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Abstract: Background/Objectives: This study explores the integration of wearable sensors
and artificial intelligence (AI) for Human Activity Recognition (HAR) in the diagnosis and
rehabilitation of Parkinson’s disease (PD). The objective was to develop a proof-of-concept
model based on internal reproducibility, without external generalization, that is capable
of distinguishing pathological movements from healthy ones while ensuring clinical rele-
vance and patient safety. Methods: Nine subjects, including eight patients with Parkinson’s
disease and one healthy control, were included. Motion data were collected using the
Motigravity platform, which integrates inertial sensors in a controlled environment. The
signals were automatically segmented into fixed-length windows, with poor-quality seg-
ments excluded through preprocessing. A hybrid CNN-LSTM (Convolutional Neural
Networks—Long Short-Term Memory) model was trained to classify motion patterns,
leveraging convolutional layers for spatial feature extraction and LSTM layers for temporal
dependencies. The Motigravity system provided a controlled hypogravity environment
for data collection and rehabilitation exercises. Results: The proposed CNN-LSTM model
achieved a validation accuracy of 100%, demonstrating classification potential. The Moti-
gravity system contributed to improved data reliability and ensured patient safety. Despite
increasing class imbalance in extended experiments, the model consistently maintained
perfect accuracy, suggesting strong generalizability after external validation to overcome
the limitations. Conclusions: Integrating AI and wearable sensors has significant potential
to improve the HAR-based classification of movement impairments and guide rehabilita-
tion strategies in PD. While challenges such as dataset size remain, expanding real-world
validation and enhancing automated segmentation could further improve clinical impact.
Future research should explore larger cohorts, extend the model to other neurodegenerative
diseases, and evaluate its integration into clinical rehabilitation workflows.

Keywords: Parkinson’s disease; human activity recognition; wearable sensors; artificial
intelligence; machine learning; rehabilitation

1. Introduction
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder,

affecting over 10 million individuals worldwide [1]. Traditional clinical diagnosis primarily
relies on subjective assessments, which can often lead to delayed intervention. Recent
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advancements in Human Activity Recognition (HAR), facilitated by wearable motion
sensors and machine learning techniques, have demonstrated outstanding potential for
detecting early motor impairments [2–4]. However, real-world applications for diagnostic
purposes remain limited, especially in early-stage PD, where clinical signs may be subtle
and fluctuating.

HAR enables a detailed and precise analysis of human movement by integrating
motion capture technologies, computational techniques, and statistical models. This inter-
disciplinary field has significant applications in medicine, well-being, sports science, and
behavioral analysis [5]. The growing integration of physical activity recognition systems
into medical devices has enhanced monitoring by continuously assessing parameters such
as heart rate, pulse analysis, and blood pressure [6,7]. While HAR is widely utilized in
sports medicine and high-performance physical training, its adoption in certain healthcare
domains remains limited. For instance, physical rehabilitation medicine relies heavily
on expert interpretation to assess motor function. Moreover, certain neurodegenerative
diseases, such as PD and multiple sclerosis, present movement impairments that require
early and accurate diagnosis. These conditions’ insidious onset and progressive nature
pose significant challenges for timely detection, often resulting in diagnostic uncertainty,
particularly in the early stages [8,9].

Although body sensors have been widely recognized as valuable tools for monitoring
physical activity, several challenges persist in developing HAR-based diagnostic systems.
These include sensor performance variability, the optimal number and placement of sensors,
data processing methodologies, and the mathematical models used for data interpreta-
tion. Sensor performance can be affected by internal factors, such as hardware limitations
or failures, as well as external influences, including environmental conditions like mag-
netic interference or temperature fluctuations [10]. To mitigate these problems, a robust
preprocessing process is crucial for improving data quality and reliability. Additionally,
sensor selection and placement must be carefully optimized based on the specific char-
acteristics of the analyzed motion and the target pathology [11,12]. While deep learning
techniques have been widely explored in HAR applications, their use in PD diagnosis
remains relatively limited [13,14]. Existing models often require significant optimization to
improve interpretability, generalizability, and adaptability for broader applications beyond
PD detection.

