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Resumen 
 
El propósito de este Trabajo de Final de Grado (TFG) consiste en el desarrollo una red 
neuronal para clasificar caracteres codificados mediante matrices 7x5 píxeles, donde un valor 
de 1 representa el color negro y un valor 0 representa el color blanco. 
 
El software desarrollado tendrá la finalidad de ser usado como simulador para la resolución 
de problemas planteados en las sesiones de laboratorio de la asignatura de Inteligencia 
Artificial (IA), garantizando así que el aprendizaje de los alumnos, tanto del Grado en 
Ingeniería Informática (GII), como del Doble Grado ADE-GII, sea más fácil y provechoso. 
 
Para el desarrollo del trabajo, se han creado distintos conjuntos de datos para realizar el 
entrenamiento de la red neuronal artificial creada, un Perceptrón Multicapa (MLP) creado con 
la librería de Python denominada PyTorch y comparado con otros modelos creados en la 
plataforma H2O. 
 
Por último, se han realizado pruebas en ambos entornos, se han expuesto los resultados y 
se han obtenido interesantes conclusiones en base a ellos. 
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Abstract 
 
The purpose of this Final Degree Project is to develop a neural network to classify characters 
encoded using 7x5 pixel arrays, where a value of 1 performs as the color black and a value of 
0 performs as the color white. 
 
The developed software will be intended to be used as a simulator to resolve proposed 
practicing from laboratory sessions of Artificial Intelligence (AI) subject, an easier student 
learning will be secured with it, not only Computer Engineering Degree (GII), but also Double 
Grade ADE-GII. 
 
For the project development, a few datasets have been created to allow neural network 
training, which is a Multilayer Perceptron developed with a Python’s library called PyTorch and 
compared with some other models from H2O platform. 
 
Finally, many tests have been done in both environments, result have been exposed and some 
interesting conclusions have been obtained. 
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1. Introducción 
 
La Inteligencia Artificial (IA) es uno de los temas de mayor interés, en la actualidad, en 
cualquier ámbito. Este concepto se refiere a los sistemas informáticos capaces de realizar 
tareas que requieren de la inteligencia humana y sus características, como el razonamiento 
y el aprendizaje. 
 
En la totalidad de lo que aborda la IA, está el aprendizaje automático o Machine Learning 
(ML), que se trata de una disciplina de la IA que, gracias al uso de diferentes algoritmos, 
consigue que los ordenadores sean capaces de identificar patrones en base a datos, 
relacionarlos y realizar predicciones en función de esto. 
 
Dentro del aprendizaje automático existe el aprendizaje supervisado, donde la máquina recibe 
un entrenamiento controlado por humanos, es decir, el aprendizaje del ordenador requiere de 
la intervención de humanos para determinar qué datos, resultados o acciones son correctos. 
Esta retroalimentación permite que la máquina sea capaz de ajustarse al objetivo y mejorar 
su rendimiento de gran manera. 
 
Una de las técnicas de aprendizaje automático más utilizada y extendida tanto para el 
desarrollo de modelos de aprendizaje supervisado, como para otras formas de aprendizaje 
automático, es el aprendizaje profundo o Deep Learning. 
 
El aprendizaje profundo es un conjunto de algoritmos de aprendizaje automático basado en 
capas de redes neuronales que son modelos computacionales inspirados en la estructura y 
el funcionamiento del cerebro humano. Estas redes están compuestas por unidades de 
procesamiento llamadas neuronas que pertenecen a capas de la red y están conectadas entre 
sí. 
 
Estas técnicas son idóneas para el desarrollo de este Trabajo de Fin de Grado (TFG), ya que 
han demostrado ser de gran utilidad para el procesamiento de lenguaje. 
 
Para la implementación de este TFG se usarán las tecnologías actuales en este ámbito que 
hacen uso de las técnicas comentadas. En concreto, se utilizará PyTorch, un marco de 
aprendizaje profundo de código abierto orientado a la creación de redes neuronales. 
 
PyTorch se compone de la combinación de la biblioteca de aprendizaje automático de Torch 
y una API de alto nivel basada en Python (1). 
 
Por otro lado, también se utilizará el entorno H2O, una plataforma de código abierto líder en 
IA, especializada en aprendizaje profundo y AutoML (2). 
 
Esta plataforma permitirá llevar a cabo la implementación de la red neuronal deseada y su 
entrenamiento de una forma muy intuitiva y sencilla. Además, proporcionará de manera clara 
los resultados obtenidos, detallándolos y empleando esquemas para visualizarlos de mejor 
forma. 
 
Es en el ámbito del reconocimiento de texto donde se va a centrar en este Trabajo de Fin de 
Grado, tanto a nivel tecnológico como a nivel educativo, ya que se trata de la puesta a punto 
de una red neuronal que permite identificar caracteres descritos con píxeles. La red se 
desarrollará junto con un software de simulación que permite ver la creación de esta, junto 
con sus diferentes parámetros y características, además de los resultados obtenidos y las 
optimizaciones realizadas al aplicar estos parámetros. 
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Antes de todo esto y para su desarrollo, se ha llevado a cabo el estado del arte, en el que se 
han determinado e investigado los posibles softwares que puedan ofrecer una solución a lo 
que se plantea en este Trabajo de Fin de Grado. 
 
Se han encontrado diferentes softwares simuladores de redes neuronales. Sin embargo, 
todos ellos disponen y hacen uso de tecnología ya obsoleta y antigua. Como bien puede ser 
el software Java Neural Network Simulator (JNNS), que se ha usado a modo orientativo para 
el desarrollo de este trabajo. 
 
Por otro lado, también se ha tomado de referencia una práctica existente en 2017 dentro de 
la documentación y el plan de la asignatura de Inteligencia Artificial de la Escuela Politécnica 
de Teruel (EUPT).  
 
Este Trabajo de Fin de Grado, pretende ser un simulador de redes neuronales desarrollado 
con la tecnología más actual, para que esta práctica pueda ser implementa con él. 
 
Para ello, se parte del dataset que ya existía, encontrándose con que se trataba de un 
conjunto de datos muy limitado, por lo que se ha desarrollado una ampliación de éste de 
manera propia. 
 
El documento concluye con un apartado en el que se indica la licencia software y documental, 
así como las conclusiones obtenidas del proyecto y unas líneas de trabajo futuro. 
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2. Objetivos 
 
A la hora del desarrollo de un Trabajo de Fin de Grado, es de gran importancia definir 
previamente los objetivos que se quieren alcanzar con este.  
 
En primer lugar, está la creación tanto de la red neuronal como del simulador, pero estos 
serían los objetivos finales con el TFG ya desarrollado plenamente, por lo que existen otros 
objetivos en los que se puede dividir el objetivo final, que serían: 

 Creación de una red neuronal en el marco de trabajo de PyTorch. 
 Desarrollo de una red neuronal en la interfaz H2O Flow. 
 Creación de distintos conjuntos de datos o datasets para entrenar las redes 

neuronales de los dos puntos anteriores. 
 Definir en ambos entornos de trabajo los diferentes parámetros y atributos de las redes 

neuronales. 
 Realizar pruebas tanto con los datasets creados, como con los parámetros de las 

redes. Haciendo modificaciones en ellos para buscar la red más óptima. 
 Crear un entorno en el que el usuario pueda realizar estas pruebas y visualizar los 

resultados y las optimizaciones. 
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3. Estado del Arte 
Este estado del arte se ha centrado en la búsqueda de programas que permitan la creación, 
manipulación y entrenamiento de redes neuronales. Por un lado, se han realizado búsquedas 
de simuladores y, por otro lado, se han llevado a cabo búsquedas de entorno de desarrollo 
para poder implementar una red neuronal de creación propia. 
 
Como punto de partida, se ha usado a modo orientativo el programa JNNS (Java Neural 
Network Simulator), explicado más adelante. 
 
En concreto, se han encontrado 3 opciones de simuladores que parecen cumplir con los 
requisitos de lo buscado en este TFG y que se van a proceder a analizar en profundidad. 
Algunas de sus características principales se resumen en la siguiente tabla: 
 

Nombre Fuente Año Lenguaje 

JNNS https://github.com/mwri/javanns 1999 Java/C 

Interactive Neural 
Network Simulator 

https://interactive-neural-network-
simulator.soft112.com/ 

2007 Java/Java3D 

Bain https://github.com/OliverColeman/bain 2012 Java 

ANNSim https://github.com/phaysaal/ANNSim 2015 Java 

Tabla 1. Características principales del software encontrado 

 
En primer lugar, se analizará el programa usado como guía para este Trabajo de Fin de Grado 
(TFG), “Java Neural Network Simulator” (JNNS).  
 
