000161802 001__ 161802
000161802 005__ 20251017144644.0
000161802 0247_ $$2doi$$a10.1016/j.ijbiomac.2025.144433
000161802 0248_ $$2sideral$$a144383
000161802 037__ $$aART-2025-144383
000161802 041__ $$aeng
000161802 100__ $$aWang, Kanglei
000161802 245__ $$aRecent advances in versatile cellulose-based 3D-printed drug delivery systems: A review
000161802 260__ $$c2025
000161802 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161802 5203_ $$aAdvancing effective drug therapies is crucial for improving human health. However, traditional drug delivery systems (DDSs) struggle to customize formulations for individual patient needs, prompting exploring innovative solutions. The emergence of 3D printing (3DP) technology allows for designing customized DDSs. Cellulose and its derivatives can positively lower blood cholesterol and stabilize blood glucose levels due to their excellent biocompatibility and safety. These cellulose-based materials are supposed to fulfill the necessary criteria for biocompatibility, printability, and biomanufacturing in DDSs. Despite their excellent potential and promising features, constructing 3D-printed DDSs utilizing nanocellulose (NC) and cellulose derivatives remains largely unexamined. Given this, our review highlights the recent advances in cellulose-based inks for drug delivery, detailing the multifunctional roles of cellulose derivatives, such as adhesives, drug-loaded filaments, controlled-release materials, thickeners, and fillers. Their versatility impacts ink rheology, allowing for tailored mechanical properties and porous structures in DDSs, including tablets, capsules, dispersible films, or scaffolds. Furthermore, their in vitro and in vivo application performances have been rigorously evaluated. Overall, this review emphasizes for the first time the unique advantages and various applications of 3D-printed cellulose-based DDSs in personalized medicine, which is significant in providing guidance for developing safe biomedical materials, triggering the growth of personalized medicine.
000161802 536__ $$9info:eu-repo/grantAgreement/ES/AEI/RYC2021-033368-I$$9info:eu-repo/grantAgreement/ES/DGA/T22-23R
000161802 540__ $$9info:eu-repo/semantics/embargoedAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000161802 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000161802 700__ $$aWu, Yanbei
000161802 700__ $$0(orcid)0000-0003-3315-5933$$aRemón, Javier$$uUniversidad de Zaragoza
000161802 700__ $$aDing, Wei
000161802 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000161802 773__ $$g314 (2025), 144433 [20 pp.]$$pInt. j. biol. macromol.$$tInternational journal of biological macromolecules$$x0141-8130
000161802 8564_ $$s9466086$$uhttps://zaguan.unizar.es/record/161802/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-06-30
000161802 8564_ $$s715219$$uhttps://zaguan.unizar.es/record/161802/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-06-30
000161802 909CO $$ooai:zaguan.unizar.es:161802$$particulos$$pdriver
000161802 951__ $$a2025-10-17-14:33:19
000161802 980__ $$aARTICLE