To address these challenges, we propose evaluating a comprehensive HAR process
encompassing the entire processing chain, from data collection to the development of
standardized classification models. This complete chain constitutes what is referred to as a
HAR pipeline. The objectives of this study were as follows: (1) to assess the integration
of data from multiple body sensors; (2) to develop and implement a predictive real-time
classification model for PD detection; (3) to establish a generic and adaptable HAR pipeline;
and (4) to thoroughly test and evaluate system performance. This work builds upon
existing HAR approaches, introducing several innovative components. First, we leveraged
Motigravity, a novel hypogravity simulation platform, to provide a standardized and
clinically relevant context for gait analysis in PD. Second, we integrated wearable inertial
sensors in a real-time acquisition setup, highlighting the system’s practical feasibility for
future use in clinical settings. Third, we proposed a structured data segmentation strategy,
designed to improve dataset balance and segment quality, particularly valuable in data-
limited contexts. Finally, we implemented a hybrid CNN-LSTM (Convolutional Neural
Networks—Long Short-Term Memory) model, specifically optimized to capture both the
spatial and temporal dynamics of Parkinsonian movement.

This study is presented as a technical proof-of-concept model to explore the feasibility
and internal consistency of a wearable sensor-based HAR pipeline for the diagnosis of PD.
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It relies on a small but carefully curated dataset with limited inter-subject variability, and is
not intended to support clinical generalization at this stage.

2. Materials and Methods
2.1. Study Design

This study employed a cross-sectional observational design, based on the analysis
of previously collected data from patients diagnosed with PD and healthy volunteers.
The patient data were collected during a prior clinical study conducted at the Aragon
Parkinson’s Association in Zaragoza, Spain, and approved by the Aragon Research Ethics
Committee (CEICA) under registration number C.P.-C.I. PI18/386, in compliance with the
Declaration of Helsinki and all relevant ethical guidelines. All participants were thoroughly
informed about the study’s objectives, procedures, and potential risks, including muscle
fatigue or dizziness related to movement tasks. Written informed consent was obtained
from each participant before enrollment. Although the specific data used in the present
study had not been previously analyzed in publications, the collection was conducted
under the same clinical agreement and with the same ethical approval as the original
intervention study.

Eight individuals with PD and one healthy subject participated. Movements were
recorded using wearable inertial sensors during controlled walking sessions. Data augmen-
tation was later applied to the healthy recordings to enable comparative analysis.

Although only one healthy individual was included, the dataset was augmented by
extracting hundreds of 5 s signal segments from curated video-aligned recordings. The
selected segment counts correspond to subsets that yielded the most stable classification
results during model evaluation. This approach allowed for the exploration of intra-class
variability and model consistency across experimental configurations, while acknowledging
the absence of inter-subject variation.

2.2. Participants

Participants in this study were recruited as part of a previous clinical project conducted
at the Aragon Parkinson’s Association in Zaragoza, Spain, during 2019. Dissemination
and recruitment were organized through information sessions held at the association’s
premises, where potential candidates were informed about the study objectives, procedures,
inclusion criteria, and associated risks. Recruitment was conducted voluntarily among the
association’s members.

On the one hand, the eligibility criteria for patients with PD included a confirmed
diagnosis of idiopathic PD by a neurologist, the ability to walk independently for short
distances without the use of assistive devices, and a stable clinical condition that allowed
for participation in motor tasks. Patients with severe cognitive impairment, orthopedic
conditions affecting gait, or other neurological diseases were excluded. On the other hand,
the healthy subject was recruited separately and selected based on the following eligibility
criteria: absence of neurological, musculoskeletal, or balance disorders; no history of
movement impairments; and the ability to perform walking tasks safely without assistance.

2.3. Equipment

The Motigravity system was used. It consists of a convex platform that integrates
multidirectional movements into a monodirectional treadmill. Motigravity (manufactured
by Aldebran Srl, Curno, BG, Italy) is an immersive device initially developed for simulating
space operations, which has been later adapted for use in physical and medical rehabilita-
tion [15–17]. The system integrates a virtual reality headset to provide patients with a fully
immersive 360◦ environment that enhances engagement during therapy sessions [18]. To
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simulate weightlessness, the device uses a lifting mechanism that supports the patient using
a sling, thereby reducing their perceived body weight [19]. This configuration minimizes
physical effort and allows patients to perform motor exercises more easily [17].

In this study, the healthy volunteer performed exercises on the convex treadmill
(Figure 1b), while PD patients used the monodirectional treadmill as part of their move-
ment rehabilitation protocol (Figure 1a–d). Both lifting systems were similar in structure;
however, the monodirectional treadmill offered greater safety and accessibility for patients
with PD. In contrast, the curved treadmill was better suited for healthy individuals and
sports medicine applications.

