame de validacion sacado de la division de los datos comentada
anteriormente, y se ha combinado con el frame principal.

¥ Predict

Compute
Deep
Features
Hidden
Layer:

Name: | prediction-c3b32afd-d455-4
Model: deeplearning-74ed3feB8-0998-4ac7-bf63-c46830e28ab0

Frame: | frame_0.250

Actions: | & Predict

Figura 18. Opcién de realizar una predicciéon en H20

¥ Prediction

Actions: = Inspect

*PREDICTION

modeal
model_checksum
frame
frame_checksum
description
model_caotegory
scoring_time
predictions

MSE

RMSE

nobs
custom_metric_name
custom_metric_wvalue
r2

logloss
loglikelihood

AIC
mearn_per_class_error
AlC

pr_auc

multinomial_oucpr_table

deeplearning-T4ed3fe8-09%8-4acT-bfE3-c46830e28ab0
4359378T8722T7936838
frame_@.250

257655306570235040

Multinomial

1716658032210

=]
T
o
I
[
7
o
.)
-
[+

prediction-c3b32afd-dd455-4baa-Scie-Bd4849abo
@.884012

B.8683337

1221

o]
@8.999926
@.817680
NaN

NaM
.88491%
NaM

NaM

multinomigl_guc_table -

BB Combine predictions with frame

* PREDICTION - TOP-10 HIT RATIOS

Figura 19. Prediccién realizada en H20
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Después de combinarlo, H20 Flow nos da la opcién de exportar los resultados de la
prediccidn, con los que, gracias al desarrollo de un script en Python que compara los valores
predichos con los valores reales, se ha calculado la precision de la prediccién hecha por el

modelo.

B Export Frame
Frame: | combined-prediction-c3b32afd-d455-4baa-9c9e-8d4849abd7fa ~
Path:

Overwrite:

Actions: @ Export

Figura 20. Exportar frame en H20

df = pd.read_csv('C

columnal = df[’
columna2 = df[’

aciertos = @

comparacion = columnal == columna2
aciertos = comparacion.sum()

print("P " + str((aciertos / len(df) *168)) + " &")

Figura 21. Script para calcular la precisién de una prediccién de H20
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4.2.4 PyTorch

El desarrollo del programa con PyTorch es el objetivo final de este Trabajo de Fin de Grado
(TFG), ya que seré el que utilicen principalmente los alumnos para aprender sobre las redes
neuronales.

Para sus fines en el ambito de la ensefianza, se ha buscado crear un simulador lo mas
entendible y legible para cualquier usuario.

La base de este software es el modelo de red neuronal artificial creado, que se trata de un
Perceptron Multicapa, o en inglés Multilayer Perceptron (MLP), un tipo de red neuronal
artificial que supone una mejora en cuanto al Perceptrén, ya que el Perceptron Multicapa es
capaz de resolver problemas no lineales gracias a que esta compuesto de capas.

Este modelo se ha implementado de dos formas distintas: sin capa oculta y con capa oculta.

La implementacion sin capa oculta se basa en una capa de entrada de 35 neuronas, y una
de salida con 26 neuronas, ambas capas totalmente conectadas. Estas neuronas hacen
referencia a los digitos de entrada y salida del dataset, respectivamente.

Las capas de este modelo disponen de una funcién de activacibn que se encarga de
transformar las salidas a un valor entre 0 y 1, la funcion “Sigmoid”, que es especialmente Util
cuando se desarrollan tareas de clasificacion binaria, lo que es el caso, ya que a cada neurona
de salida le corresponde el valor 0 0 1.

La funcion “Sigmoid” viene definida por la siguiente funcion:

1

P(t) = ——
(t) g

Por otro lado, el modelo con capa oculta, implementa tres capas distintas, la de entrada, la
oculta y la de salida. La capa ocupa permite mejora en aprendizaje y la clasificacion del
modelo, y permite a este aprender patrones mas complejos.

En este caso, el modelo hace uso de las funciones de activacién explicadas anteriormente,
tanto de la funcion “ReLU”, como de la funcién “Sigmoid”, de manera respectiva.

Ambos modelos trabajan con los mismos parametros y caracteristicas. Para empezar, la
funcién de pérdida usada es la funcion de entropia cruzada binaria.

La entropia cruzada es una funcion que se encarga de comparar la distribucion de
probabilidad de los datos de salida con la distribucion de probabilidad real, es decir, los datos
reales. Para el caso, se ha utilizado un tipo de entropia, que ofrece PyTorch, destinada a la
clasificacién de datos binarios (6).

La funcion de entropia cruzada viene definida por la siguiente funcion:

H(p, q) = E,[— logq] = H(p) + Dxw(p||q)

p” la real.

[T}

Siendo “q” la distribucion de probabilidad predicha y
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Por otro lado, el modelo hace uso del optimizador “Root Mean Square Propagation”
(RMSProp), que es el encargado de minimizar los errores cometidos por el modelo, mediante
el ajuste de parametros y pesos (7).

Al optimizador RMSProp, se le pasa como parametro la tasa de aprendizaje, en inglés,
“learning rate”, que se trata del valor de actualizacion de los pesos durante el aprendizaje,
este es un valor de complejo ajuste, debido a que si es excesivamente elevado puede
acarrear un mal funcionamiento del modelo, y si es demasiado bajo, el aprendizaje puede ser
demasiado largo en el tiempo (8).

