000161754 001__ 161754
000161754 005__ 20251107103407.0
000161754 0247_ $$2doi$$a10.3390/foods14122112
000161754 0248_ $$2sideral$$a144385
000161754 037__ $$aART-2025-144385
000161754 041__ $$aeng
000161754 100__ $$aBerzosa, Alejandro$$uUniversidad de Zaragoza
000161754 245__ $$aPermeabilization of Cryptosporidium spp. Oocysts in Water, Apple and Carrot Juice by Pulsed Electric Field Technology
000161754 260__ $$c2025
000161754 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161754 5203_ $$aCryptosporidium spp. oocysts are highly resistant to conventional disinfection methods and have been associated with foodborne outbreaks linked to unpasteurized fruit and vegetable juices. This study aimed to evaluate the effectiveness of Pulsed Electric Fields (PEF) in permeabilizing Cryptosporidium oocysts in water, apple juice, and carrot juice. Oocysts were exposed to monopolar square-wave pulses (3 µs) at electric field strengths ranging from 15 to 35 kV/cm, with treatment times up to 180 µs, and application temperatures between 25 °C and 60 °C. Membrane permeabilization was assessed using propidium iodide uptake via fluorescence microscopy and flow cytometry. Results showed that oocyst permeabilization increased with electric field strength, treatment time, and temperature, with up to 90% permeabilization achieved at 35 kV/cm and 45 °C. Carrot juice treatments yielded higher permeabilization levels than apple juice, attributed to greater electrical conductivity and energy input. Temperatures below 60 °C alone had negligible effects, but synergistically enhanced PEF efficacy. These findings demonstrate that PEF, particularly when combined with mild heat, is a promising non-thermal technology for reducing Cryptosporidium viability in beverages, offering an effective alternative for improving the microbiological safety of minimally processed juices while preserving sensory and nutritional quality.
000161754 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A03-23R
000161754 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161754 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161754 700__ $$0(orcid)0000-0001-7106-0068$$aGarza-Moreno, Laura$$uUniversidad de Zaragoza
000161754 700__ $$0(orcid)0000-0001-7831-2483$$aQuílez, Joaquín$$uUniversidad de Zaragoza
000161754 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, Javier$$uUniversidad de Zaragoza
000161754 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez-Lanzarote, Ignacio$$uUniversidad de Zaragoza
000161754 700__ $$0(orcid)0000-0002-9337-417X$$aMartínez, Juan Manuel$$uUniversidad de Zaragoza
000161754 7102_ $$11009$$2773$$aUniversidad de Zaragoza$$bDpto. Patología Animal$$cÁrea Sanidad Animal
000161754 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000161754 773__ $$g14, 12 (2025), 2112 [23 pp.]$$pFoods$$tFoods$$x2304-8158
000161754 8564_ $$s1952837$$uhttps://zaguan.unizar.es/record/161754/files/texto_completo.pdf$$yVersión publicada
000161754 8564_ $$s2654169$$uhttps://zaguan.unizar.es/record/161754/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161754 909CO $$ooai:zaguan.unizar.es:161754$$particulos$$pdriver
000161754 951__ $$a2025-11-07-10:32:19
000161754 980__ $$aARTICLE