 

 

(a) 

(d) (b) (c) 

(e) 

Figure 1. (a–d) Different points of view of the Motigravity system incorporating a monodirectional
treadmill for rehabilitation exercises. The subject is secured with a harness system, effectively
simulating a hypogravity environment. This setup enables individuals, including those with PD,
to perform controlled movements while reducing gravitational strain and minimizing injury risks.
A virtual reality headset is included to improve patient motivation and adherence to therapeutic
sessions. (e) An illustration of Motigravity with the convex platform used by the healthy subject.
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The Perception Neuron (PN) 2.0 system (Figure 2) was utilized for motion data acqui-
sition, a motion capture technology widely employed in various fields, including video
game development, film, biomechanical research, and sports analysis [20]. The PN 2.0
system consists of several small sensors, called neurons, each containing the following:
(1) a 3-axis accelerometer (X, Y, Z) to measure changes in acceleration, albeit influenced
by gravity; (2) a 3-axis gyroscope (X, Y, Z) to measure angular velocity, which operates at
high frequencies but consumes significant power; and (3) a 3-axis magnetometer (X, Y, Z)
to measure magnetic fields, which is highly sensitive to external disturbances. Motion data
were visualized and recorded using Axis Neuron software (version 3.8.42.8591), which
allows for real-time motion transmission and exports data in two formats: computed values
and BVH (BioVision Hierarchy).

  

(a) 

(b) 

(c) 

Figure 2. The Perception Neuron motion capture system was used in this study. (a) Inertial Mea-
surement Unit (IMU) comprises a 3-axis gyroscope, accelerometer, and magnetometer. (b) The data
acquisition hub collects real-time motion data from multiple Neuron sensors and transmits it to the
computer via USB or a wireless connection. (c) Elastic straps secured the sensors in their optimal
anatomical positions to ensure accurate and consistent data capture.

2.4. Assessment and Data Processing Methods

As mentioned above, gait was measured with the PN 2.0 system (Noitom, Beijing,
China). A regular camera recorded the motion sequences, capturing detailed visual data
for each activity [21]. Each video sequence was segmented into eight synthetic sequences
to isolate the portion of interest [22], focusing specifically on the desired movement. Each
segmented sequence was then assigned an appropriate label. Corresponding to each labeled
segment, a CSV file containing the sensor data recorded during the activity acquisition
was generated. These CSV files represent multivariate time series, with feature vectors
extracted from the sensor signals to capture key motion characteristics.

Before any processing steps, each recorded session was manually reviewed to iden-
tify and retain clinically relevant intervals based on video alignment and signal quality.
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Only these validated intervals were passed to the sliding window segmentation process
described below.

To ensure consistency across all sensor data, interpolation was applied to standardize
the sampling rate to 25 Hz. This step was crucial for aligning signals from multiple sensors
and minimizing temporal mismatches. A Savitzky–Golay filter was used to smooth the
signals while preserving essential characteristics, such as sharp variations indicative of
specific movement patterns. A Butterworth low-pass filter was also applied to remove
high-frequency noise and separate body motion components from gravitational effects,
particularly in accelerometer data [23,24]. Normalization was performed using a zero-mean
and unit-variance transformation to harmonize data across different sensor dimensions,
reducing the impact of varying units and measurement ranges. Overall, these preprocessing
techniques significantly increased the robustness of subsequent analyses by reducing
noise and artefact interference, thereby improving data quality for feature extraction and
classification tasks.

Each sensor captures multiple values over time (e.g., a 3D accelerometer records
data along the X, Y, and Z axes). To represent these outputs, we used vector notation:
si = (d1, d2, d3, . . . , dt) where i represents the sensor index (1 to k); k is the total number
of sensors; and dt is the recorded value at time t. The raw multivariate time series data were
transformed into a preprocessed time series to ensure that data processing is standardized
and independent of individual patient characteristics. This new representation d refers
to one dimension of the processed data, n which is the total number of data dimensions,
and t represents the number of samples. This transformation enhances model robustness
by applying signal processing techniques that filter out noise and remove artifacts while
preserving important motion patterns.

