000161757 001__ 161757
000161757 005__ 20251017144558.0
000161757 0247_ $$2doi$$a10.1016/j.cej.2025.164314
000161757 0248_ $$2sideral$$a144378
000161757 037__ $$aART-2025-144378
000161757 041__ $$aeng
000161757 100__ $$aGüemes, Lucas$$uUniversidad de Zaragoza
000161757 245__ $$aZeolite@Metal-organic framework core-shell synthesized from the aluminum of the zeolite with accessible internal surface for CO2 adsorption
000161757 260__ $$c2025
000161757 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161757 5203_ $$aCombining the rigid microporosity of zeolites with the more versatile structures of metal–organic frameworks (MOFs) seeks to obtain a synergistic effect of both materials. Starting from a low cost and industrially produced zeolite, as it is zeolite NaA (with the LTA type structure), we show that it is possible to crystallize a MOF as shell onto it by only using an aqueous solution of terephthalic acid (H2BDC). Unlike other zeolite-MOF hybrids reported in the literature, the crystallized MOF only uses the aluminum from the zeolite and may share in turn some aluminum atoms with the inorganic zeolite core, therefore it consists solely of zeolitic Al and BDC. Depending on the pretreatment of the zeolite and the synthesis conditions (pH, time, linker ratio), the crystalline zeolite core is maintained or converted into an amorphous aluminosilicate. Thus, it is possible to retain a part of the adsorption properties of the parent zeolite without degrading its structure. The resulting core–shell material, designated as LTA@Al-BDC, combines the zeolite microporosity and molecular sieving properties with the MOF that crystallizes as high aspect ratio sheets which, together with its hydrophobicity, favors the contact with polymeric materials. In addition, being zeolite 4A (NaA) affinity towards CO2 been probed, the resulting LTA@Al-BDC material constitutes a prominent candidate towards CO2 separation.
000161757 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICIU/PID2021-123079OB-I00$$9info:eu-repo/grantAgreement/ES/MICIU/PID2022-138582OB-I00
000161757 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000161757 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161757 700__ $$0(orcid)0000-0001-7702-9619$$aNavarro, Marta
000161757 700__ $$0(orcid)0000-0002-0238-3127$$aCacho-Bailo, Fernando
000161757 700__ $$aJaimes-Paez, Cristian D.
000161757 700__ $$aCazorla-Amorós, Diego
000161757 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, Carlos$$uUniversidad de Zaragoza
000161757 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000161757 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000161757 773__ $$g518 (2025), 164314 [16 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000161757 8564_ $$s14323778$$uhttps://zaguan.unizar.es/record/161757/files/texto_completo.pdf$$yVersión publicada
000161757 8564_ $$s2536478$$uhttps://zaguan.unizar.es/record/161757/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161757 909CO $$ooai:zaguan.unizar.es:161757$$particulos$$pdriver
000161757 951__ $$a2025-10-17-14:13:46
000161757 980__ $$aARTICLE