000162015 001__ 162015
000162015 005__ 20251017144619.0
000162015 0247_ $$2doi$$a10.3390/catal15060509
000162015 0248_ $$2sideral$$a144645
000162015 037__ $$aART-2025-144645
000162015 041__ $$aeng
000162015 100__ $$0(orcid)0000-0002-5926-5252$$aRenda, Simona$$uUniversidad de Zaragoza
000162015 245__ $$aProcess Intensification for CO2 Hydrogenation to Liquid Fuels
000162015 260__ $$c2025
000162015 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162015 5203_ $$aLiquid fuels obtained from CO2 and green hydrogen (i.e., e-fuels) are powerful tools for decarbonizing economy. Improvements provided by Process Intensification in the existing conventional reactors aim to decrease energy consumption, increase yield, and ensure more compact and safe processes. This review describes the advances in the production of methanol, dimethyl ether, and hydrocarbons by Fischer–Tropsch using different Process Intensification tools, mainly membrane reactors, sorption-enhanced reactors, and structured reactors. Due to the environmental interest, this review article focused on discussing methanol and dimethyl ether synthesis from CO2 + H2, which also represented the most innovative approach. The use of syngas (CO + H2) is generally preferred for the Fischer–Tropsch process; hence, studies examining this process were included in the present review. Both mathematical models and experimental results are discussed. Achievements in the improvement of catalytic reactor performance are described. Experimental results in membrane reactors show increased performance in e-fuels production compared to the conventional packed bed reactor. The combination of sorption and reaction also increases the single-pass conversion and yield, although this improvement is limited by the saturation capacity of the sorbent in most cases.
000162015 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T43-23R$$9info:eu-repo/grantAgreement/ES/MCIN/PLEC2022-009239$$9info:eu-repo/grantAgreement/ES/MICIU/JDC2023-052947-I
000162015 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162015 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162015 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, Miguel$$uUniversidad de Zaragoza
000162015 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162015 773__ $$g15, 6 (2025), 509 [34 pp.]$$pCatalysts$$tCatalysts$$x2073-4344
000162015 8564_ $$s2395177$$uhttps://zaguan.unizar.es/record/162015/files/texto_completo.pdf$$yVersión publicada
000162015 8564_ $$s2365006$$uhttps://zaguan.unizar.es/record/162015/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162015 909CO $$ooai:zaguan.unizar.es:162015$$particulos$$pdriver
000162015 951__ $$a2025-10-17-14:20:49
000162015 980__ $$aARTICLE