000161778 001__ 161778 000161778 005__ 20251017144618.0 000161778 0247_ $$2doi$$a10.1002/adfm.202503644 000161778 0248_ $$2sideral$$a144467 000161778 037__ $$aART-2025-144467 000161778 041__ $$aeng 000161778 100__ $$aLegrand, William 000161778 245__ $$aLattice-Tunable Substituted Iron Garnets for Low-Temperature Magnonics 000161778 260__ $$c2025 000161778 5203_ $$aThe synthesis of nm-thick epitaxial films of iron garnets by physical vapor deposition has opened up exciting opportunities for the on-chip generation and processing of microwave signals encoded in magnons. However, iron garnet thin films suffer from demanding lattice-matching and stoichiometry requirements. Here a new approach to their synthesis is developed, enabling a precise and continuous tuning of iron garnet compositions based on the co-sputtering of binary oxides. By substituting a controlled proportion of iron with additional yttrium, Y3(YxFe5−x)O12 films of high crystalline quality are obtained, combining a widely tunable lattice parameter and excellent magnetization dynamics. This enables iron garnet thin films suited for cryogenic applications, which have long remained impractical due to microwave losses caused by paramagnetic garnet substrates. Low-temperature ferromagnetic resonance confirms the elimination of substrate paramagnetic losses for Y3(YxFe5−x)O12 films lattice-matched to Y3Sc2Ga3O12 (YSGG), a diamagnetic substrate. The Y3(YxFe5−x)O12 system can be matched to other substrates such as (Gd, Y)3Sc2Ga3O12. Bi-substituted films of (Bi0.8Y2.2)Fe5O12 also have ideal lattice matching to YSGG, demonstrating the versatility of this approach. This opens unprecedented options for cation substitutions in iron garnet films, offering a promising avenue to new properties and quantum magnonic devices operating in low-temperature environments. 000161778 536__ $$9info:eu-repo/grantAgreement/EC/H2020/101007825/EU/ULtra ThIn MAgneto Thermal sEnsor-Ing/ULTIMATE-I$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101007825-ULTIMATE-I$$9info:eu-repo/grantAgreement/EC/H2020/872631 /EU/Memristive and multiferroic materials for emergent logic units in nanoelectronics/MELON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 872631 -MELON 000161778 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000161778 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000161778 700__ $$aKemna, Yana 000161778 700__ $$aSchären, Stefan 000161778 700__ $$aWang, Hanchen 000161778 700__ $$aPetrosyan, Davit 000161778 700__ $$aHolder, Luise 000161778 700__ $$aSchlitz, Richard 000161778 700__ $$0(orcid)0000-0002-1296-4793$$aAguirre, Myriam H.$$uUniversidad de Zaragoza 000161778 700__ $$aLammel, Michaela 000161778 700__ $$aGambardella, Pietro 000161778 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000161778 773__ $$g(2025), 2503644 [16 pp.]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X 000161778 787__ $$tDataset for "Lattice-Tunable Substituted Iron Garnets for Low-Temperature Magnonics"$$whttps://www.research-collection.ethz.ch/handle/20.500.11850/739804 000161778 8564_ $$s4559958$$uhttps://zaguan.unizar.es/record/161778/files/texto_completo.pdf$$yVersión publicada 000161778 8564_ $$s2426193$$uhttps://zaguan.unizar.es/record/161778/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000161778 909CO $$ooai:zaguan.unizar.es:161778$$particulos$$pdriver 000161778 951__ $$a2025-10-17-14:20:39 000161778 980__ $$aARTICLE