Se trata de un simulador de redes neuronales que consiste en una interfaz de usuario escrita 
en Java, que hace uso del kernel “Stuttgart Neural Network Simulator” escrito en C. Fue 
desarrollado en torno al año 1999, por el “Wilhelm-Schickard-Institute for Computer Science 
(WSI)” en Tübingen, Alemania. 
 
JNNS permite crear redes neuronales con diferentes capas de neuronas, incluyendo capas 
ocultas. Permite la elección de diferentes algoritmos de aprendizaje y archivos con datos de 
entrenamiento, así como diferentes parámetros a seguir durante el entrenamiento de la red.  
 
El aspecto más interesante de este simulador es la facilidad para la obtención de resultados 
y su visualización en gráficas en función de los ciclos usados para el aprendizaje, siendo 
tremendamente didáctico.  
 
El problema de JNNS y de los siguientes proyectos presentados, es la obsolescencia de las 
tecnologías usadas para crearlos, ya que en este caso hace uso de versiones muy antiguas 
de Java y, a su vez, deben ser ejecutados en sistemas operativos también antiguos. 
 
El programa “Interactive Neural Network Simulator”, desarrollado por alumnos de Charles 
University de Praga, en el año 2007. Este software está disponible para Linux, Mac y 
Windows, y es de licencia libre.  

https://github.com/mwri/javanns
https://interactive-neural-network-simulator.soft112.com/
https://interactive-neural-network-simulator.soft112.com/
https://github.com/OliverColeman/bain
https://github.com/phaysaal/ANNSim
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Se trata de un simulador interactivo de redes neuronales escrito en los lenguajes Java y Java 
3D. Este programa sería semejante a JNNS, ya que permite la creación de redes neuronales 
y su entrenamiento de manera interactiva y visual, también permite la carga de datos para 
ser usados en el entrenamiento de la red y la programación de algoritmos de aprendizaje. 
Sin embargo, falla al abrir y crear algunas redes neuronales y se cierra inesperadamente sin 
mensaje previo de error, presumiblemente por la obsolescencia de la tecnología usada.  
 
Además de esto, el programa en ocasiones es poco intuitivo y difícil de usar, especialmente 
a la hora de visualizar resultados. 
 
Otro de los softwares a analizar es ANNSim (Artificial Neural Network Simulator), un simulador 
visual de redes neuronales artificiales escrito en Java y desarrollado por Mahmudul FAISAL 
Al Ameen en el año 2015. 
 
Este software tiene el problema de que no ofrece ningún tipo de documentación y aparenta 
ser un trabajo poco profesional. Por otro lado, tampoco ofrece muchas opciones de 
configuración en cuanto a algoritmos de aprendizaje y visualización de resultados. 
 
El último software es Bain, un simulador de redes neuronales escrito en Java y desarrollado 
por Oliver Coleman sobre el año 2012 como parte de su doctorado. Este software fue 
diseñado para simular redes neuronales y ofrecer un framework para introducir y modificar 
diferentes parámetros relativos a la red y su entrenamiento, también permite el uso de GPUs. 
 
El problema de este simulador es que usa una versión antigua de Java y existen problemas 
a la hora de construir el proyecto con los plugins de Gradle, que se trata de un sistema de 
automatización de construcción de código de software del que hace uso Bain. 
 

 
Figura 1. Problema al construir el proyecto de Bain 

 
Por otro lado, se han analizado 4 entornos de desarrollo dentro del ámbito en el que se 
encuentra el problema a resolver. 
 
Para empezar, TensorFlow, la gran alternativa a Pytorch. Se trata de una biblioteca de código 
abierto desarrollada por Google para ser utilizada en el aprendizaje automático con redes 
neuronales. Es implementado principalmente en el lenguaje de programación Python.  
 
TensorFlow es multiplataforma, puede ser usado en Windows, Linux, macOS, Android e iOS, 
y permite trabajar tanto con CPUs, como con GPUs. 
 
Por otro lado, está Keras, que también se trata de una biblioteca de redes neuronales de 
código abierto desarrollada en Python. Aunque esta puede funcionar de manera 
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independiente, también puede ejecutarse sobre TensorFlow Microsoft Cognitive Toolkit y 
Theano.  
 
Fue lanzada en 2015, teniendo como autor principal a François Chollet, un ingeniero de 
Google. En 2017, TensorFlow de Google ofreció soporte a Keras, por lo que puede ejecutarse 
sobre TensorFlow, así como sobre Microsoft Cognitive Toolkit y Theano. Pese a esto, Keras 
también puede funcionar de manera independiente. 
 
Esta tecnología está diseñada y enfocada a ser una interfaz de programación de aplicaciones 
(API), lo más amigable e intuitiva posible para el usuario. 
 
Otra tecnología para el aprendizaje automático es Scikit-learn, también se trata de una 
biblioteca de software libre creada para su uso en Python. La primera distribución pública de 
Scikit-learn apareció en 2010 y su principal autor es David Cournapeau.  
 
El proyecto utiliza diferentes algoritmos de clasificación, análisis de grupos y regresión y está 
implementado para interaccionar con las bibliotecas NumPy y SciPy.  
 
Scikit-learn usa Cython en determinados algoritmos para optimizar su rendimiento, ya que se 
trata de un lenguaje que implementa C y C++ en Python. 
 
Por último, JAX, que es quizá la opción menos conocida de las presentadas. Es también una 
biblioteca de Python para el aprendizaje automático. Su computación numérica se 
fundamenta en NumPy y dispone de un componente Just-In-Time que optimiza el código para 
el compilador, lo que deriva en una gran mejora. JAX es creado, utilizado y mantenido por 
Google. 
 
Como conclusión de este estado del arte, que analiza las tecnologías de aprendizaje profundo 
más actuales y avanzadas, se observa gran predominancia de Python. Todas las tecnologías 
presentadas están ideadas para ser utilizadas en este lenguaje, esto se debe a la simplicidad 
y fácil comprensión de él, al gran auge que ha tenido y que sigue teniendo, y a la gran cantidad 
de librerías y herramientas de tratamiento de datos de las que ya se dispone en Python. 
 
Por otro lado, destacar la presencia de Google en la mayoría de estas herramientas, por lo 
que hay que agradecer los aportes y el interés de esta compañía en el desarrollo de 
aprendizaje automático y la inteligencia artificial en general. 
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4. Propuesta  
Este apartado supone el bloque principal de este TFG, en él, no solo se desarrollan 
explicaciones sobre el origen y la creación de los datos utilizados en el entrenamiento de las 
redes, sino que también se expone el trabajo y desarrollo llevado a cabo para la creación, el 
entrenamiento y la comparación de estas redes en los entornos de H2O y PyTorch.  
 

4.1. Orígenes de los datos 

Para realizar el entrenamiento de las redes neuronales propuestas, se necesitan conjuntos 
de datos de los que las redes puedan aprender. 
 
Para empezar, se ha partido un fichero perteneciente a una práctica académica realizada en 
la asignatura de Inteligencia Artificial en el Grado en Ingeniería Informática de la Escuela 
Universitaria Politécnica de Teruel de la Universidad de Zaragoza. 
 
En este fichero se definen los datos de entrada que representan los caracteres a identificar 
con 1 y 0, es decir, un 1 haría semejanza con un píxel de color negro y un 0 con un píxel en 
blanco.  
 
Además, en este fichero aparece también la salida que va ligada al patrón de datos. Dicha 
salida es una estructura de 25 ceros y un 1, en la que el 1 se sitúa en una posición entre la 
primera y la vigésima sexta, representado a su vez la posición en orden alfabético de la letra 
referenciada. 
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Las letras representadas en el fichero son las siguientes en el siguiente orden: A, B, C, D, E, 
F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 2. Fichero con dataset original 

El formato del fichero es “.pat”, por lo que se ha modificado y transformado a un formato más 
extendido y popular como es “.csv”, en el que se ha asignado cada dígito o píxel a una 
columna del fichero. 
 
De esta manera se ha conseguido disponer de un conjunto de datos para realizar el 
entrenamiento de la red en un formato más actual y compatible con las tecnologías del 
momento. Por otro lado, también se requiere de un conjunto de test, que se utiliza para 
evaluar el rendimiento de la red, y un conjunto de validación, utilizado para ajustar el modelo 
y sus parámetros. 
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Debido a que el número de observaciones para el entrenamiento es limitado, se va a 
prescindir del conjunto de validación, por lo que la distribución de las particiones será del 80% 
para los datos de entrenamiento y el 20% para el conjunto de test. Para hacer el trabajo que 
haría el conjunto de validación, se va a utilizar la validación cruzada sobre el conjunto de 
entrenamiento durante la optimización de los hiperparámetros del modelo, esto se trata de 
una técnica usada para este ajuste del modelo anteriormente mencionado. 
 
