000161998 001__ 161998
000161998 005__ 20251017144616.0
000161998 0247_ $$2doi$$a10.1016/j.solmat.2025.113803
000161998 0248_ $$2sideral$$a144594
000161998 037__ $$aART-2025-144594
000161998 041__ $$aeng
000161998 100__ $$aNavarro, Miguel$$uUniversidad de Zaragoza
000161998 245__ $$aRheological study on xylitol crystallization for its use as phase change material: analytical and statistical analysis
000161998 260__ $$c2025
000161998 5060_ $$aAccess copy available to the general public$$fUnrestricted
000161998 5203_ $$aIn a global context in which decarbonization of society is wanted through the use of renewable sources, energy storage plays a fundamental role. Among the different forms of energy storage that exists, this work focuses on latent heat energy storage (LHTES) for medium-low temperatures, between 70 °C and 120 °C. Xylitol, a sugar-alcohol, is a promising phase change material (PCM) due to its low cost, low corrosivity, high latent heat (240 J/g) and a melting temperature of 92 °C. However, its use as PCM is hindered by a high degree of supercooling and a low crystallization rate. To address these challenges, this work used a seeding and shearing technique to trigger crystallization. Rheological experiments were performed to monitor viscosity changes during crystallization, in order to study the crystallization induction time. The systematic analysis included the effects of temperature (70–90 °C), shear rate(1-100s−1), and seed crystal size (300–400 μm and 600–700 μm). Key results show that temperature is the most dominant factor. The shortest induction time at 70 °C was found at 10s, increasing to 1500s at 90 °C. Increasing seed size and reducing the rheometer gap also shortened induction times, while shear rate had minimal influence, likely due to non-uniform shear during the test. For practical applications, operating at 80 °C is recommended to balance induction time and energy loss due to supercooling. Optimizing shear-triggered mechanism, such as stirred tanks designs, can improve crystallization controllability.
000161998 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-115500RB-I00$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-148958OB-C21$$9info:eu-repo/grantAgreement/ES/AEI/RYC2023-044207-I$$9info:eu-repo/grantAgreement/ES/DGA/E46-23R$$9info:eu-repo/grantAgreement/ES/DGA/T55-20R$$9info:eu-repo/grantAgreement/ES/MICINN PRE2021-097131$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131061B–C31$$9info:eu-repo/grantAgreement/ES/AEI/RED2022-134202-T
000161998 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000161998 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000161998 700__ $$0(orcid)0000-0003-2461-8588$$aGracia, Zeus$$uUniversidad de Zaragoza
000161998 700__ $$0(orcid)0000-0002-0174-789X$$aAsín, Jesús$$uUniversidad de Zaragoza
000161998 700__ $$0(orcid)0000-0001-7360-4188$$aLázaro, Ana$$uUniversidad de Zaragoza
000161998 700__ $$aMartí, Marta
000161998 700__ $$0(orcid)0000-0002-8015-4469$$aDelgado, Mónica$$uUniversidad de Zaragoza
000161998 7102_ $$12007$$2265$$aUniversidad de Zaragoza$$bDpto. Métodos Estadísticos$$cÁrea Estadís. Investig. Opera.
000161998 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000161998 773__ $$g292 (2025), 113803 [9 pp.]$$pSol. energy mater. sol. cells$$tSOLAR ENERGY MATERIALS AND SOLAR CELLS$$x0927-0248
000161998 8564_ $$s6712601$$uhttps://zaguan.unizar.es/record/161998/files/texto_completo.pdf$$yVersión publicada
000161998 8564_ $$s2623956$$uhttps://zaguan.unizar.es/record/161998/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000161998 909CO $$ooai:zaguan.unizar.es:161998$$particulos$$pdriver
000161998 951__ $$a2025-10-17-14:19:43
000161998 980__ $$aARTICLE