000161687 001__ 161687
000161687 005__ 20251017144555.0
000161687 0247_ $$2doi$$a10.1002/esp.70108
000161687 0248_ $$2sideral$$a144368
000161687 037__ $$aART-2025-144368
000161687 041__ $$aeng
000161687 100__ $$0(orcid)0000-0002-0068-4532$$aSevil-Aguareles, Jorge
000161687 245__ $$aComparing terrestrial laser scanner and ground‐based structure from motion photogrammetry for urban sinkhole characterization and monitoring in Zaragoza, Spain
000161687 260__ $$c2025
000161687 5203_ $$aDelimiting, characterizing and monitoring active sinkholes in urban areas are fundamental steps for effectively managing the associated risks. These high‐exposure scenarios require accurate data on hazard parameters (e.g., spatially distributed subsidence rates), but the current investigation and monitoring techniques for sinkholes remain relatively undeveloped in comparison to other geological hazards, such as landslides. In this regard, we present the first comparative analysis of the performance of terrestrial laser scanner (TLS) and ground‐based structure from motion (SfM) photogrammetry for delimiting the actively deforming areas and characterizing the spatial patterns of ground displacement through the comparison of two pairs of high‐resolution 3D point clouds. To assess their performance, this work utilizes vertical displacement data measured by high‐precision levelling. The main finding is that, despite TLS providing displacement data with less noise and internal distortion, the less expensive and easier‐to‐implement SfM photogrammetry using ground‐based conventional cameras yields a comparable performance when accurate geodetic data is available. However, according to high‐precision levelling data, both techniques may underestimate the extent and rate of the deformation. According to levelling data, the active sinkhole has a major axis 60 m long, while the length detected by TLS and SfM photogrammetry drops to 21 and 17 m, respectively. Maximum subsidence rates by levelling, TLS and SfM were 22.9, 17.2 and 15.2 mm/year, respectively. These results indicate that there is still a need to complement these high‐resolution techniques with the use of high‐precision methods such as levelling or additional geodetic benchmarks.
000161687 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-123189NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E02-17R$$9info:eu-repo/grantAgreement/ES/MICINN/CGL2017-85045-P$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2018-084240
000161687 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000161687 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161687 700__ $$0(orcid)0000-0002-5407-940X$$aGutiérrez, Francisco$$uUniversidad de Zaragoza
000161687 700__ $$aBenito-Calvo, Alfonso
000161687 7102_ $$12000$$2427$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Geodinámica Externa
000161687 773__ $$g50, 7 (2025), e70108 [16 pp.]$$pEarth surf. processes landf.$$tEARTH SURFACE PROCESSES AND LANDFORMS$$x0197-9337
000161687 8564_ $$s6131870$$uhttps://zaguan.unizar.es/record/161687/files/texto_completo.pdf$$yVersión publicada
000161687 8564_ $$s2390035$$uhttps://zaguan.unizar.es/record/161687/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161687 909CO $$ooai:zaguan.unizar.es:161687$$particulos$$pdriver
000161687 951__ $$a2025-10-17-14:13:00
000161687 980__ $$aARTICLE