000161868 001__ 161868
000161868 005__ 20251017144616.0
000161868 0247_ $$2doi$$a10.1016/j.pmatsci.2025.101492
000161868 0248_ $$2sideral$$a144479
000161868 037__ $$aART-2025-144479
000161868 041__ $$aeng
000161868 100__ $$aRuiz, H.S.
000161868 245__ $$aCritical current density in advanced superconductors
000161868 260__ $$c2025
000161868 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161868 5203_ $$aThis review paper delves into the concept of critical current density in high-temperature superconductors (HTS) across macroscopic, mesoscopic, and microscopic perspectives. Through this exploration, a comprehensive range of connections is unveiled aiming to foster advancements in the physics, materials science, and the engineering of applied superconductors. Beginning with the macroscopic interpretation of as a central material law, the review traces its development from C.P. Bean’s foundational work to modern extensions. Mesoscopic challenges in understanding vortex dynamics and their coherence with thermodynamic anisotropy regimes are addressed, underscoring the importance of understanding the limitations and corrections implicit in the macroscopic measurement of , linked with mesoscopic phenomena such as irradiation effects, defect manipulation, and vortex interactions. The transition to supercritical current densities is also discussed, detailing the superconductor behavior beyond critical thresholds with a focus on flux-flow instability regimes relevant to fault current limiters and fusion energy magnets. Enhancing through tailored material microstructures, engineered pinning centers, grain boundary manipulation, and controlled doping is explored, along with radiation techniques and their impact on large-scale energy systems. Emphasizing the critical role of , this review focuses on its physical optimization and engineering manipulation, highlighting its significance across diverse sectors.
000161868 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2023-146041OB-C21$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-113034RB-I00
000161868 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161868 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161868 700__ $$aHänisch, J.
000161868 700__ $$aPolichetti, M.
000161868 700__ $$aGalluzzi, A.
000161868 700__ $$aGozzelino, L.
000161868 700__ $$aTorsello, D.
000161868 700__ $$aMiloševic-Govedarovic, S.
000161868 700__ $$aGrbovic-Novakovic, J.
000161868 700__ $$aDobrovolskiy, O.V.
000161868 700__ $$aLang, W.
000161868 700__ $$aGrimaldi, G.
000161868 700__ $$aCrisan, A.
000161868 700__ $$aBadica, P.
000161868 700__ $$aIonescu, A.M.
000161868 700__ $$aCayado, P.
000161868 700__ $$aWilla, R.
000161868 700__ $$aBarbiellini, B.
000161868 700__ $$aEley, S.
000161868 700__ $$0(orcid)0000-0002-8753-2397$$aBadía Majós, A.$$uUniversidad de Zaragoza
000161868 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000161868 773__ $$g155 (2025), 101492 [103 pp.]$$pProg. Mater. Sci.$$tPROGRESS IN MATERIALS SCIENCE$$x0079-6425
000161868 8564_ $$s16666446$$uhttps://zaguan.unizar.es/record/161868/files/texto_completo.pdf$$yVersión publicada
000161868 8564_ $$s2488299$$uhttps://zaguan.unizar.es/record/161868/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161868 909CO $$ooai:zaguan.unizar.es:161868$$particulos$$pdriver
000161868 951__ $$a2025-10-17-14:19:29
000161868 980__ $$aARTICLE