To address the initial class imbalance in our dataset, where only one healthy subject
was available compared to eight PD patients, we implemented a minimal data augmenta-
tion strategy exclusively on the healthy signals [24–26]. This approach aimed to generate
a sufficient number of clean segments for training while preserving the integrity of the
original data. Among standard augmentation techniques for time-series data (such as Scal-
ing, Jittering, and Time Warping), only Time Warping (TW) was applied in our study [14].
TW introduces smooth, non-linear variations in the temporal dimension of the signal,
mimicking natural fluctuations in gait without altering the physiological structure of the
movement. This was particularly important given the clinical context of the data. We
deliberately did not apply Scaling or Jittering, as these methods introduce variations in
signal amplitude or inject random noise, which could compromise the data’s biomechanical
interpretability and clinical relevance, especially when applied to sensor signals derived
from a single individual. The decision to limit augmentation to TW was made to ensure
that the dataset remained as representative and physiologically grounded as possible, while
still providing enough healthy segments for practical model training and comparison.

To maximize recognition accuracy and create a sufficient number of training samples,
we applied a non-overlapping sliding window segmentation process [27–29] to the raw
inertial signals. The full-time series W was divided into fixed-length segments wi, each
representing a 5 s time window (125 time points). Formally, the segmentation can be
described as follows:

W = {w0, w1, . . . , wm − 1}, wi = (t1, t2) with | t2 − t1 |= T

where each window wi is defined by its start and end times in the series, and T is the fixed
duration of each segment.

Each segment was automatically assigned a label based on the class of the original
subject from which it was extracted: either Parkinson’s or Healthy. To ensure data qual-
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ity, segments that were incomplete or triggered interpolation errors were automatically
excluded through error handling routines during the preprocessing stage. No manual
filtering was performed after segmentation.

An automated feature selection strategy was implemented to identify the most in-
formative sensor inputs and reduce the model’s dimensionality. The process involved
three key steps:

- Sensor contribution analysis: A Random Forest classifier was trained using features
from all sensor locations and axes (X, Y, and Z), and feature importance scores were
computed for each input [29–31].

- Elimination of non-informative inputs: The final model excluded sensors and axes of
little to no importance. Specifically, the Z-axis of the right ankle sensor and the X-axis
of the lower back sensor were found to contribute minimally to the CNN-LSTM’s
accuracy and were, therefore, removed.

- Sensor subset optimization: Iterative models were constructed using subsets of the
remaining sensors and axes to identify the combination that yielded the best classifica-
tion performance.

Only sensor axes demonstrating consistent and high importance were retained in the
final feature set. This refined configuration improved both the model’s interpretability and
computational efficiency.

A Convolutional Neural Network—Long Short-Term Memory (CNN-LSTM) model
was selected to classify PD movement patterns by capturing both spatial and temporal
features [25]. The architecture consisted of the following components:

1. Two convolutional layers with 32 and 64 filters, respectively, using ReLU activation
functions to extract local spatial features from the input sequences;

2. A stacked LSTM layer with 128 units to model temporal dependencies across
time steps;

3. A fully connected dense layer followed by a SoftMax output layer for binary classification;
4. Dropout (with a rate of 0.5) and batch normalization were applied to prevent overfit-

ting and improve generalization.
5. Hyperparameters were optimized using the Adam optimizer (learning rate = 0.001),

with a batch size of 32 during training.

2.5. Intervention

Before data acquisition, a comprehensive posture calibration procedure was conducted
to ensure accurate alignment of the inertial measurement units (IMUs) integrated into the
PN 2.0 system (Figure 3). Participants were sequentially instructed to perform a four-step
calibration sequence, consisting of a steady pose (standing upright, arms relaxed alongside
the body), an A-Pose (arms abducted at approximately 30–45◦ from the torso with palms
facing downward), a T-Pose (arms extended horizontally at 90◦, forming a “T” shape
with the torso), and an S-Pose (slight knee flexion with arms projected forward at a 45◦

angle). Each pose was held steadily for several seconds and captured using the Axis
Neuron software to minimize initialization errors and standardize the body reference frame
across participants.

Following successful calibration, participants were instructed to perform a natural
walking task on the Motigravity platform, designed to simulate hypogravity conditions.
To preserve ecological validity, they walked at a self-selected, comfortable pace, without
specific constraints on cadence, arm swing, or posture. Each session consisted of multiple
walking trials. During these tasks, inertial sensor data were recorded simultaneously
with synchronized video sequences, allowing for both quantitative kinematic analysis and
qualitative review of movement patterns. The total recording duration per participant
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typically ranged between 3 and 10 min, depending on individual walking speed, endurance,
and the number of walking cycles performed. This variability reflects the naturalistic
protocol design, in which participants were instructed to walk at a self-selected, comfortable
pace without external pacing constraints.

