000161915 001__ 161915
000161915 005__ 20251017144644.0
000161915 0247_ $$2doi$$a10.1002/adma.202506100
000161915 0248_ $$2sideral$$a144527
000161915 037__ $$aART-2025-144527
000161915 041__ $$aeng
000161915 100__ $$aFrank, Bradley D.
000161915 245__ $$aReversible Phase Transitions of Anionic and Cationic Surfactant Mixtures Drive Shape Morphing Droplets
000161915 260__ $$c2025
000161915 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161915 5203_ $$aConverting chemical signals into mechanical responses is fundamental to biological systems, driving processes such as cellular motility and tissue morphogenesis. Yet, harnessing chemo‐mechanical signal conversions in synthetic systems remains a key challenge in energy‐dissipative materials design. While droplets can move and interact with their environment reminiscent of active biological matter, chemo‐mechanical interactions are limited by the translation of chemical changes into extensive force variations required on small timescales. Droplets naturally adopt spherical shapes to minimize surface‐energy and restructuring liquids into non‐equilibrium geometries requires mechanisms beyond current stimuli‐responsive surfactant systems, which lack the force‐amplifying mechanisms needed for transient liquid structuring. Here, a spring‐like charging and latch‐controlled release mechanism is introduced for actuating droplets. This is based on reversible, light‐induced crystal‐to‐coacervate phase transitions of photo‐responsive surfactant assemblies, namely between anionic sodium dodecylsulfate and cationic azobenzene‐based surfactants. During phase‐transition, reversible partitioning of the surfactants into the oil or aqueous phases of the emulsion transiently induce rapid changes in interfacial tensions, which are up to 900 times greater than those observed for conventional stimuli‐responsive surfactant systems. The insights into this novel chemo‐mechanical transduction mechanism provide new control over purely liquid systems, paving the way for programmable, hierarchically structured, all‐liquid matter acting with physicality.
000161915 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2023-146811NA-I00$$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126132NB-I00$$9info:eu-repo/grantAgreement/ES/MICIU/RYC2021-031154-I
000161915 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161915 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161915 700__ $$0(orcid)0000-0003-1378-0571$$aRomero, Pilar
000161915 700__ $$0(orcid)0000-0002-8932-9085$$aConcellón, Alberto$$uUniversidad de Zaragoza
000161915 700__ $$aZeininger, Lukas
000161915 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000161915 773__ $$g(2025), 202506100 [9 pp.]$$pAdv. mater.$$tAdvanced materials$$x0935-9648
000161915 8564_ $$s1685626$$uhttps://zaguan.unizar.es/record/161915/files/texto_completo.pdf$$yVersión publicada
000161915 8564_ $$s3086275$$uhttps://zaguan.unizar.es/record/161915/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161915 909CO $$ooai:zaguan.unizar.es:161915$$particulos$$pdriver
000161915 951__ $$a2025-10-17-14:33:20
000161915 980__ $$aARTICLE