El software se ha desarrollado de tal manera que ofrece opcidn de utilizar tanto la CPU, como
la GPU para el aprendizaje de la red neuronal.

Finalmente, el simulador permite variar el nUmero de “epochs” y el tamano de “batch” para el
entrenamiento del modelo.

El nimero de “epochs” es el nUmero de veces que el modelo itera sobre el conjunto de datos,
realizando durante un “epoch”, una iteracién hacia delante (forward) y otra hacia detras
(backward), a través del conjunto de datos.

En cuanto al tamafo de “batch”, este se trata del nUmero de observaciones o ejemplos de
datos que se utilizacion en una Unica iteracion del entrenamiento. De este valor puede
depender la eficiencia a nivel computacional del entrenamiento del modelo.

En tema de resultados, el simulador ofrece retroalimentacion en cuanto al dispositivo sobre
el que se esta desarrollando el entrenamiento. Dicho de otra manera, si el entrenamiento se
esta haciendo en la CPU o la GPU.

También, ofrece informacion sobre el “epoch” del entrenamiento en el que se encuentray la
pérdida que ha tenido en él.

Cuando el entrenamiento finaliza, muestra el tiempo en el que se ha desarrollado e inicia la
fase de test, en la que el conjunto de datos de entrada de test es pasado al modelo, y la salida
es comparada con los valores reales, lo que permite obtener y mostrar la precision de
prediccion del modelo.

Para esto, el software divide el dataset en un conjunto de entrenamiento y otro de test, siendo
el porcentaje de estos facilmente modificable.
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Una vez completada la fase de test, el simulador muestra dos graficos:

o El primer grafico muestra la evolucion de la pérdida conforme avanzan los “epochs”.

0.018 4

0.016 4

0.014 4

0.012 4

Loss

0.010 4

0.008 4

0.006 4

0.004 4

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

Figura 22. Ejemplo de gréfico de relacion Loss-Epochs con PyTorch

e El segundo muestra la regresion lineal y el coeficiente de determinacion.

R2:0.9195841796237698

25

20 A

15 A

Predicted

10

Figura 23. Ejemplo de gréfico de regresion lineal y coeficiente de determinacién con PyTorch
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5. Resultados

En este apartado se han recopilado todos los resultados obtenidos, tanto en el entrenamiento,
como en las predicciones realizadas por las redes neuronales.

Todos estos resultados estan diferenciados por los distintos parametros y caracteristicas que
pueden ser aplicados a los modelos.

Ademads, todas las pruebas se han realizado con los distintos datasets ya explicados.

5.1 H20

Los gréficos indicados en este apartado, muestran la cantidad de “epochs” en el eje X, y el
valor del “loss” en el eje y. Dicho de otra manera, muestra la evolucién del “loss” conforme
avanzan los “epochs”.

Ademas, dichos graficos muestran en color azul el “loss” durante el entrenamiento, y en
naranja, el “loss” durante la validacion.

La primera conclusion a sacar después de las pruebas realizadas con dos datasets, es que
es totalmente ineficiente entrenar el modelo con una cantidad de epochs que no se encuentre
entre 400 y 800, siendo por lo general, aproximadamente 600 el valor éptimo de epochs.

De todo el conjunto de pruebas se han seleccionado los siguientes resultados para
ejemplificar lo anterior.

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 No 5000 Auto

Tabla 6. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

50,771 0,002371 0,048689 99,729 %

Tabla 7. Resultados modelo 4
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Figura 24. Grafico modelo 4

Por lo que, de ahora en adelante se han entrenado las redes neuronales con este valor,

excepto en aquellos entrenamientos en los que, viendo los resultados, se ha determinado que
se necesita un nimero mayor de epochs para mejorarlos.

Después de analizar otros dos datasets, se ha observado que forzar a H20 a utilizar la funcién

de pérdida “CrossEntropy”, es ligeramente mejor a nivel general que dejar que la plataforma
decida que funcién de pérdida utilizar con la opcion “Auto”.

Debido a esto, en las siguientes pruebas se utilizar4 Unicamente la funcion de entropia
cruzada.

Al analizar los dataset de 10.000 observaciones, se ha visualizado que el nUmero de epochs
Optimos para no realizar trabajo en vano, esta entre 200 y 400.

Finalmente, después de haber realizado todas las pruebas en H20, se ha concluido que, en

este caso, utilizar una capa oculta con neuronas disminuye el tiempo de entrenamiento, pero
reduce la precision de manera minima.

En cuanto a la divisién del conjunto de datos, no hay gran diferencia aparente entre en uso

de las proporciones 80-20 y 70-30, sin embargo, la proporciéon 80-20 es ligeramente mas
precisa.

Todos los resultados del resto de pruebas realizadas de los que se han obtenido estas
conclusiones, se han plasmado en el Anexo I.
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5.2 PyTorch

Las pruebas realizadas en el simulador estan directamente relacionadas con las realizadas
en H20, ya que en funcién de los resultados y conclusiones obtenidas en H20 aplicando los
diferentes hiperparametros, para PyTorch han sido aplicados Unicamente aquellos que
ofrecian un mejor rendimiento.

Por lo que, para las pruebas de PyTorch se ha aplicado una proporcion de division del
conjunto de datos de 80-20, un 80% para el conjunto de datos de entrenamiento y un 20%
para el de test. Ademas, se ha aplicado un numero de “epochs” de 600.

