000161920 001__ 161920
000161920 005__ 20251017144652.0
000161920 0247_ $$2doi$$a10.3934/mbe.2025066
000161920 0248_ $$2sideral$$a144584
000161920 037__ $$aART-2025-144584
000161920 041__ $$aeng
000161920 100__ $$aSolán-Fustero, P.$$uUniversidad de Zaragoza
000161920 245__ $$aParamatrized intrusive POD-based reduced-order models applied to advection–diffusion–reaction problems
000161920 260__ $$c2025
000161920 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161920 5203_ $$aParametrized problems involve high computational costs when looking for the proper values of their input parameters and solved with classical schemes. Reduced-order models (ROMs) based on the proper orthogonal decomposition act as alternative numerical schemes that speed up computational times while maintaining the accuracy of the solutions. They can be used to obtain solutions in a less expensive way for different values of the input parameters. The samples that compose the training set determine some computational limits on the solution that can be computed by the ROM. It is highly interesting to study what can be done to overcome these limits. In this article, the possibilities to obtain solutions to parametrized problems are explored and illustrated with several numerical cases using the two–dimensional (2D) advection–diffusion–reaction equation and the 2D wildfire propagation model.
000161920 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2022-141051NA-I00$$9info:eu-repo/grantAgreement/ES/DGA/T32-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137334NB-I00
000161920 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000161920 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161920 700__ $$0(orcid)0000-0003-2538-9027$$aGracia Lozano, J. L.$$uUniversidad de Zaragoza
000161920 700__ $$0(orcid)0000-0002-3465-6898$$aNavas-Montilla, A.$$uUniversidad de Zaragoza
000161920 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000161920 700__ $$a
000161920 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000161920 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000161920 773__ $$g22, 7 (2025), 1825-1860$$tMathematical Biosciences and Engineering$$x1551-0018
000161920 8564_ $$s2559968$$uhttps://zaguan.unizar.es/record/161920/files/texto_completo.pdf$$yVersión publicada
000161920 8564_ $$s2076258$$uhttps://zaguan.unizar.es/record/161920/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161920 909CO $$ooai:zaguan.unizar.es:161920$$particulos$$pdriver
000161920 951__ $$a2025-10-17-14:36:41
000161920 980__ $$aARTICLE