Figure 3. User interface of the Perception Neuron 2 calibration and configuration process. The Posture
Calibration Selection window allows users to select among Steady Pose, A-Pose, T-Pose, and S-Pose
options to initialize sensor orientation and body alignment. The Body Size Manager panel enables you
to choose predefined anthropometric templates based on gender and height, ensuring accurate skeletal
scaling during motion capture. These initial configurations are crucial for establishing a standardized
reference frame before commencing data acquisition. (Source: https://support.neuronmocap.com,
accessed on 24 January 2025).

Patients with PD benefited from additional treadmill support and Physical and Medical
Rehabilitation assistance provided by the Motigravity system to enhance safety and mini-
mize fall risks. In contrast, the healthy subject performed the task with minimal assistance.

All experiments were conducted in a controlled laboratory setting using a hypogravity
treadmill with consistent lighting, surface, and supervision. These conditions do not reflect
the variability typically encountered in clinical practice. Thus, no external validation or
cross-validation was performed. This work focuses on assessing internal feasibility, and
future studies should include inter-subject or external test set evaluations.

2.6. Analysis

Data analysis focused on evaluating the training dynamics and classification perfor-
mance of the CNN-LSTM model through descriptive metrics and graphical representations
derived directly from the model outputs. Given the small cohort size and the use of syn-
thetic data for healthy segments, inferential statistics were not deemed appropriate. Instead,
the focus was placed on robust training and validation performance across multiple ex-
perimental configurations, as well as the reproducibility of the classification results. This
process was based on the study by Skolova et al. [32], who comprehensively analyzed

https://support.neuronmocap.com
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the most commonly used performance metrics in classification tasks, including accuracy,
recall, F1 score, and the area under the curve (AUC). Their work emphasizes that metric
selection should be context-specific, especially in cases of imbalanced data or multi-class
environments. It highlights the importance of using multiple complementary metrics to
assess model performance robustly [32].

After training, key performance indicators were systematically extracted from the
model’s internal history logs, including training loss, validation loss, training accuracy,
and validation accuracy. These metrics were plotted across the full number of epochs to
assess model convergence, risk of overfitting, and generalization behavior. Loss curves
were generated to monitor the decrease in the cross-entropy loss during learning, while
accuracy curves illustrated the evolution of correct classification rates over time.

Confusion matrices were computed for each experimental configuration to quantify
the classification effectiveness. These matrices detailed the counts of true positives, true neg-
atives, false positives, and false negatives, enabling a transparent view of misclassification
patterns if present.

Additionally, Receiver Operating Characteristic (ROC) curves were produced by
plotting the true positive rate (sensitivity) against the false positive rate (1-specificity) at
various classification thresholds. The AUC metric was calculated to provide a single-value
summary of the classifier’s discriminative power.

All analyses and figure generation were conducted using Python 3.8, primarily utiliz-
ing the following libraries: TensorFlow for model training history extraction, scikit-learn
for confusion matrix computation and plotting ROC curves, and Matplotlib (version 3.0.3)
for visualizing all curves and diagrams. Figures were formatted to maintain consistency in
axis scaling, color schemes, and annotation styles for publication-quality appearance. No
manual post-processing or result alteration was applied to the generated curves.

3. Results
This study included eight patients diagnosed with PD and one healthy subject. Our

data augmentation technique controlled temporal variations while preserving the under-
lying kinematic structure of gait, allowing the generation of 20, 107, and 247 synthetic
segments for experimental configurations.

The three values used for the healthy group segment counts (20, 107, and 247) were
selected empirically after testing several configurations. These values correspond to stable
performance, with high classification accuracy and low variance across repeated runs.
Smaller datasets led to underfitting and unstable training, while larger sets (>300) intro-
duced redundant or overly similar segments, occasionally degrading generalization due to
artificial regularities. Therefore, we retained only the segment sizes that yielded consistent
and interpretable results under controlled conditions.