Por otro lado, se han implementado dos modelos distintos, uno sin capa oculta y otro con una
capa oculta de 10 neuronas. A ambos modelos se les ha aplicado el optimizador con una tasa
de aprendizaje (learning rate), con un valor de 0,01y 0,1.

El entrenamiento se ha realizado inicialmente con un tamafo de “batch” de 35, ya que esta
ampliamente extendido el uso de la cantidad de neuronas de la capa de entrada como tamafio
de “batch”.

Después de realizar las pruebas con el primer dataset, la primera conclusién clara es que no
se necesita de un numero de “epochs” tan elevado como en H20, es posible que esto se
deba a PyTorch es una tecnologia mas puntera y que esta siendo ejecutado directamente
sobre el intérprete, sin ninguna API adicional, como pudiera ser la interfaz H20 Flow.

Viendo esto, se ha aplicado un numero de “epochs” de 100. Aunque 600 “epochs” pueda
vislumbrar una cantidad menor de pérdida, se ha considerado que esta disminucién es
demasiado baja en comparacion con el coste computacional y temporal que la provoca.

Ademas, observando los resultados de la ultima prueba del primer dataset, se puede intuir un
mal funcionamiento, pese a que se ha obtenido una alta precision, del 96,916%, no llega a
ser tan elevada como en las demas pruebas. Esta alteracion en el entrenamiento se puede
deber a un valor excesivamente alto de la tasa de aprendizaje, por lo que, en siguientes
pruebas se ha utilizado Unicamente el valor 0,01 como dicha tasa.

De todo el conjunto de pruebas se han seleccionado los siguientes resultados para
ejemplificar lo anterior. Cabe recalcar como ejemplo del mal funcionamiento, el valor -0,089
del coeficiente de determinacion

Parametros:

Division Capa oculta Epochs Learning rate

(neuronas)

80-20 10 600 35 0,1

Tabla 8. Parametros modelo 4

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

47,225 -0,089 96,916 %

Tabla 9. Resultados modelo 4
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Figura 25. Grafico de pérdida modelo 4
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Figura 26. Grafico de R2 modelo 4

Al concluir las pruebas con los datasets de 5.000 observaciones, se ha identificado que el
numero de “epochs” puede ser disminuido aun mas, ya que en algunos casos no solo no es
lo suficientemente eficiente, sino que genera un aumento en la pérdida. Asi pues, se ha
optado por bajar esta cifra a 10.

Por otro lado, se ha observado que no existe practicamente cambio al usar o0 no capa oculta,
por lo que se ha decidido aumentas las neuronas de la capa oculta a 128, para de esta
manera, observar la diferencia en el uso o no de esta capa.

Después de las pruebas con el primer dataset de 10.000 observaciones, se ha decidido variar
el tamano de “batch”, alternando entre 35 y 300.
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Tras haber realizado las pruebas con los datasets de 10.000, se ha apreciado que el tiempo
se reduce sobre manera al aumentar el tamafo de “batch”, esto es algo que se podia
presuponer en un principio, sin embargo, se ha de tener cuidado ya que puede reducir la
eficiencia del entrenamiento.

Con respecto al aumento de las neuronas en la capa oculta, ha provocado una mejora en los
resultados a nivel de prediccién. También ha estabilizado dichos resultados, haciendo al
modelo mas resistente a cambios en otros hiperparametros.

Se ha seleccionado la ultima prueba realizada para mostrar la evolucion de los resultados.

Parametros:

Division Capa oculta

(neuronas)

80-20 128 10 300 0,01

Tabla 10. Parametros modelo 4

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

determinacion

(s)
0,370 0,952 99,717 %

Tabla 11. Resultados modelo 4
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Figura 27. Gréfica de pérdida modelo 4
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R2: 0.9527330930646329
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Figura 28. Grafico de R2 modelo 4

Todos los resultados del resto de pruebas realizadas de los que se han obtenido estas
conclusiones, se han plasmado en el Anexo Il.
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6 Licencia Software y Documental

Llegados a este apartado, se va a proceder a comentar tanto la licencia de software
como la licencia documental.

En cuanto a la licencia de software se va a emplear Berkeley Software Distribution
(BSD). Se trata de una licencia de software libre permisiva como puede ser OpenSSL o la
MIT License. Existen diferentes tipos de licencias, en el caso de este TFG se ha utilizado la
licencia “BSD modificada”, “BSD revisada”, “BSD-3” o “BSD de 3 clausulas”.

Figura 29. Logotipo de la licencia BSD

Al igual que sucede en el mundo del software, se tienen que buscar formas de
garantizar las libertades asociadas al trabajo elaborado y su inviolabilidad futura. Para
garantizar que la libertad esté asociada al documento se buscan métodos, uno de ellos es la
licencia GNU Free Documentation License GFDL).

Figura 30. Logotipo de la licencia GNU

El propdsito de esta Licencia es hacer que en el caso de este TFG sea 'gratuito’ en el
sentido de libertad: para asegurar a todos la libertad efectiva de copiarlo y redistribuirlo, con
o sin madificarlo, ya sea comercial 0 no comercialmente. En segundo lugar, esta licencia
preserva para el autor y el editor una forma de obtener crédito por su trabajo, sin ser
considerado responsable de las modificaciones realizadas por otros. Es una especie de
‘copyleft’, lo que significa que las obras derivadas del documento deben ser libres en el mismo
sentido. Si por algn motivo se emplea este documento y se modifica, debe realizar una serie
de acciones indicadas en el sitio web oficial de GNU.