La validación cruzada requiere de un coste computacional muy alto, ya que se ajusta el 
modelo repetidas veces (3). 
 
Para el uso del dataset en H2O, el patrón de salida ha sido modificado en el fichero “.csv”, 
convirtiendo dicho patrón en la letra que representa. Por ejemplo, el patrón 
“10000000000000000000000000” se ha cambiado por la letra “a”. 
 
Este cambio es meramente aclarativo y estético a la hora de visualizar los resultados. Por 
otro lado, no ha sido posible aplicarlo en PyTorch, ya que este trabaja con tensores, que son 
objetos matemáticos o matrices que almacenan datos numéricos, y en este caso, el valor a 
almacenar es un caracter.  
 
Viendo que inicialmente se disponía de un conjunto de observaciones muy limitado, se ha 
optado por ampliarlo artificialmente para conseguir 6 datasets distintos, datasets de unas 
5000 y unas 10000 observaciones, con dos, tres y cinco posibles errores, explicado de 
manera más esquemática: 

1. 5000 observaciones con hasta 2 posibles errores. 
2. 5000 observaciones hasta 3 posibles errores. 
3. 5000 observaciones con hasta 5 posibles errores.  
4. 10000 observaciones con hasta 2 posibles errores. 
5. 10000 observaciones hasta 3 posibles errores. 
6. 10000 observaciones con hasta 5 posibles errores. 

 
La creación de estos datasets se ha conseguido, primero, duplicando de forma manual el 
dataset original hasta conseguir el número de observaciones deseado.  
 
Después, para crear variedad dentro del dataset, es decir, aplicar errores, se ha desarrollado 
un script que, de forma aleatoria, cambiaba uno, dos o ningún dígito de cada fila. 
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Ejemplo del script para 2 posibles errores: 
 

 
Figura 3. Script para aplicar errores al dataset 

 
Para la realización de las pruebas se han aplicado dos divisiones del conjunto de datos de 
entrenamiento distintas, una con una proporción del 70% para el conjunto de entrenamiento 
y 30% para el conjunto de test, y otra división con una proporción del 80% para conjunto de 
entrenamiento y 20% para el conjunto de test. 
 
  



11 
 

Por lo que el dataset quedaría repartido de las siguientes maneras: 
 

 Grupo de datasets con un número de observaciones entorno a las 5.000: 
 

División Dataset Número de datos 

100% Total 4.940 

70% Entrenamiento 3.458 

30% Test 1.482 

Tabla 2. División de los datos 70-30 en dataset de 5.000 observaciones 

 
 
 
 

División Dataset Número de datos 

100% Total 4.940 

80% Entrenamiento 3.952 

20% Test 988 

Tabla 3. División de los datos 80-20 en dataset de 5.000 observaciones 

 

 Grupo de datasets con un número de observaciones entorno a las 10.000: 
 

División Dataset Número de datos 

100% Total 10010 

70% Entrenamiento 7.007 

30% Test 3.003 

Tabla 4. División de los datos 70-30 en dataset de 10.000 observaciones 

 

División Dataset Número de datos 

100% Total 10010 

80% Entrenamiento 8.008 

20% Test 2.002 

Tabla 5. División de los datos 80-20 en dataset de 10.000 observaciones 
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4.2. Implementación y entrenamiento 
Para realizar el desarrollo de este TFG, se han instalado y configurado los entornos 
pertinentes y respectivas dependencias. 
 
Una vez que se ha dispuesto tanto de H2O, como de PyTorch de forma totalmente 
funcional, se ha realizado el desarrollo de las redes neuronales, los entrenamientos y las 
pruebas realizadas para comprobar su comportamiento. 
 

4.2.1. Instalación y configuración de H2O 
 

El primer entorno en el que se va a trabajar es H2O. Se trata de una plataforma de 
código abierto de inteligencia artificial, especializada en aprendizaje automático. 
 
H2O ofrece gran cantidad de herramientas, tanto a nivel de investigación, como a nivel 
empresarial. Por ejemplo, H2O-3, una herramienta de código abierto diseñada para construir 
y desplegar modelos de aprendizaje automático a gran escala, que integra el uso de lenguajes 
de programación como R, Python y Java.  
 
Además, soporta gran variedad de algoritmos de aprendizaje profundo y es capaz de ajustar 
de manera automática los hiperparámetros. 
 
Para este caso, se ha utilizado H2O Flow, una interfaz de usuario de código abierto para H2O, 
que consiste en un entorno web interactivo que permite al usuario combinar ejecución de 
código, texto, matemáticas, etc., en un solo documento. 
 
H2O Flow ofrece una REST API y diferentes scripts en R que permiten a cualquier usuario 
implementar redes neuronales y seguir su desarrollo, incluso si este no tiene experiencia en 
la programación (4). 
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Para su instalación, se ha accedido a la web de descargas oficial 
https://h2o.ai/resources/download/ , y se ha hecho click en la última versión estable de H2O. 

Figura 4. Web de descargas oficial de H2O 

Después en la siguiente página se ha descargado dicha versión y se han seguido los pasos 
especificados para ejecutar H2O y acceder a su interfaz web. Que son los siguientes: 

1. Descomprimir el fichero .zip descargado. 
2. Acceder a la carpeta descomprimida. 
3. Ejecutar el fichero .jar de H2O con la instrucción: 

 
4. Abrir el navegador y acceder a http://localhost:54321. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

java –jar h2o.jar 

 

https://h2o.ai/resources/download/
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4.2.2. Instalación y configuración de PyTorch 
 
El segundo entorno utilizado para el entrenamiento de la red neuronal es PyTorch. Como se 
comentaba en la introducción, este entorno es un marco de aprendizaje profundo de código 
abierto basado en software utilizado para la creación de redes neuronales.  
 
PyTorch combina la biblioteca de aprendizaje automático de Torch con una API de alto nivel 
basada en Python. Se ha consagrado como tecnología líder para las comunidades 
académicas y de investigación gracias a su flexibilidad y su facilidad de uso, entre otras cosas. 
 
Esta biblioteca es principalmente desarrollada por el Laboratorio de Investigación de 
Inteligencia Artificial de Facebook (FAIR) (5). 
 
PyTorch permite la creación de diferentes tipos de redes neuronales, desde las más simples, 
hasta las redes neuronales convolucionales más complejas. Además, ofrece procesamiento 
en GPU, ya que hace uso de tensores, que son estructuras de datos multidimensionales que 
tienen la capacidad de ser procesados en GPU, lo que permite acelerar sus cálculos. 
 
Debido a que se trata de una librería de Python, lo primero que se debe hacer es descargar 
el lenguaje, para ello se ha accedido a las descargas ofrecidas por la web oficial de Python 
https://www.python.org/downloads/ , y se ha descargado la versión 3.11.8, relativa al 
06/02/2024. 
 

Figura 5. Web de descargas oficial de Python 

  

 

https://www.python.org/downloads/
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Después, se ha seleccionado el archivo de descarga “Windows installer (64-bits)”, la descarga 
recomendada por la web. 
  

Figura 6. Web de descargas disponibles de la versión Python 3.11.8 
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Se ha ejecutado el Setup descargado con las siguientes opciones y se ha elegido “Install 
Now”. 
 

 
Figura 7. Herramienta de instalación de Python 3.11.8 

 
Esta instalación realizada también incluye “pip”, un sistema de gestión de paquetes utilizado 
para instalar y administrar paquetes de software escritos en Python. 
 
Para la instalación de la librería PyTorch en concreto, se ha accedido también a la web oficial, 
la cual proporciona un esquema que en función de la versión que se quiere descargar y el 
entorno en el que se va a usar, muestra el comando requerido para la instalación. 
 
Para el caso se ha descargado la versión estable, la 2.3.0, para Windows, usando el paquete 
“pip” comentado anteriormente para lenguaje Python. 
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Además, vemos que en la web se especifica que la última versión de PyToch requiere de la 
versión Python 3.8 o en adelante. 
 