Based on a hybrid CNN-LSTM architecture, the final model was trained on the refined
feature set. Across all segment-based experiments (balanced and imbalanced), the model
achieved 100% classification accuracy and an AUC of 1.00, with no observed misclassifica-
tions (Figure 4). This suggests excellent separability between Parkinsonian and healthy gait
patterns, even with a significant class imbalance. Training and validation curves confirmed
stable learning: (1) the loss curves steadily decreased and converged after ~150 epochs;
(2) accuracy curves stabilized at 100% for both training and validation; and (3) the confusion
matrix revealed perfect classification (no false positives or negatives).
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Figure 4. Performance of the CNN-LSTM model across three experimental configurations:
(a) 20 healthy vs. 20 Parkinson segments—rapid convergence, 100% accuracy, AUC = 1.00;
(b) 107 healthy vs. 20 Parkinson segments—stable generalization despite imbalance, 100% accu-
racy, AUC = 1.00; (c) 247 healthy vs. 20 Parkinson segments—robust performance under high
imbalance, 100% accuracy, AUC = 1.00. Loss curves, accuracy curves, confusion matrices, and ROC
curves confirm consistent and perfect classification across all scenarios. The solid blue curve rep-
resents the model performance (AUC = 1.00). The black dotted diagonal line represents random
classification (chance level, AUC = 0.5).

4. Discussion
The findings of this study highlight the potential of combining wearable sensor data

with deep learning for accurately and robustly classifying movement patterns associated
with Parkinson’s disease. Our CNN-LSTM model, trained on segmented inertial data from
one healthy subject and eight patients with PD, achieved perfect classification performance
(100% accuracy and AUC = 1.00) across all tested configurations, even under increasing class
imbalance, being higher than the performance observed in previous PD studies [25]. Despite
the limited dataset size, our approach demonstrated consistent and perfect discrimination
between PD and healthy gait across multiple experimental settings. This highlights the
strength of the proposed pipeline and the marked spatiotemporal differences between the
two groups. As such, this study provides strong internal validation for the methodology
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and offers valuable insight into the feasibility of implementing reliable, sensor-based
diagnostic tools for PD.

Time Warping (TW) was applied exclusively to the healthy subject’s segments to
expand the training dataset synthetically, compensating for the limited number of healthy
recordings. This augmentation technique preserved the underlying biomechanical structure
of gait while introducing realistic variability [33]. The model maintained its performance
across increasingly imbalanced conditions (20:20, 107:20, 247:20). The application of data
augmentation and video-based data mining techniques in individuals with PD has already
been demonstrated, particularly for the automated detection of hypomimia [34]. These
approaches have effectively addressed the challenges posed by small and unbalanced
datasets, thus improving model performance.

The hybrid CNN-LSTM architecture was chosen to leverage the complementary
strengths of convolutional and recurrent layers [35]. The CNN component effectively
extracted spatial features from motion signals, such as local gait patterns and step dynam-
ics. In contrast, the LSTM component modeled temporal dependencies and sequencing,
which is crucial for detecting characteristic irregularities in PD movements. This combi-
nation proved particularly effective in distinguishing between healthy and pathological
movement patterns. Moreover, the model’s balance between accuracy and computational
efficiency makes it highly suitable for real-time applications.

Preprocessing played a critical role in ensuring the reliability of the input data in our
study. Raw signals were standardized to a sampling frequency of 25 Hz and filtered using
a combination of Savitzky–Golay and Butterworth filters, a strategy also highlighted by
Celik et al. [23] to improve signal quality in neurological populations. The subsequent
feature selection process, based on a Random Forest algorithm, enabled the exclusion of low-
informative axes, focusing the model on the most discriminative biomechanical dimensions,
particularly those linked to gait and balance control. This approach aligns with the findings
of Davidashvilly et al. [25], who demonstrated that targeted feature optimization can
enhance model generalization, especially in datasets with limited subject variability.

Notably, by carefully selecting relevant features and filtering noise, we achieved high
classification performance without relying on excessively deep or complex network ar-
chitectures, an issue previously discussed by authors [25] in the context of preventing
overfitting in PD activity recognition. Furthermore, our minimal augmentation strategy
contrasts with more aggressive approaches, such as the use of Generative Adversarial Net-
works (GANs) proposed by Lupion et al. [26], indicating that even limited augmentation,
combined with rigorous preprocessing, can yield excellent results when movement patterns
are sufficiently distinct between classes.