Tampoco hay que olvidar que este documento, por defecto, esta al amparo de

la licencia 7.3, por su inclusion en el Repositorio Institucional de Documentos
de la Universidad de Zaragoza: ZAGUAN

[orocle)

Figura 31. Licencia de ZAGUAN
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7 Conclusiones y Trabajo Futuro

En este TFG se ha abordado el problema de la obsolescencia y antigiiedad de los simuladores
de redes neuronales existentes y la necesidad de estos para el ambito docente.

Asimismo, se ha afrontado la creacion, tanto de un conjunto de datos semejantes a la
representacion de las letras del abecedario a nivel de imagen con pixeles, como de una red
neuronal artificial capaz de procesarlo e identificar de qué letra se trata, mostrando resultados
lo més claros y concluyentes posibles para que puedan ser interpretados por los alumnos.

El desarrollo de este trabajo ha supuesto un aprendizaje continuo en un campo de las
tecnologias de la informacion totalmente en auge y del que, a nivel personal, no se tenia gran
conocimiento sobre él, mas alla de lo estudiado durante el grado, lo cual abarcaba
principalmente lo teérico sin hacer uso de las tecnologias y sus aplicaciones reales.

Durante estos meses de desarrollo, se ha aprendido a trabajar con herramientas punteras en
el campo de la Inteligencia Atrtificial, como lo son PyTorch y H20, lo que me ha permitido
crecer hacia un sector mas profesional en este ambito y, enriquecer mi conocimiento sobre
las redes neuronales, asi como espero que este simulador pueda ser de ayuda y sirva de
igual manera para los estudiantes venideros del grado.

En cuanto al trabajo futuro, se podrian implementar distintas mejoras sobre el simulador,
cémo, por ejemplo, permitir la creacion de mdltiples tipos de redes neuronales, aplicando un
conjunto de datos diferente a cada unay viendo las utilidades que éstas tienen dependiendo
de los datos de observaciones.

Ademas, el desarrollo de una interfaz seria interesante, ya que se ha intentado crear una
sencilla, sin embargo, al estar trabajando con un lenguaje interpretado como lo es Python,
aparecian varios problemas e incapacidades.

Por otro lado, a nivel técnico, pruebas realizadas con PyTorch, y el acotamiento y la
comparacion realizada con H20, han permitido observar la importancia de los diferentes
hiperpardmetros y que no existe una formula secreta, sino que esto de la Inteligencia Artificial
es mas bien un juego de prueba y error.
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Anexo |. Resultados de las pruebas en H20

Las siguientes representaciones, tanto tabulares como gréficas, muestran los parametros
aplicados en el entrenamiento de los modelos, los resultados obtenidos de dicho
entrenamiento, y como de aproximadas son las predicciones realizadas por el modelo en
comparacion con el conjunto de datos original. Todo esto realizado en el entorno de H20.

Dataset 5.000 observaciones, hasta dos cambios

Modelo 1

Parametros:

Division Capa oculta Loss Function

(QENIES))

70-30 No 2000 CrossEntropy

Tabla 12. Parametros modelo 1

Resultados:

Tiempo de Precision
entrenamiento (s)

21,936 0,005948 0,077122 99,285 %
Tabla 13. Resultados modelo 1
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@
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Figura 32. Grafico modelo 1
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Modelo 2

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 No 2000 Auto

Tabla 14. Parametros modelo 2

Resultados:

Tiempo de Precisién
entrenamiento

21,756 0,003589 0,059907 99,530 %

Tabla 15. Resultados modelo 2

training_logless, validation_logloss
@
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Figura 33. Gréfico modelo 2

Modelo 3

Parametros:

Division Capa oculta Loss Function

(neuronas)
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70-30 No 5000 CrossEntropy

Tabla 16. ParAmetros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

50,547 0,002865 0,053526 99,615 %
Tabla 17. Resultados modelo 3

training_logless, validation_logloss
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Figura 34. Gréafico modelo 3

Modelo 4

Parametros:

Division Capa oculta Loss Function
(neuronas)

70-30 No 5000 Auto
Tabla 18. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)
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50,771 0,002371 0,048689 99,729 %
Tabla 19. Resultados modelo 4
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Figura 35. Grafico modelo 4

Modelo 5

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 10 2000 CrossEntropy

Tabla 20. Parametros modelo 5

Resultados:

Tiempo de Precision

entrenamiento (s)

13,666 0,006765 0,082250 99,260 %
Tabla 21. Resultados modelo 5
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Figura 36. Gréafico modelo 5

Modelo 6

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 10 2000 Auto

Tabla 22. Parametros modelo 6

Resultados:

Tiempo de Precision

entrenamiento (s)

12,938 0,007158 0,084603 99,208 %
Tabla 23. Resultados modelo 6
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Figura 37. Grafico modelo 6

Modelo 7

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 10 5000 CrossEntropy

Tabla 24. Parametros modelo 7

Resultados:

Tiempo de Precision

entrenamiento (s)

34,370 0,005750 0,075829 99,334 %

Tabla 25. Resultados modelo 7
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Figura 38. Gréafico modelo 7

