000161760 001__ 161760
000161760 005__ 20251017144559.0
000161760 0247_ $$2doi$$a10.1007/s42247-025-01122-8
000161760 0248_ $$2sideral$$a144462
000161760 037__ $$aART-2025-144462
000161760 041__ $$aeng
000161760 100__ $$aCondello, A.
000161760 245__ $$aTwo-step and one-step approach for the in situ synthesis of palladium nanosheets on zein nanoparticle surface using membrane nanoprecipitation
000161760 260__ $$c2025
000161760 5203_ $$aMetal nanostructures with Surface Plasmon Resonance (SPR) properties have garnered interest in applications like optical sensing, photothermal therapy, and optical waveguiding. While synthetic polymers commonly serve as carriers, integrating metal nanostructures with natural-based polymers enhances biocompatibility and biodegradability. With its amine and hydroxyl groups, zein is an ideal material for metal ion interaction enabling efficient surface functionalization of zein nanoparticles (ZNPs). Here, it is demonstrated that zein not only could act as an ideal biopolymeric carrier but also provide an optimal platform for synthesizing anisotropic structures such as palladium nanosheets (PdNS). Two approaches were explored: (i) a two-step approach, involving the preparation of ZNPs via membrane nanoprecipitation (MN) followed by in situ PdNS synthesis using K₂PdCl₄ in a gas-phase carbon monoxide (CO)-confined growth method; and (ii) one-step approach, employing the Pd precursor as the non-solvent during ZNPs nanoprecipitation. For ZNPs-Pd synthesized by the two-step method the influence of variables such as pH, salt, surfactant, and ethanol were evaluated. For one-step approach, to address scalability limitations, ZNPs-Pd nanoprecipitation was performed in a continuous MN process using a 0.2 µm SPG membrane, without using stabilizing agents. TEM imaging confirmed successful, selective PdNS formation on ZNP surfaces without compromising structural integrity. ICP-MS analysis validated the high yield. The ZNPs-Pd demonstrated photothermal activity in the NIR region, achieving temperatures up to 49.6°C. Despite thermal stress, ZNPs-Pd maintained structural stability, marking a significant advancement in the scalable fabrication of biocompatible, photothermally active nanostructures for biomedical and optical applications.
000161760 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133866-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-127847OB-I00
000161760 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000161760 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161760 700__ $$aPiacentini, E.
000161760 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, V.$$uUniversidad de Zaragoza
000161760 700__ $$aGiorno, L.
000161760 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000161760 773__ $$g(2025), [13 pp.]$$tEmergent Materials$$x2522-5731
000161760 8564_ $$s2278585$$uhttps://zaguan.unizar.es/record/161760/files/texto_completo.pdf$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2026-06-16
000161760 8564_ $$s1960622$$uhttps://zaguan.unizar.es/record/161760/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada$$zinfo:eu-repo/date/embargoEnd/2026-06-16
000161760 909CO $$ooai:zaguan.unizar.es:161760$$particulos$$pdriver
000161760 951__ $$a2025-10-17-14:13:52
000161760 980__ $$aARTICLE