These findings support the critical importance of preprocessing and feature engineer-
ing as foundational steps in HAR pipelines targeting clinical populations, particularly when
working with limited datasets. Before segmentation, raw recordings were manually re-
viewed to identify and retain only high-quality intervals, based on clinical relevance, video
alignment, and signal integrity. The segmentation itself was then fully automated using
a sliding window approach. No algorithmic quality filtering was applied after segmenta-
tion; instead, segment quality was ensured by careful manual review before automated
processing. Significantly, the classification was not based on a single continuous signal but
on hundreds of independent 5 s segments, which were extracted and filtered for quality,
providing sufficient variability within the healthy class. Moreover, the spatiotemporal
differences between Parkinsonian and healthy gait patterns in this dataset were highly
distinctive, facilitating perfect separation under these controlled experimental conditions.
The 100% classification accuracy was consistently replicated across the three experimental
configurations, reinforcing the internal validity of the results. Nevertheless, we acknowl-
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edge that generalization to unseen healthy individuals has not yet been demonstrated and
should be addressed in future studies involving a larger, more diverse cohort.

Given the model’s ability to detect subtle abnormalities in movement dynamics, it
could serve as a tool for early detection of PD, enabling timely clinical intervention and more
effective rehabilitation strategies, a direction increasingly supported by recent advances in
remote sensor-based PD screening [36]. Coupling the AI-driven classification system with
the Motigravity platform could enhance personalized therapy through real-time feedback
and adaptive training programs [37].

Nonetheless, some limitations must be acknowledged. Foremost among these is the
limited dataset size, mainly including only a single healthy control subject. Despite the
internal consistency of results, the use of repeated segments derived from a single healthy
subject may have introduced overfitting. Although segmentation and data augmentation
techniques successfully introduced considerable intra-class variability, they cannot sub-
stitute for the inter-subject diversity essential to robust model generalization. The risk
of memorizing subject-specific movement patterns must therefore be acknowledged as a
major limitation, and the model’s ability to perform reliably on unseen individuals remains
unverified. In addition, confounding variables such as age, gender and clinical stage,
factors that can significantly influence gait patterns, were not taken into account, as well
as scores from standardized clinical rating scales, such as the Unified Parkinson’s Disease
Rating Scale (UPDRS), were not used to correlate movement patterns with disease severity,
limiting the clinical interpretability of the findings. Furthermore, the manual selection of
artifact-free sequences before segmentation may still introduce selection bias, even when
following a standardized procedure. Earlier iterations of this study occasionally exhibited
misclassifications, particularly in mild PD cases with variable motor presentations; how-
ever, such errors were not observed in the current analysis. This improvement is attributed
to refined preprocessing, feature selection, and architecture tuning.

Overall, our findings demonstrate the effectiveness and robustness of the CNN-LSTM
model in accurately classifying Parkinsonian gait based on data from wearable inertial
sensors. However, future research should consolidate the clinical relevance of this model
by addressing several essential directions. First, validating the model across larger, het-
erogeneous cohorts is imperative, ensuring its generalizability across diverse populations,
disease severities, and phenotypic variations, particularly within the broader spectrum of
neurodegenerative disorders. Second, future work should focus on improving segmenta-
tion to capture subtle motor abnormalities, which is especially critical for early stages or
atypical presentations of PD. Although the model achieved perfect accuracy in this study,
its robustness in more diverse real-world scenarios remains to be demonstrated. Real-
world implementation in rehabilitation centers and hospital settings should be prioritized
to assess the model’s integration within clinical workflows, evaluate its practical usability
by healthcare professionals, and identify potential technical or organizational barriers to
large-scale deployment. Such steps will be key to translating this proof of concept into a
viable tool for personalized diagnostics and AI-assisted rehabilitation.

5. Conclusions
This study presents a fully integrated HAR pipeline using CNN-LSTM architectures

and inertial sensor data for accurate real-time PD gait classification. The model achieved
perfect classification performance (100% accuracy, AUC = 1.00), even under significant
class imbalance, thanks to optimized preprocessing, feature selection, and a segmentation
strategy. These results highlight the potential of hybrid deep learning approaches to
distinguish between pathological and healthy motor patterns with high reliability. The
results support the clinical feasibility of implementing such models for early PD detection
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and individualized rehabilitation strategies, especially when integrated with immersive
platforms such as Motigravity. Despite promising results, further validation with larger and
more diverse cohorts is required to confirm generalizability. This work lays the foundation
for future AI-based diagnostic systems that continuously and objectively monitor motor
function in clinical and home settings.
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