Modelo 8
Parametros:
Divisién Capa oculta Loss Function
(neuronas)
70-30 10 5000 Auto
Tabla 26. Parametros modelo 8
Resultados:

Tiempo de

entrenamiento (s)

Precision

35,498

0,007869 0,088705 99,196 %

Tabla 27. Resultados modelo 8
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Figura 39. Grafico modelo 8

Modelo 9

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 No 2000 CrossEntropy

Tabla 28. Parametros modelo 9

Resultados:

Tiempo de Precision

entrenamiento (s)

25,354 0,005878 0,076668 99,290 %
Tabla 29. Resultados modelo 9
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Figura 40. Gréafico modelo 9

Modelo 10

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 No 2000 Auto

Tabla 30. Parametros modelo 10

Resultados:

Tiempo de Precision

entrenamiento (s)

25,118 0,004525 0,067266 99,196 %
Tabla 31. Resultados modelo 10
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Figura 41. Grafico modelo 10

Modelo 11

Parametros:

Division Capa oculta Loss Function
(neuronas)

80-20 No 5000 CrossEntropy

Tabla 32. Parametros modelo 11

Resultados:

Tiempo de Precision

entrenamiento (s)

50,923 0,003263 0,057122 99,611 %
Tabla 33. Resultados modelo 11
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Figura 42. Gréafico modelo 11

Modelo 12

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 No 5000 Auto

Tabla 34. Parametros modelo 12

Resultados:

Tiempo de Precision

entrenamiento (s)

50,746 0,003715 0,060950 99,413 %
Tabla 35. Resultados modelo 12
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Figura 43. Grafico modelo 12

Modelo 13

Parametros:

Divisién Capa oculta Loss Function
(neuronas)

80-20 10 2000 CrossEntropy

Tabla 36. Parametros modelo 13

Resultados:

Tiempo de Precision

entrenamiento (s)

15,122 0,006653 0,081568 99,200 %
Tabla 37. Resultados modelo 13
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Figura 44. Gréfico modelo 13
Modelo 14

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 10 2000 Auto

Tabla 38. Parametros modelo 14

Resultados:

Tiempo de Precision

entrenamiento (s)

15,225 0,004603 0,067849 99.510 %
Tabla 39. Resultados modelo 14
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Figura 45. Grafico modelo 14

Modelo 15

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 10 5000 CrossEntropy

Tabla 40. Parametros modelo 15

Resultados:

Tiempo de Precision

entrenamiento (s)

39,168 0,010262 0,101301 98.839 %
Tabla 41. Resultados modelo 15
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Figura 46. Gréafico modelo 15
Modelo 16

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 10 5000 Auto

Tabla 42. Parametros modelo 16

Resultados:

Tiempo de Precision

entrenamiento (s)

41,584 0,013213 0,114949 98.454 %
Tabla 43. Resultados modelo 16
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Figura 47. Gréafico modelo 16
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Dataset 5.000 observaciones, hasta tres cambios

Modelo 1

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 No 2000 CrossEntropy

Tabla 44. Pardmetros modelo 1

Resultados:

Tiempo de Precision

entrenamiento (s)

22,771 0,003532 0,003532 99,465 %

Tabla 45. Resultados modelo 1
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Figura 48. Gréfico modelo 1
Modelo 2

Parametros:

Division Capa oculta Loss Function

(neuronas)
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70-30 No 2000 Auto

Tabla 46. ParAmetros modelo 2

Resultados:

Tiempo de Precision

entrenamiento (s)

21,633 0,003214 0,003214 99,523 %
Tabla 47. Resultados modelo 2

training_logless, validation_logloss
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Figura 49. Gréafico modelo 2

Modelo 3

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 No 5000 CrossEntropy
Tabla 48. Parametros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

50,816 0,003874 0,062238 99,468 %
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Tabla 49. Resultados modelo 3
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Figura 50. Gréafico modelo 3

Modelo 4

Parametros:

Division Capa oculta Loss Function
(neuronas)

70-30 No 5000 Auto

Tabla 50. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

50,902 0,002798 0,052896 99,528 %

Tabla 51. Resultados modelo 4
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training_logless, validation_logless
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Figura 51. Gréafico modelo 4

Modelo 5

Parametros:

Division Capa oculta Loss Function
(neuronas)

70-30 10 2000 CrossEntropy

Tabla 52. Parametros modelo 5

Resultados:

Tiempo de Precision

entrenamiento (s)

13,805 0,012329 0,111035 98,495 %

Tabla 53. Resultados modelo 5
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Figura 52. Gréafico modelo 5

Modelo 6

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 2000 Auto

Tabla 54. Parametros modelo 6

Resultados:

Tiempo de Precision

entrenamiento (s)

13,543 0,008150 0,090277 99,078 %
Tabla 55. Resultado modelo 6
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Figura 53. Gréafico modelo 6

Modelo 7

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 5000 CrossEntropy

Tabla 56. Parametros modelo 7

Resultados:

Tiempo de Precision

entrenamiento (s)

35,633 0,005314 0,072895 99,406 %
Tabla 57. Resultados modelo 7
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Figura 54. Gréafico modelo 7

Modelo 8

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 10 5000 Auto

Tabla 58. Parametros modelo 8

Resultados:

Tiempo de Precision

entrenamiento (s)

35,891 0,005492 0,074111 99,244 %
Tabla 59. Resultados modelo 8

62



training_logless, validation_logloss
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Figura 55. GréfiE:o modelo 8