Figura 8. Web de descargas oficial de PyTorch 

 
Instrucción a ejecutar: 

 
Después de realizar esto, para utilizar esta librería bastará con hacer una importación de ésta 
en el código a desarrollar: 
 

 
Pip también se ha utilizado para la descarga de los siguientes paquetes usados en el 
desarrollo del software: 

 Numpy 

 Matplotlib 

 Scikit-learn 
 
Todos estos paquetes se han instalado con el siguiente comando: 

 

pip3 install torch torchvision torchaudio 

 

import torch 

 

pip install “nombre de paquete” 
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Numpy se ha utilizado para la importación del dataset y el manejo de los conjuntos de datos, 
ya que se trata de una biblioteca que da soporte para crear vectores y matrices de gran 
tamaño y varias dimensiones, también dispone de gran variedad de funciones matemáticas. 
 
Por otro lado, está Matplotlib, una biblioteca que ha permitido generar gráficos para hacer 
más visibles y accesibles los resultados. 
 
Y, por último, Scikit-learn, la biblioteca con la que se ha calculado la regresión lineal y el 
coeficiente de determinación. 
 

4.2.3 H2O 
 
El uso de H2O viene dado principalmente para realizar una comparación entre los resultados 
obtenidos en esta plataforma y en PyTorch.  
 
Por otro lado, uno de los objetivos de su utilización es que aquellos estudiantes que no se 
vean preparados para implementar o desarrollar código relativo a las redes neuronales, 
puedan también hacer uso de una red para aprender modificando los parámetros de ésta 
observando los resultados que conlleva. 
 
Para empezar a hacer uso de H2O Flow, lo primero es haber realizado su instalación y haber 
accedido a la interfaz web en http://localhost:54321. 
 
La interfaz gráfica proporcionada por H2O Flow consta de un menú superior con el que se 
pueden realizar distintas acciones, como importar archivos o crear modelos, que son las que 
atañen en este caso. 
 

Figura 9. Barra de menú de H2O Flow 

 
Debajo de este menú, aparece un proyecto por defecto con una barra de tareas para realizar 
acciones sobre este y un asistente con las acciones más recomendadas e importantes. 
 
  

 

http://localhost:54321/
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Por último, a la derecha de la página web, aparece una sección de ayuda en la que se puede 
aprender sobre el uso de H2O. 
 

Figura 10. Interfaz gráfica H2O Flow 

 
Para el desarrollo de la red que se busca, lo primero que se ha hecho ha sido importar los 
archivos con los conjuntos de datos, es decir, los diferentes dataset. Y después se ha hecho 
“Parse” de los ficheros, donde se ha indicado el tipo de fichero que es, en este caso “csv”, y 
el separador de columnas dentro del fichero, “;”.  
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También, se ha indicado el nombre de las columnas y el tipo de dato de éstas. Esto se ha 
hecho debido a que la estructura del fichero es la siguiente: 
 

 
Figura 11. Estructura de los datasets utilizados en H2O 

Además, se seleccionado la opción de que la primera línea del fichero contenga los nombres 
de las columnas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 12. Opción “Parse” de H2O 
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Seguido de esto y de visualizar el fichero, se ha procedido a hacer la división del fichero en 
conjunto de entrenamiento y conjunto de validación. 
 
H2O permite seleccionar el porcentaje que se quiere de división, fraccionando así el dataset 
en dos conjuntos de datos distintos: el conjunto de entrenamiento, que se encargará de 
proporcionar a la red neuronal los distintos ejemplos u observaciones de los que esta 
aprenderá patrones y características para realizar sus predicciones; y el conjunto de 
validación, que se ocupa de encontrar los mejores hiperparámetros posibles de la red 
neuronal para mejorar su rendimiento. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 13. Opción “Split” de H2O 

 
Una vez se han tenido los conjuntos de datos disponibles en la plataforma para que ésta los 
use, se ha creado el modelo. 
 
H2O ofrece variedad en cuanto a los tipos de modelos de aprendizaje automático disponibles 
para implementar, como, por ejemplo, bosque de aislamiento (Isolation Forest) o modelos 
lineales generalizados (Generalized Linear Modeling). 
 
En este caso, se ha seleccionado el modelo de aprendizaje profundo (Deep Learning), ya que 
este tipo de técnica es capaz de procesar grandes cantidades de datos y aprender de ellos 
para realizar diferentes tareas, como puede ser identificar patrones. 
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Figura 14. Menú de tipos de modelos disponibles en H2O 

 
Para su creación, se han indicado los conjuntos de entrenamiento y validación anteriormente 
comentados, y en la opción “response_column”, se ha indicado la columna “output”, ya que 
es ésta la que contiene las etiquetas con los valores reales, es decir, los que el modelo 
intentará predecir. 
 
Por otro lado, la plataforma permite seleccionar gran cantidad de parámetros, de los cuáles 
se ha hecho uso principalmente de los siguientes: 

 Hidden: indica las capas ocultas y el número de neuronas que se están introduciendo. 
Por ejemplo, si se introduce “200, 100”, el modelo tendrá 2 capas ocultas, la primera 
de 200 neuronas y la segunda de 100 neuronas. 

 Epochs: es el número de veces que el modelo va a ser iterado durante el 
entrenamiento. 
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 Loss: especifica la función de pérdida a utilizar por el modelo, manera de cuantificar 
las diferencias entre las predicciones hechas por la red y los valores reales. 

 
Todos los demás parámetros se mantendrán como los proporciona la plataforma por defecto. 
De entre todos estos, cabe destacar que se va a usar la función de activación “Rectifier”, 
también conocida como “ReLU”. 
 

Figura 15. Construcción de un modelo en H2O 

 
Las funciones de activación son funciones matemáticas que se aplican a los nodos o 
neuronas de la red, su propósito es transformar la señal de entrada que el nodo recibe, en 
una señal de salida. 
 
Estas funciones permiten aplicar la no linealidad a las redes neuronales, lo que permite que 
estas aprendan patrones complejos. 
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En este caso se ha usado la función “ReLU”, que se define como: 
 

 
 
Donde “x” es la entrada de la neurona.  
 
A la hora de construir el modelo, la plataforma muestra una barra de progreso, una vez que 
ésta se ha completado, es cuando se puede visualizar el entrenamiento del modelo. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 16. Entrenamiento de un modelo en H2O 
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A la hora de visualizar el entrenamiento del modelo, H2O ofrece distintas acciones a realizar 
sobre el modelo y gran cantidad de información, como, por ejemplo, gráficos con información 
sobre el “loss” e información sobre los parámetros y las variables. 
 

 

Figura 17. Resultados de un entrenamiento en H2O 
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Para efectuar las predicciones y comprobar que el modelo las realiza correctamente se ha 
utilizado la acción “Predict…”.  
Además, se ha elegido el frame de validación sacado de la división de los datos comentada 
anteriormente, y se ha combinado con el frame principal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 18. Opción de realizar una predicción en H2O 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 19. Predicción realizada en H2O 
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Después de combinarlo, H2O Flow nos da la opción de exportar los resultados de la 
predicción, con los que, gracias al desarrollo de un script en Python que compara los valores 
predichos con los valores reales, se ha calculado la precisión de la predicción hecha por el 
modelo. 
 

 

Figura 20. Exportar frame en H2O 

 
 

Figura 21. Script para calcular la precisión de una predicción de H2O 
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4.2.4 PyTorch 

El desarrollo del programa con PyTorch es el objetivo final de este Trabajo de Fin de Grado 
(TFG), ya que será el que utilicen principalmente los alumnos para aprender sobre las redes 
neuronales. 
 
Para sus fines en el ámbito de la enseñanza, se ha buscado crear un simulador lo más 
entendible y legible para cualquier usuario. 
 
La base de este software es el modelo de red neuronal artificial creado, que se trata de un 
Perceptrón Multicapa, o en inglés Multilayer Perceptron (MLP), un tipo de red neuronal 
artificial que supone una mejora en cuanto al Perceptrón, ya que el Perceptrón Multicapa es 
capaz de resolver problemas no lineales gracias a que está compuesto de capas. 
 
Este modelo se ha implementado de dos formas distintas: sin capa oculta y con capa oculta. 
 
La implementación sin capa oculta se basa en una capa de entrada de 35 neuronas, y una 
de salida con 26 neuronas, ambas capas totalmente conectadas. Estas neuronas hacen 
referencia a los dígitos de entrada y salida del dataset, respectivamente. 
 
Las capas de este modelo disponen de una función de activación que se encarga de 
transformar las salidas a un valor entre 0 y 1, la función “Sigmoid”, que es especialmente útil 
cuando se desarrollan tareas de clasificación binaria, lo que es el caso, ya que a cada neurona 
de salida le corresponde el valor 0 o 1. 
 
