000161697 001__ 161697
000161697 005__ 20251017144601.0
000161697 0247_ $$2doi$$a10.1038/s41598-025-03504-8
000161697 0248_ $$2sideral$$a144375
000161697 037__ $$aART-2025-144375
000161697 041__ $$aeng
000161697 100__ $$aGuerrero-López, Paula$$uUniversidad de Zaragoza
000161697 245__ $$a2D versus 3D tumor-on-chip models to study the impact of tumor organization on metabolic patterns in vitro
000161697 260__ $$c2025
000161697 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161697 5203_ $$aDespite the limitations of in vitro models to investigate cancer cell metabolism, their study can provide new insights essential for understanding tumorigenesis and effectively aiding in the development of novel therapies. The innovative tumor-on-chip models offer a more physiologically relevant platform than the traditional 2D cultures. These 3D cultures incorporate cell–cell and cell–matrix interactions, as well as diffusion dynamics through both the matrix and tumor spheroid, modeling in vivo diffusion within the tumor. Therefore, this work focuses on a quantitative comparison between 2D and 3D cultures through a microfluidic chip that allows daily monitoring of cancer cell key metabolites such as glucose, glutamine and lactate, unveiling critical differences. Our analysis reveals reduced proliferation rates in 3D models, likely due to limited diffusion of nutrients and oxygen. Additionally, 3D cultures showed distinct metabolic profiles, including elevated glutamine consumption under glucose restriction and higher lactate production, indicating an enhanced Warburg effect. The microfluidic chip enabled continuous monitoring, revealing increased per-cell glucose consumption in 3D models, highlighting fewer but more metabolically active cells than in 2D cultures. These findings underscore the importance of using microfluidic-based 3D models to provide a more accurate representation of tumor metabolism and progression compared to traditional 2D cultures.
000161697 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122409OB-C21
000161697 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161697 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161697 700__ $$aMartín-Pardillos, Ana$$uUniversidad de Zaragoza
000161697 700__ $$0(orcid)0000-0002-1791-0188$$aBonet-Aleta, Javier
000161697 700__ $$aMosseri, Andrea
000161697 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000161697 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000161697 700__ $$0(orcid)0000-0002-9864-7683$$aGarcia-Aznar, Jose Manuel$$uUniversidad de Zaragoza
000161697 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000161697 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000161697 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000161697 7102_ $$11002$$2807$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Toxicología
000161697 773__ $$g15, 1 (2025), 18 pp.$$pSci. rep. (Nat. Publ. Group)$$tScientific reports (Nature Publishing Group)$$x2045-2322
000161697 8564_ $$s9386153$$uhttps://zaguan.unizar.es/record/161697/files/texto_completo.pdf$$yVersión publicada
000161697 8564_ $$s1990748$$uhttps://zaguan.unizar.es/record/161697/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161697 909CO $$ooai:zaguan.unizar.es:161697$$particulos$$pdriver
000161697 951__ $$a2025-10-17-14:14:12
000161697 980__ $$aARTICLE