Modelo 9

Parametros:

Divisién Capa oculta Loss Function
(neuronas)

80-20 No 2000 CrossEntropy

Tabla 60. Parametros modelo 9

Resultados:

Tiempo de Precision

entrenamiento (s)

26,727 0,002218 0,047099 99,705 %

Tabla 61. Resultados modelo 9
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Figura 56. Gréafico modelo 9

Modelo 10

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 No 2000 Auto

Tabla 62. Parametros modelo 10

Resultados:

Tiempo de Precision

entrenamiento (s)

26,929 0,004127 0,064240 99,494 %
Tabla 63. Resultados modelo 10
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Figura 57. Grafico modelo 10

Modelo 11

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 No 5000 CrossEntropy

Tabla 64. Parametros modelo 11

Resultados:

Tiempo de Precision

entrenamiento (s)

51,112 0,002177 0,046661 99,788 %
Tabla 65. Resultados modelo 11
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Figura 58. Grafico modelo 11

Modelo 12

Parametros:

Divisién Capa oculta Loss Function
(neuronas)

80-20 No 5000 Auto

Tabla 66. Parametros modelo 12

Resultados:

Tiempo de Precision

entrenamiento (s)

50,734 0,003126 0,055911 99,598 %
Tabla 67. Resultados modelo 12
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Figura 59. Grafico modelo 12

Modelo 13

Parametros:

Divisién Capa oculta Loss Function
(neuronas)

80-20 10 2000 CrossEntropy

Tabla 68. Parametros modelo 13

Resultados:

Tiempo de Precision

entrenamiento (s)

16,593 0,009367 0,096781 98,803 %
Tabla 69. Resultados modelo 13
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Figura 60. Grafico modelo 13

Modelo 14

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 2000 Auto

Tabla 70. ParAmetros modelo 14

Resultados:

Tiempo de Precision

entrenamiento (s)

16,418 0,007507 0,086645 99,008 %
Tabla 71. Resultados modelo 14
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Figura 61. Grafico modelo 14

Modelo 15

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 5000 CrossEntropy

Tabla 72. ParAmetros modelo 15

Resultados:

Tiempo de Precision

entrenamiento (s)

41,583 0,005250 0,072454 99,430 %
Tabla 73. Resultados modelo 15
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Figura 62. Grafico modelo 15

Modelo 16

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 5000 Auto

Tabla 74. ParAmetros modelo 16

Resultados:

Tiempo de Precision

entrenamiento (s)

42,459 0,004982 0,070584 99,430 %
Tabla 75. Resultados modelo 16
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Dataset 5.000 observaciones, hasta cinco cambios

Modelo 1

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 No 600 CrossEntropy

Tabla 76. ParAmetros modelo 1

Resultados:

Tiempo de Precision

entrenamiento (s)

6,538 0,022646 0,150486 97,375 %

Tabla 77. Resultados modelo 1
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Figura 64. Gréafico modelo 1

Modelo 2

Parametros:

Division Capa oculta Loss Function

(neuronas)
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70-30 No 600 Auto

Tabla 78. Pardmetros modelo 2

Resultados:

Tiempo de Precision

entrenamiento (s)

6,127 0,027384 0,165480 96,817 %
Tabla 79. Resultados modelo 2
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Figura 65. Grafico modelo 2

Modelo 3

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 600 CrossEntropy

Tabla 80. Parametros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

3,894 0,052614 0,229376 96,839 %

Tabla 81. Resultados modelo 3
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Figura 66. Gréafico modelo 3

Modelo 4

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 600 Auto

Tabla 82. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

3,764 0,061357 0,247703 92,866 %
Tabla 83. Resultados modelo 4
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Figura 67. Gréafico modelo 4

Modelo 5

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 No 600 CrossEntropy

Tabla 84. Parametros modelo 5

Resultados:

Tiempo de Precision

entrenamiento (s)

7,900 0,026184 0,161816 96,810 %
Tabla 85. Resultados modelo 5
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Figura 68. Grafico modelo 5

Modelo 6

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 No 600 Auto

Tabla 86. Parametros modelo 6

Resultados:

Tiempo de Precision

entrenamiento (s)

6,908 0,025179 0,158680 97,128 %
Tabla 87. Resultados modelo 6
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Figura 69. Gréafico modelo 6

Modelo 7

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 10 600 CrossEntropy

Tabla 88. Parametros modelo 7

Resultados:

Tiempo de Precision

entrenamiento (s)

4,549 0,055693 0,235994 93,394 %
Tabla 89. Resultados modelo 7
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Figura 70. Grafico modelo 7

Modelo 8

Parametros:

Division Capa oculta Loss Function

(neuronas)

80-20 10 600 Auto

Tabla 90. Parametros modelo 8

Resultados:

Tiempo de Precision

entrenamiento (s)

4,811 0,063923 0,252830 92,799 %
Tabla 91. Resultados modelo 8
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Figura 71. Grafico modelo 8
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Dataset 10.000 observaciones, hasta dos cambios

Modelo 1

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 No 600 CrossEntropy

Tabla 92. Pardmetros modelo 1

Resultados:

Tiempo de Precision

entrenamiento (s)

13,547 0,003400 0,058310 99,535 %

Tabla 93. Resultados modelo 1
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Figura 72. Gréafico modelo 1