La función “Sigmoid” viene definida por la siguiente función: 
 

 
 
Por otro lado, el modelo con capa oculta, implementa tres capas distintas, la de entrada, la 
oculta y la de salida. La capa ocupa permite mejora en aprendizaje y la clasificación del 
modelo, y permite a este aprender patrones más complejos. 
 
En este caso, el modelo hace uso de las funciones de activación explicadas anteriormente, 
tanto de la función “ReLU”, como de la función “Sigmoid”, de manera respectiva. 
 
Ambos modelos trabajan con los mismos parámetros y características. Para empezar, la 
función de pérdida usada es la función de entropía cruzada binaria. 
 
La entropía cruzada es una función que se encarga de comparar la distribución de 
probabilidad de los datos de salida con la distribución de probabilidad real, es decir, los datos 
reales. Para el caso, se ha utilizado un tipo de entropía, que ofrece PyTorch, destinada a la 
clasificación de datos binarios (6). 
 
 
La función de entropía cruzada viene definida por la siguiente función: 

 
Siendo “q” la distribución de probabilidad predicha y “p” la real. 
 



29 
 

Por otro lado, el modelo hace uso del optimizador “Root Mean Square Propagation” 
(RMSProp), que es el encargado de minimizar los errores cometidos por el modelo, mediante 
el ajuste de parámetros y pesos (7). 
 
Al optimizador RMSProp, se le pasa como parámetro la tasa de aprendizaje, en inglés, 
“learning rate”, que se trata del valor de actualización de los pesos durante el aprendizaje, 
este es un valor de complejo ajuste, debido a que si es excesivamente elevado puede 
acarrear un mal funcionamiento del modelo, y si es demasiado bajo, el aprendizaje puede ser 
demasiado largo en el tiempo (8). 
 
El software se ha desarrollado de tal manera que ofrece opción de utilizar tanto la CPU, como 
la GPU para el aprendizaje de la red neuronal. 
 
Finalmente, el simulador permite variar el número de “epochs” y el tamaño de “batch” para el 
entrenamiento del modelo. 
 
El número de “epochs” es el número de veces que el modelo itera sobre el conjunto de datos, 
realizando durante un “epoch”, una iteración hacia delante (forward) y otra hacia detrás 
(backward), a través del conjunto de datos. 
 
En cuanto al tamaño de “batch”, este se trata del número de observaciones o ejemplos de 
datos que se utilización en una única iteración del entrenamiento. De este valor puede 
depender la eficiencia a nivel computacional del entrenamiento del modelo. 
 
En tema de resultados, el simulador ofrece retroalimentación en cuanto al dispositivo sobre 
el que se está desarrollando el entrenamiento. Dicho de otra manera, si el entrenamiento se 
está haciendo en la CPU o la GPU. 
 
También, ofrece información sobre el “epoch” del entrenamiento en el que se encuentra y la 
pérdida que ha tenido en él. 
 
Cuando el entrenamiento finaliza, muestra el tiempo en el que se ha desarrollado e inicia la 
fase de test, en la que el conjunto de datos de entrada de test es pasado al modelo, y la salida 
es comparada con los valores reales, lo que permite obtener y mostrar la precisión de 
predicción del modelo. 
 
Para esto, el software divide el dataset en un conjunto de entrenamiento y otro de test, siendo 
el porcentaje de estos fácilmente modificable. 
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Una vez completada la fase de test, el simulador muestra dos gráficos: 
 

 El primer gráfico muestra la evolución de la pérdida conforme avanzan los “epochs”.  
 

 
Figura 22. Ejemplo de gráfico de relación Loss-Epochs con PyTorch 

 

  El segundo muestra la regresión lineal y el coeficiente de determinación. 
 

 
Figura 23. Ejemplo de gráfico de regresión lineal y coeficiente de determinación con PyTorch 
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5. Resultados 
En este apartado se han recopilado todos los resultados obtenidos, tanto en el entrenamiento, 
como en las predicciones realizadas por las redes neuronales. 
 
Todos estos resultados están diferenciados por los distintos parámetros y características que 
pueden ser aplicados a los modelos. 
 
Además, todas las pruebas se han realizado con los distintos datasets ya explicados. 

5.1 H2O 
Los gráficos indicados en este apartado, muestran la cantidad de “epochs” en el eje x, y el 
valor del “loss” en el eje y. Dicho de otra manera, muestra la evolución del “loss” conforme 
avanzan los “epochs”. 
 
Además, dichos gráficos muestran en color azul el “loss” durante el entrenamiento, y en 
naranja, el “loss” durante la validación. 
 
La primera conclusión a sacar después de las pruebas realizadas con dos datasets, es que 
es totalmente ineficiente entrenar el modelo con una cantidad de epochs que no se encuentre 
entre 400 y 800, siendo por lo general, aproximadamente 600 el valor óptimo de epochs. 
 
De todo el conjunto de pruebas se han seleccionado los siguientes resultados para 
ejemplificar lo anterior. 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 5000 Auto 

Tabla 6. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,771 0,002371 0,048689 99,729 % 

Tabla 7. Resultados modelo 4 



32 
 

 
Figura 24. Gráfico modelo 4 

 
Por lo que, de ahora en adelante se han entrenado las redes neuronales con este valor, 
excepto en aquellos entrenamientos en los que, viendo los resultados, se ha determinado que 
se necesita un número mayor de epochs para mejorarlos. 
 
Después de analizar otros dos datasets, se ha observado que forzar a H2O a utilizar la función 
de pérdida “CrossEntropy”, es ligeramente mejor a nivel general que dejar que la plataforma 
decida que función de pérdida utilizar con la opción “Auto”. 
 
Debido a esto, en las siguientes pruebas se utilizará únicamente la función de entropía 
cruzada. 
 
Al analizar los dataset de 10.000 observaciones, se ha visualizado que el número de epochs 
óptimos para no realizar trabajo en vano, está entre 200 y 400. 
 
Finalmente, después de haber realizado todas las pruebas en H2O, se ha concluido que, en 
este caso, utilizar una capa oculta con neuronas disminuye el tiempo de entrenamiento, pero 
reduce la precisión de manera mínima. 
 
En cuanto a la división del conjunto de datos, no hay gran diferencia aparente entre en uso 
de las proporciones 80-20 y 70-30, sin embargo, la proporción 80-20 es ligeramente más 
precisa. 
 
Todos los resultados del resto de pruebas realizadas de los que se han obtenido estas 
conclusiones, se han plasmado en el Anexo I. 
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5.2 PyTorch 
Las pruebas realizadas en el simulador están directamente relacionadas con las realizadas 
en H2O, ya que en función de los resultados y conclusiones obtenidas en H2O aplicando los 
diferentes hiperparámetros, para PyTorch han sido aplicados únicamente aquellos que 
ofrecían un mejor rendimiento. 
 
Por lo que, para las pruebas de PyTorch se ha aplicado una proporción de división del 
conjunto de datos de 80-20, un 80% para el conjunto de datos de entrenamiento y un 20% 
para el de test. Además, se ha aplicado un número de “epochs” de 600. 
 
Por otro lado, se han implementado dos modelos distintos, uno sin capa oculta y otro con una 
capa oculta de 10 neuronas. A ambos modelos se les ha aplicado el optimizador con una tasa 
de aprendizaje (learning rate), con un valor de 0,01 y 0,1. 
 
El entrenamiento se ha realizado inicialmente con un tamaño de “batch” de 35, ya que está 
ampliamente extendido el uso de la cantidad de neuronas de la capa de entrada como tamaño 
de “batch”. 
 
Después de realizar las pruebas con el primer dataset, la primera conclusión clara es que no 
se necesita de un número de “epochs” tan elevado como en H2O, es posible que esto se 
deba a PyTorch es una tecnología más puntera y que está siendo ejecutado directamente 
sobre el intérprete, sin ninguna API adicional, como pudiera ser la interfaz H2O Flow.  
 
Viendo esto, se ha aplicado un número de “epochs” de 100. Aunque 600 “epochs” pueda 
vislumbrar una cantidad menor de pérdida, se ha considerado que esta disminución es 
demasiado baja en comparación con el coste computacional y temporal que la provoca. 
 
Además, observando los resultados de la última prueba del primer dataset, se puede intuir un 
mal funcionamiento, pese a que se ha obtenido una alta precisión, del 96,916%, no llega a 
ser tan elevada como en las demás pruebas. Esta alteración en el entrenamiento se puede 
deber a un valor excesivamente alto de la tasa de aprendizaje, por lo que, en siguientes 
pruebas se ha utilizado únicamente el valor 0,01 como dicha tasa. 
 
