Predicting the critical behavior of complex dynamic systems via learning the governing mechanisms
Resumen: Critical points separate distinct dynamical regimes of complex systems, often delimiting functional or macroscopic phases in which the system operates. However, the long-term prediction of critical regimes and behaviors is challenging given the narrow set of parameters from which they emerge. Here, we propose a framework to learn the rules that govern the dynamic processes of a system. The learned governing rules further refine and guide the representative learning of neural networks from a series of dynamic graphs. This combination enables knowledge-based prediction for the critical behaviors of dynamical networked systems. We evaluate the performance of our framework in predicting two typical critical behaviors in spreading dynamics on various synthetic and real-world networks. Our results show that governing rules can be learned effectively and significantly improve prediction accuracy. Our framework demonstrates a scenario for facilitating the representability of deep neural networks through learning the underlying mechanism, which aims to steer applications for predicting complex behavior that learnable physical rules can drive.
Idioma: Inglés
DOI: 10.1016/j.chaos.2025.116515
Año: 2025
Publicado en: Chaos, Solitons and Fractals 198 (2025), 116515 [8 pp.]
ISSN: 0960-0779

Financiación: info:eu-repo/grantAgreement/ES/DGA/E36-23R-FENOL
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2023-149409NB-I00
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Fecha de embargo : 2027-05-28
Exportado de SIDERAL (2025-10-17-14:21:24)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física Teórica



 Registro creado el 2025-06-19, última modificación el 2025-10-17


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)