Modelo 2

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 No 600 Auto
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Tabla 94. Parametros modelo 2

Resultados:

Tiempo de Precisién

entrenamiento (s)

13,244 0,002328 0,048253 99,633 %
Tabla 95. Resultados modelo 2
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Figura 73. Grafico modelo 2

Modelo 3

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 600 CrossEntropy

Tabla 96. Parametros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

8,499 0,004608 0,067885 99,432 %
Tabla 97. Resultados modelo 3
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Figura 74. Grafico modelo 3

Modelo 4

Parametros:

Division Capa oculta Loss Function

(neuronas)

70-30 10 600 Auto

Tabla 98. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

8,768 0,004789 0,069203 99,516 %
Tabla 99. Resultados modelo 4
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Figura 75. Grafico modelo 4

Modelo 5

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 No 600 CrossEntropy

Tabla 100. Parametros modelo 5

Resultados:

Tiempo de Precision

entrenamiento (s)

16,730 0,002150 0,046369 99,801 %
Tabla 101. Resultados modelo 5
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Figura 76. Grafico modelo 5

Modelo 6

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 No 600 Auto

Tabla 102. Parametros modelo 6

Resultados:

Tiempo de Precision

entrenamiento (s)

18,479 0,003506 0,059208 99,491 %

Tabla 103. Resultados modelo 6
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Figura 77. Grafico modelo 6

Modelo 7

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 600 CrossEntropy

Tabla 104. Parametros modelo 7

Resultados:

Tiempo de Precision

entrenamiento (s)

9,451 0,005071 0,071210 99,344 %
Tabla 105. Resultados modelo 7
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Figura 78. Grafico modelo 7

Modelo 8

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 600 Auto

Tabla 106. Parametros modelo 8

Resultados:

Tiempo de Precision

entrenamiento (s)

9,610 0,006048 0,077770 99,139 %
Tabla 107. Resultados modelo 8
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Figura 79. Gréfico modelo 8
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Dataset 10.000 observaciones, hasta tres cambios

Modelo 1

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 No 600 CrossEntropy

Tabla 108. Parametros modelo 1

Resultados:

Tiempo de Precision

entrenamiento (s)

13,761 0,002712 0,052078 99,535 %
Tabla 109. Resultados modelo 1
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Figura 80. Gréfico modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Loss Function

(neuronas)
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70-30 10 600 CrossEntropy

Tabla 110. Parametros modelo 2

Resultados:

Tiempo de Precision

entrenamiento (s)

8,575 0,003266 0,057151 99,600 %
Tabla 111. Resultados modelo 2
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Figura 81. Grafico modelo 2

Modelo 3

Parametros:

Division Capa oculta Loss Function

(QENIIES))

80-20 No 600 CrossEntropy

Tabla 112. Parametros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

15,587 0,001837 0,042856 99,705 %
Tabla 113. Resultados modelo 3
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Figura 82. Grafico modelo 3

Modelo 4

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 600 CrossEntropy

Tabla 114. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

9,915 0,005127 0,071605 99,345 %
Tabla 115. Resultados modelo 4
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Figura 83. Grafico modelo 4

Dataset 10.000 observaciones, hasta cinco cambios

Modelo 1

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 No 600 CrossEntropy

Tabla 116. Parametros modelo 1

Resultados:

Tiempo de Precision

entrenamiento (s)

14,398 0,020460 0,143039 97,536 %
Tabla 117. Resultados modelo 1
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Figura 84. Grafico modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

70-30 10 600 CrossEntropy

Tabla 118. Parametros modelo 2

Resultados:

Tiempo de Precision

entrenamiento (s)

11,887 0,038119 0,195242 95,591 %
Tabla 119. Resultados modelo 2
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Figura 85. Gréafico modelo 2

Modelo 3

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 No 600 CrossEntropy

Tabla 120. Parametros modelo 3

Resultados:

Tiempo de Precision

entrenamiento (s)

16,728 0,024011 0,154954 97,041 %
Tabla 121. Resultados modelo 3
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Figura 86. Grafico modelo 3

Modelo 4

Parametros:

Divisién Capa oculta Loss Function

(neuronas)

80-20 10 600 CrossEntropy

Tabla 122. Parametros modelo 4

Resultados:

Tiempo de Precision

entrenamiento (s)

11,224 0,033228 0,182286 95,940 %
Tabla 123. Resultados modelo 4
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Anexo Il. Resultados de las pruebas en PyTorch

Las siguientes representaciones, tanto tabulares como gréficas, muestran los parametros
aplicados en el entrenamiento de los modelos, los resultados obtenidos de dicho
entrenamiento, y como de aproximadas son las predicciones realizadas por el modelo en
comparacion con el conjunto de datos original. Todo esto realizado en el entorno de PyTorch.