De todo el conjunto de pruebas se han seleccionado los siguientes resultados para 
ejemplificar lo anterior. Cabe recalcar como ejemplo del mal funcionamiento, el valor -0,089 
del coeficiente de determinación 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 10 600 35 0,1 

Tabla 8. Parámetros modelo 4 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

47,225 -0,089 96,916 % 

Tabla 9. Resultados modelo 4 
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Figura 25. Gráfico de pérdida modelo 4 

 

 
Figura 26. Gráfico de R2 modelo 4 

 
Al concluir las pruebas con los datasets de 5.000 observaciones, se ha identificado que el 
número de “epochs” puede ser disminuido aún más, ya que en algunos casos no solo no es 
lo suficientemente eficiente, sino que genera un aumento en la pérdida. Así pues, se ha 
optado por bajar esta cifra a 10. 
 
Por otro lado, se ha observado que no existe prácticamente cambio al usar o no capa oculta, 
por lo que se ha decidido aumentas las neuronas de la capa oculta a 128, para de esta 
manera, observar la diferencia en el uso o no de esta capa. 
 
Después de las pruebas con el primer dataset de 10.000 observaciones, se ha decidido variar 
el tamaño de “batch”, alternando entre 35 y 300. 
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Tras haber realizado las pruebas con los datasets de 10.000, se ha apreciado que el tiempo 
se reduce sobre manera al aumentar el tamaño de “batch”, esto es algo que se podía 
presuponer en un principio, sin embargo, se ha de tener cuidado ya que puede reducir la 
eficiencia del entrenamiento. 
 
Con respecto al aumento de las neuronas en la capa oculta, ha provocado una mejora en los 
resultados a nivel de predicción. También ha estabilizado dichos resultados, haciendo al 
modelo más resistente a cambios en otros hiperparámetros.  
 
Se ha seleccionado la última prueba realizada para mostrar la evolución de los resultados. 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 300 0,01 

Tabla 10. Parámetros modelo 4 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

0,370 0,952 99,717 % 

Tabla 11. Resultados modelo 4 

 
Figura 27. Gráfica de pérdida modelo 4 
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Figura 28. Gráfico de R2 modelo 4 

 
 
Todos los resultados del resto de pruebas realizadas de los que se han obtenido estas 
conclusiones, se han plasmado en el Anexo II. 
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6 Licencia Software y Documental 
Llegados a este apartado, se va a proceder a comentar tanto la licencia de software 

como la licencia documental. 
 

En cuanto a la licencia de software se va a emplear Berkeley Software Distribution 
(BSD). Se trata de una licencia de software libre permisiva como puede ser OpenSSL o la 
MIT License. Existen diferentes tipos de licencias, en el caso de este TFG se ha utilizado la 
licencia “BSD modificada”, “BSD revisada”, “BSD-3” o “BSD de 3 cláusulas”. 
 
 
 
 
 

 
 

 
 

 
 
Al igual que sucede en el mundo del software, se tienen que buscar formas de 

garantizar las libertades asociadas al trabajo elaborado y su inviolabilidad futura. Para 
garantizar que la libertad esté asociada al documento se buscan métodos, uno de ellos es la 
licencia GNU Free Documentation License GFDL). 
 

 
 
 
 

 
 

 
El propósito de esta Licencia es hacer que en el caso de este TFG sea ’gratuito’ en el 

sentido de libertad: para asegurar a todos la libertad efectiva de copiarlo y redistribuirlo, con 
o sin modificarlo, ya sea comercial o no comercialmente. En segundo lugar, esta licencia 
preserva para el autor y el editor una forma de obtener crédito por su trabajo, sin ser 
considerado responsable de las modificaciones realizadas por otros. Es una especie de 
’copyleft’, lo que significa que las obras derivadas del documento deben ser libres en el mismo 
sentido. Si por algún motivo se emplea este documento y se modifica, debe realizar una serie 
de acciones indicadas en el sitio web oficial de GNU. 
 

Tampoco hay que olvidar que este documento, por defecto, está al amparo de 
la licencia 7.3, por su inclusión en el Repositorio Institucional de Documentos 
de la Universidad de Zaragoza: ZAGUAN 
 

 
Figura 31. Licencia de ZAGUAN 

 
 
 

Figura 29. Logotipo de la licencia BSD 

Figura 30. Logotipo de la licencia GNU 
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7 Conclusiones y Trabajo Futuro 
En este TFG se ha abordado el problema de la obsolescencia y antigüedad de los simuladores 
de redes neuronales existentes y la necesidad de estos para el ámbito docente.  
 
Asimismo, se ha afrontado la creación, tanto de un conjunto de datos semejantes a la 
representación de las letras del abecedario a nivel de imagen con píxeles, como de una red 
neuronal artificial capaz de procesarlo e identificar de qué letra se trata, mostrando resultados 
lo más claros y concluyentes posibles para que puedan ser interpretados por los alumnos. 
 
El desarrollo de este trabajo ha supuesto un aprendizaje continuo en un campo de las 
tecnologías de la información totalmente en auge y del que, a nivel personal, no se tenía gran 
conocimiento sobre él, más allá de lo estudiado durante el grado, lo cual abarcaba 
principalmente lo teórico sin hacer uso de las tecnologías y sus aplicaciones reales. 
 
Durante estos meses de desarrollo, se ha aprendido a trabajar con herramientas punteras en 
el campo de la Inteligencia Artificial, como lo son PyTorch y H2O, lo que me ha permitido 
crecer hacia un sector más profesional en este ámbito y, enriquecer mi conocimiento sobre 
las redes neuronales, así como espero que este simulador pueda ser de ayuda y sirva de 
igual manera para los estudiantes venideros del grado. 
 
En cuanto al trabajo futuro, se podrían implementar distintas mejoras sobre el simulador, 
cómo, por ejemplo, permitir la creación de múltiples tipos de redes neuronales, aplicando un 
conjunto de datos diferente a cada una y viendo las utilidades que éstas tienen dependiendo 
de los datos de observaciones. 
 
Además, el desarrollo de una interfaz sería interesante, ya que se ha intentado crear una 
sencilla, sin embargo, al estar trabajando con un lenguaje interpretado como lo es Python, 
aparecían varios problemas e incapacidades. 
 
Por otro lado, a nivel técnico, pruebas realizadas con PyTorch, y el acotamiento y la 
comparación realizada con H2O, han permitido observar la importancia de los diferentes 
hiperparámetros y que no existe una fórmula secreta, sino que esto de la Inteligencia Artificial 
es más bien un juego de prueba y error. 
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Anexo I. Resultados de las pruebas en H2O 

Las siguientes representaciones, tanto tabulares como gráficas, muestran los parámetros 
aplicados en el entrenamiento de los modelos, los resultados obtenidos de dicho 
entrenamiento, y como de aproximadas son las predicciones realizadas por el modelo en 
comparación con el conjunto de datos original. Todo esto realizado en el entorno de H2O. 
 
 

Dataset 5.000 observaciones, hasta dos cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 2000 CrossEntropy 

Tabla 12. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

21,936 0,005948 0,077122 99,285 % 

Tabla 13. Resultados modelo 1 

 
Figura 32. Gráfico modelo 1 
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Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 2000 Auto 

Tabla 14. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

21,756 0,003589 0,059907 99,530 % 

Tabla 15. Resultados modelo 2 

 
Figura 33. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 
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70-30 No 5000 CrossEntropy 

Tabla 16. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,547 0,002865 0,053526 99,615 % 

Tabla 17. Resultados modelo 3 

 

 
Figura 34. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 5000 Auto 

Tabla 18. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 



43 
 

50,771 0,002371 0,048689 99,729 % 

Tabla 19. Resultados modelo 4 

 
Figura 35. Gráfico modelo 4 

 

Modelo 5 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 2000 CrossEntropy 

Tabla 20. Parámetros modelo 5 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,666 0,006765 0,082250 99,260 % 

Tabla 21. Resultados modelo 5 
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Figura 36. Gráfico modelo 5 

 

Modelo 6 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 2000 Auto 

Tabla 22. Parámetros modelo 6 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

12,938 0,007158 0,084603 99,208 % 

Tabla 23. Resultados modelo 6 
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Figura 37. Gráfico modelo 6 

 

Modelo 7 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 5000 CrossEntropy 

Tabla 24. Parámetros modelo 7 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

34,370 0,005750 0,075829 99,334 % 

Tabla 25. Resultados modelo 7 
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Figura 38. Gráfico modelo 7 

 

Modelo 8 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 5000 Auto 

Tabla 26. Parámetros modelo 8 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

35,498 0,007869 0,088705 99,196 % 

Tabla 27. Resultados modelo 8 
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Figura 39. Gráfico modelo 8 

 

Modelo 9 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 2000 CrossEntropy 

Tabla 28. Parámetros modelo 9 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

25,354 0,005878 0,076668 99,290 % 

Tabla 29. Resultados modelo 9 
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Figura 40. Gráfico modelo 9 

 

Modelo 10 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 2000 Auto 

Tabla 30. Parámetros modelo 10 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

25,118 0,004525 0,067266 99,196 % 

Tabla 31. Resultados modelo 10 
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Figura 41. Gráfico modelo 10 

 

Modelo 11 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 5000 CrossEntropy 

Tabla 32. Parámetros modelo 11 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,923 0,003263 0,057122 99,611 % 

Tabla 33. Resultados modelo 11 
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Figura 42. Gráfico modelo 11 

 

Modelo 12 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 5000 Auto 

Tabla 34. Parámetros modelo 12 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,746 0,003715 0,060950 99,413 % 

Tabla 35. Resultados modelo 12 
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Figura 43. Gráfico modelo 12 

 

Modelo 13 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 2000 CrossEntropy 

Tabla 36. Parámetros modelo 13 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

15,122 0,006653 0,081568 99,200 % 

Tabla 37. Resultados modelo 13 
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Figura 44. Gráfico modelo 13 

Modelo 14 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 2000 Auto 

Tabla 38. Parámetros modelo 14 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

15,225 0,004603 0,067849 99.510 % 

Tabla 39. Resultados modelo 14 
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Figura 45. Gráfico modelo 14 

 

Modelo 15 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 5000 CrossEntropy 

Tabla 40. Parámetros modelo 15 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

39,168 0,010262 0,101301 98.839 % 

Tabla 41. Resultados modelo 15 
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Figura 46. Gráfico modelo 15 

Modelo 16 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 5000 Auto 

Tabla 42. Parámetros modelo 16 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

41,584 0,013213 0,114949 98.454 % 

Tabla 43. Resultados modelo 16 
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Figura 47. Gráfico modelo 16 
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Dataset 5.000 observaciones, hasta tres cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 2000 CrossEntropy 

Tabla 44. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

22,771 0,003532 0,003532 99,465 % 

Tabla 45. Resultados modelo 1 

 
Figura 48. Gráfico modelo 1 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 
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70-30 No 2000 Auto 

Tabla 46. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

21,633 0,003214 0,003214 99,523 % 

Tabla 47. Resultados modelo 2 

 
Figura 49. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 5000 CrossEntropy 

Tabla 48. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,816 0,003874 0,062238 99,468 % 
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Tabla 49. Resultados modelo 3 

 
Figura 50. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 5000 Auto 

Tabla 50. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,902 0,002798 0,052896 99,528 % 

Tabla 51. Resultados modelo 4 
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Figura 51. Gráfico modelo 4 

 

Modelo 5 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 2000 CrossEntropy 

Tabla 52. Parámetros modelo 5 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,805 0,012329 0,111035 98,495 % 

Tabla 53. Resultados modelo 5 
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Figura 52. Gráfico modelo 5 

 

Modelo 6 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 2000 Auto 

Tabla 54. Parámetros modelo 6 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,543 0,008150 0,090277 99,078 % 

Tabla 55. Resultado modelo 6 
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Figura 53. Gráfico modelo 6 

 

Modelo 7 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 5000 CrossEntropy 

Tabla 56. Parámetros modelo 7 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

35,633 0,005314 0,072895 99,406 % 

Tabla 57. Resultados modelo 7 
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Figura 54. Gráfico modelo 7 

 

Modelo 8 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 5000 Auto 

Tabla 58. Parámetros modelo 8 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

35,891 0,005492 0,074111 99,244 % 

Tabla 59. Resultados modelo 8 
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Figura 55. Gráfico modelo 8 

 

Modelo 9 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 2000 CrossEntropy 

Tabla 60. Parámetros modelo 9 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

26,727 0,002218 0,047099 99,705 % 

Tabla 61. Resultados modelo 9 
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Figura 56. Gráfico modelo 9 

 

Modelo 10 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 2000 Auto 

Tabla 62. Parámetros modelo 10 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

26,929 0,004127 0,064240 99,494 % 

Tabla 63. Resultados modelo 10 
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Figura 57. Gráfico modelo 10 

 

Modelo 11 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 5000 CrossEntropy 

Tabla 64. Parámetros modelo 11 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

51,112 0,002177 0,046661 99,788 % 

Tabla 65. Resultados modelo 11 



66 
 

 
Figura 58. Gráfico modelo 11 

 

Modelo 12 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 5000 Auto 

Tabla 66. Parámetros modelo 12 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

50,734 0,003126 0,055911 99,598 % 

Tabla 67. Resultados modelo 12 
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Figura 59. Gráfico modelo 12 

 

Modelo 13 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 2000 CrossEntropy 

Tabla 68. Parámetros modelo 13 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

16,593 0,009367 0,096781 98,803 % 

Tabla 69. Resultados modelo 13 
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Figura 60. Gráfico modelo 13 

 

Modelo 14 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 2000 Auto 

Tabla 70. Parámetros modelo 14 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

16,418 0,007507 0,086645 99,008 % 

Tabla 71. Resultados modelo 14 
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Figura 61. Gráfico modelo 14 

 

Modelo 15 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 5000 CrossEntropy 

Tabla 72. Parámetros modelo 15 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

41,583 0,005250 0,072454 99,430 % 

Tabla 73. Resultados modelo 15 
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Figura 62. Gráfico modelo 15 

 

Modelo 16 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 5000 Auto 

Tabla 74. Parámetros modelo 16 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

42,459 0,004982 0,070584 99,430 % 

Tabla 75. Resultados modelo 16 
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Figura 63. Gráfico modelo 16 
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Dataset 5.000 observaciones, hasta cinco cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 600 CrossEntropy 

Tabla 76. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

6,538 0,022646 0,150486 97,375 % 

Tabla 77. Resultados modelo 1 

 
Figura 64. Gráfico modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 
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70-30 No 600 Auto 

Tabla 78. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

6,127 0,027384 0,165480 96,817 % 

Tabla 79. Resultados modelo 2 

 
Figura 65. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 600 CrossEntropy 

Tabla 80. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

3,894 0,052614 0,229376 96,839 % 

Tabla 81. Resultados modelo 3 



74 
 

 
Figura 66. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 600 Auto 

Tabla 82. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

3,764 0,061357 0,247703 92,866 % 

Tabla 83. Resultados modelo 4 
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Figura 67. Gráfico modelo 4 

 

Modelo 5 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 CrossEntropy 

Tabla 84. Parámetros modelo 5 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

7,900 0,026184 0,161816 96,810 % 

Tabla 85. Resultados modelo 5 
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Figura 68. Gráfico modelo 5 

 

Modelo 6 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 Auto 

Tabla 86. Parámetros modelo 6 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

6,908 0,025179 0,158680 97,128 % 

Tabla 87. Resultados modelo 6 
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Figura 69. Gráfico modelo 6 

 

Modelo 7 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 CrossEntropy 

Tabla 88. Parámetros modelo 7 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

4,549 0,055693 0,235994 93,394 % 

Tabla 89. Resultados modelo 7 
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Figura 70. Gráfico modelo 7 

 

Modelo 8 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 Auto 

Tabla 90. Parámetros modelo 8 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

4,811 0,063923 0,252830 92,799 % 

Tabla 91. Resultados modelo 8 
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Figura 71. Gráfico modelo 8 

 

  



80 
 

Dataset 10.000 observaciones, hasta dos cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 600 CrossEntropy 

Tabla 92. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,547 0,003400 0,058310 99,535 % 

Tabla 93. Resultados modelo 1 

 
Figura 72. Gráfico modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 600 Auto 
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Tabla 94. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,244 0,002328 0,048253 99,633 % 

Tabla 95. Resultados modelo 2 

 
Figura 73. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 600 CrossEntropy 

Tabla 96. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

8,499 0,004608 0,067885 99,432 % 

Tabla 97. Resultados modelo 3 
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Figura 74. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 600 Auto 

Tabla 98. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

8,768 0,004789 0,069203 99,516 % 

Tabla 99. Resultados modelo 4 
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Figura 75. Gráfico modelo 4 

 

Modelo 5 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 CrossEntropy 

Tabla 100. Parámetros modelo 5 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

16,730 0,002150 0,046369 99,801 % 

Tabla 101. Resultados modelo 5 
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Figura 76. Gráfico modelo 5 