Dataset 5.000 observaciones, hasta dos cambios

Modelo 1
Parametros:
Division Capa oculta Epochs Batch Learning rate
(neuronas)
80-20 No 600 35 0,01
Tabla 124. Pardmetros modelo 1
Resultados:

Tiempo de entrenamiento

©)

Coeficiente de Precision
determinacion

34,417

0,984 99,894 %

0.05 4

0.04 4

0.03 4

Loss

0.02 4

0.01 ~

0.00 +

Tabla 125. Resultados modelo 1
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Figura 88. Grafico de pérdida modelo 1
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Figura 89. Grafico de R2 modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 No 600 35 0,1

Tabla 126. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

37,258 0,989 99,914 %
Tabla 127. Resultado modelo 2
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Figura 91. Gréfico de R2 modelo 2

Modelo 3
Parametros:
Division Capa oculta Epochs Learning rate
(neuronas)
80-20 10 600 35 0,01
Tabla 128. Parametros modelo 3
Resultados:
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Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

48,391 0,967 99,708 %

Tabla 129. Resultados modelo 3
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Figura 93. Gréfico de R2 modelo 3

Modelo 4

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)
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80-20 10 600 35 0,1

Tabla 130. Parametros modelo 4

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

47,225 -0,089 96,916 %
Tabla 131. Resultados modelo 4
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Figura 95. Gréfico de R2 modelo 4

Dataset 5.000 observaciones, hasta tres cambios
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Modelo 1

Parametros:

Division Capa oculta Epochs Learning rate

(neuronas)

80-20 No 100 35 0,01

Tabla 132. Parametros modelo 1

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

5,826 0,978 99,805 %
Tabla 133. Resultados modelo 1
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Figura 96. Gréfico de pérdida modelo 1
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Figura 97. Grafico de R2 modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 10 100 35 0,01

Tabla 134. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

7,674 0,946 99,419 %
Tabla 135. Resultados modelo 2
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Figura 98. Grafico de pérdida modelo 2
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Figura 99. Grafico de R2 modelo 2
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Dataset 5.000 observaciones, hasta cinco cambios

Modelo 1

Parametros:

Divisién Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 No 100 35 0,01

Tabla 136. Parametros modelo 1

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

5,84 0,931 99,575 %

Tabla 137. Resultados modelo 1
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Figura 100. Gréfico de pérdida modelo 1
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Figura 101. Grafico de R2 modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 10 100 35 0,01

Tabla 138. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

10,918 0,953 99,634 %
Tabla 139. Resultados modelo 2
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Figura 103. Grafico de R2 modelo 2
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Dataset 10.000 observaciones, hasta dos cambios
Modelo 1

Parametros:

Division Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 No 10 35 0,01

Tabla 140. Parametros modelo 1

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

1,206 0,988 99,890 %
Tabla 141. Resultados modelo 1
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Figura 104. Gréfico de pérdida modelo 1
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Figura 105. Grafico de R2 modelo 1
Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 128 10 35 0,01

Tabla 142. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

2,015 0,975 99,809 %
Tabla 143. Resultados modelo 2
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Figura 107. Grafico de R2 modelo 2
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Dataset 10.000 observaciones, hasta tres cambios

Modelo 1

Parametros:

Division Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 No 10 35 0,01

Tabla 144. Parametros modelo 1

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

1,202 0,987 99,838 %
Tabla 145. Resultados modelo 1
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Figura 108. Gréfico de pérdida modelo 1
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Figura 109. Grafico de R2 modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 No 100 300 0,01

Tabla 146. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

0,262 0,983 99,490 %
Tabla 147. Resultados modelo 2
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Figura 111. Gréfico de R2 modelo 2

Modelo 3

Parametros:

Division Capa oculta Epochs Learning rate

(neuronas)

80-20 128 10 35 0,01

Tabla 148. Parametros modelo 3

Resultados:
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Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

1,926 0,986 99,902 %
Tabla 149. Resultados modelo 3
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Figura 113. Gréfico de R2 modelo 3
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Modelo 4

Parametros:

Division Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 128 10 300 0,01

Tabla 150. Parametros modelo 4

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

0,367 0,987 99,888 %
Tabla 151. Resultados modelo 4
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Figura 114. Gréfico de pérdida modelo 4
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Figura 115. Grafico de R2 modelo 4
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Dataset 10.000 observaciones, hasta cinco cambios

Modelo 1

Parametros:

Division Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 No 10 35 0,01

Tabla 152. Parametros modelo 1

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

1,176 0,960 99,544 %
Tabla 153. Resultados modelo 1
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Figura 116. Gréfico de pérdida modelo 1
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Figura 117. Grafico de R2 modelo 1

Modelo 2

Parametros:

Divisién Capa oculta Epochs Learning rate

(neuronas)

80-20 No 10 35 0,01

Tabla 154. Parametros modelo 2

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

0,285 0,961 99,243 %
Tabla 155. Resultados modelo 2
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Figura 118. Gréfico de pérdida modelo 2
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Figura 119. Gréfico de R2 modelo 2

Modelo 3

Parametros:

Division Capa oculta Epochs Learning rate

(neuronas)

80-20 128 10 35 0,01

Tabla 156. Parametros modelo 3

118



Resultados:

Tiempo de entrenamiento Coeficiente de Precision

) determinacién

1,989 0,953 99,732 %
Tabla 157. Resultados modelo 3
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Figura 120. Gréfico de pérdida modelo 3
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Figura 121. Grafico de R2 modelo 3
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Modelo 4

Parametros:

Division Capa oculta Epochs Batch Learning rate

(neuronas)

80-20 128 10 300 0,01

Tabla 158. Parametros modelo 4

Resultados:

Tiempo de entrenamiento Coeficiente de Precision

(s) determinacién

0,370 0,952 99,717 %
Tabla 159. Resultados modelo 4
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Figura 122. Gréfico de pérdida modelo 4
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Figura 123. Grafico de R2 modelo 4
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