 

Modelo 6 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 Auto 

Tabla 102. Parámetros modelo 6 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

18,479 0,003506 0,059208 99,491 % 

Tabla 103. Resultados modelo 6 



85 
 

 
Figura 77. Gráfico modelo 6 

 

Modelo 7 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 CrossEntropy 

Tabla 104. Parámetros modelo 7 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

9,451 0,005071 0,071210 99,344 % 

Tabla 105. Resultados modelo 7 
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Figura 78. Gráfico modelo 7 

 

Modelo 8 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 Auto 

Tabla 106. Parámetros modelo 8 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

9,610 0,006048 0,077770 99,139 % 

Tabla 107. Resultados modelo 8 
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Figura 79. Gráfico modelo 8 
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Dataset 10.000 observaciones, hasta tres cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 600 CrossEntropy 

Tabla 108. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

13,761 0,002712 0,052078 99,535 % 

Tabla 109. Resultados modelo 1 

 
Figura 80. Gráfico modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 
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70-30 10 600 CrossEntropy 

Tabla 110. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

8,575 0,003266 0,057151 99,600 % 

Tabla 111. Resultados modelo 2 

 
Figura 81. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 CrossEntropy 

Tabla 112. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

15,587 0,001837 0,042856 99,705 % 

Tabla 113. Resultados modelo 3 
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Figura 82. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 CrossEntropy 

Tabla 114. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

9,915 0,005127 0,071605 99,345 % 

Tabla 115. Resultados modelo 4 



91 
 

 
Figura 83. Gráfico modelo 4 

 

Dataset 10.000 observaciones, hasta cinco cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 No 600 CrossEntropy 

Tabla 116. Parámetros modelo 1 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

14,398 0,020460 0,143039 97,536 % 

Tabla 117. Resultados modelo 1 
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Figura 84. Gráfico modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

70-30 10 600 CrossEntropy 

Tabla 118. Parámetros modelo 2 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

11,887 0,038119 0,195242 95,591 % 

Tabla 119. Resultados modelo 2 
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Figura 85. Gráfico modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 No 600 CrossEntropy 

Tabla 120. Parámetros modelo 3 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

16,728 0,024011 0,154954 97,041 % 

Tabla 121. Resultados modelo 3 
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Figura 86. Gráfico modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Loss Function 

80-20 10 600 CrossEntropy 

Tabla 122. Parámetros modelo 4 

Resultados: 
 

Tiempo de 
entrenamiento (s) 

MSE RMSE Precisión 

11,224 0,033228 0,182286 95,940 % 

Tabla 123. Resultados modelo 4 



95 
 

 
Figura 87. Gráfico modelo 4 
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Anexo II. Resultados de las pruebas en PyTorch 

Las siguientes representaciones, tanto tabulares como gráficas, muestran los parámetros 
aplicados en el entrenamiento de los modelos, los resultados obtenidos de dicho 
entrenamiento, y como de aproximadas son las predicciones realizadas por el modelo en 
comparación con el conjunto de datos original. Todo esto realizado en el entorno de PyTorch. 
 
 

Dataset 5.000 observaciones, hasta dos cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 600 35 0,01 

Tabla 124. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

34,417 0,984 99,894 % 

Tabla 125. Resultados modelo 1 

 
Figura 88. Gráfico de pérdida modelo 1 
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Figura 89. Gráfico de R2 modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 600 35 0,1 

Tabla 126. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

37,258 0,989 99,914 % 

Tabla 127. Resultado modelo 2 
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Figura 90. Gráfico de pérdida modelo 2 

 

 
Figura 91. Gráfico de R2 modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 10 600 35 0,01 

Tabla 128. Parámetros modelo 3 

Resultados: 
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Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

48,391 0,967 99,708 % 

Tabla 129. Resultados modelo 3 

 
Figura 92. Gráfico de pérdida modelo 3 

 

 
Figura 93. Gráfico de R2 modelo 3 

 

Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 
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80-20 10 600 35 0,1 

Tabla 130. Parámetros modelo 4 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

47,225 -0,089 96,916 % 

Tabla 131. Resultados modelo 4 

 
Figura 94. Gráfico de pérdida modelo 4 

 

 
Figura 95. Gráfico de R2 modelo 4 

 

Dataset 5.000 observaciones, hasta tres cambios 
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Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 100 35 0,01 

Tabla 132. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

5,826 0,978 99,805 % 

Tabla 133. Resultados modelo 1 

 
Figura 96. Gráfico de pérdida modelo 1 
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Figura 97. Gráfico de R2 modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 10 100 35 0,01 

Tabla 134. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

7,674 0,946 99,419 % 

Tabla 135. Resultados modelo 2 
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Figura 98. Gráfico de pérdida modelo 2 

 

 
Figura 99. Gráfico de R2 modelo 2 
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Dataset 5.000 observaciones, hasta cinco cambios 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 100 35 0,01 

Tabla 136. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

5,84 0,931 99,575 % 

Tabla 137. Resultados modelo 1 

 
Figura 100. Gráfico de pérdida modelo 1 
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Figura 101. Gráfico de R2 modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 10 100 35 0,01 

Tabla 138. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

10,918 0,953 99,634 % 

Tabla 139. Resultados modelo 2 
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Figura 102. Gráfico de pérdida modelo 2 

 

 
Figura 103. Gráfico de R2 modelo 2 
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Dataset 10.000 observaciones, hasta dos cambios 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 10 35 0,01 

Tabla 140. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

1,206 0,988 99,890 % 

Tabla 141. Resultados modelo 1 

 
Figura 104. Gráfico de pérdida modelo 1 
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Figura 105. Gráfico de R2 modelo 1 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 35 0,01 

Tabla 142. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

2,015 0,975 99,809 % 

Tabla 143. Resultados modelo 2 
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Figura 106. Gráfico de pérdida modelo 2 

 

 
Figura 107. Gráfico de R2 modelo 2 
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Dataset 10.000 observaciones, hasta tres cambios 
 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 10 35 0,01 

Tabla 144. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

1,202 0,987 99,838 % 

Tabla 145. Resultados modelo 1 

 
Figura 108. Gráfico de pérdida modelo 1 
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Figura 109. Gráfico de R2 modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 100 300 0,01 

Tabla 146. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

0,262 0,983 99,490 % 

Tabla 147. Resultados modelo 2 
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Figura 110. Gráfico de pérdida modelo 2 

 

 
Figura 111. Gráfico de R2 modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 35 0,01 

Tabla 148. Parámetros modelo 3 

Resultados: 
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Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

1,926 0,986 99,902 % 

Tabla 149. Resultados modelo 3 

 
Figura 112. Gráfico de pérdida modelo 3 

 

 
Figura 113. Gráfico de R2 modelo 3 
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Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 300 0,01 

Tabla 150. Parámetros modelo 4 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

0,367 0,987 99,888 % 

Tabla 151. Resultados modelo 4 

 
Figura 114. Gráfico de pérdida modelo 4 
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Figura 115. Gráfico de R2 modelo 4 
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Dataset 10.000 observaciones, hasta cinco cambios 
 
 
Modelo 1 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 10 35 0,01 

Tabla 152. Parámetros modelo 1 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

1,176 0,960 99,544 % 

Tabla 153. Resultados modelo 1 

 
Figura 116. Gráfico de pérdida modelo 1 
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Figura 117. Gráfico de R2 modelo 1 

 

Modelo 2 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 No 10 35 0,01 

Tabla 154. Parámetros modelo 2 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

0,285 0,961 99,243 % 

Tabla 155. Resultados modelo 2 
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Figura 118. Gráfico de pérdida modelo 2 

 

 
Figura 119. Gráfico de R2 modelo 2 

 

Modelo 3 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 35 0,01 

Tabla 156. Parámetros modelo 3 
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Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

1,989 0,953 99,732 % 

Tabla 157. Resultados modelo 3 

 
Figura 120. Gráfico de pérdida modelo 3 

 

 
Figura 121. Gráfico de R2 modelo 3 
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Modelo 4 
 
Parámetros: 
 

División Capa oculta 
(neuronas) 

Epochs Batch  
 

Learning rate 

80-20 128 10 300 0,01 

Tabla 158. Parámetros modelo 4 

Resultados: 
 

Tiempo de entrenamiento 
(s) 

Coeficiente de 
determinación 

Precisión 

0,370 0,952 99,717 % 

Tabla 159. Resultados modelo 4 

 
Figura 122. Gráfico de pérdida modelo 4 
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Figura 123. Gráfico de R2 modelo 4 

 
 


