000162016 001__ 162016
000162016 005__ 20251017144619.0
000162016 0247_ $$2doi$$a10.1017/pasa.2025.10033
000162016 0248_ $$2sideral$$a144649
000162016 037__ $$aART-2025-144649
000162016 041__ $$aeng
000162016 100__ $$aTanidis, Konstantinos
000162016 245__ $$aCross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra
000162016 260__ $$c2025
000162016 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162016 5203_ $$aWe measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from $\ell=2$ to 500. We applied two flux density cuts at $0.18$ and $0.4$ mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for $\ell\gtrsim250$ due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at $\sim$5.5$\sigma$, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias $b(z)=b_g$ and a constant amplitude galaxy bias $b(z)=b_g/D(z)$. By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at $0.18$ mJy ($0.4$ mJy) with $b_g=2.32^{+0.41}_{-0.33}$ ($2.18^{+0.17}_{-0.25}$) and a constant amplitude bias with $b_g=1.72^{+0.31}_{-0.21}$ ($1.78^{+0.22}_{-0.15}$). When $\sigma_8$ is a free parameter for the same models at $0.18$ mJy ($0.4$ mJy) with the constant model we found $\sigma_8=0.68^{+0.16}_{-0.14}$ ($0.82\pm0.10$), while with the constant amplitude model we measured $\sigma_8=0.61^{+0.18}_{-0.20}$ ($0.78^{+0.11}_{-0.09}$), respectively. Our results agree at $1\sigma$ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.
000162016 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E21-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-138263NB-I00
000162016 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162016 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162016 700__ $$0(orcid)0000-0002-6211-499X$$aAsorey, Jacobo$$uUniversidad de Zaragoza
000162016 700__ $$aSaraf, Chandra Shekhar
000162016 700__ $$aHale, Catherine Laura
000162016 700__ $$aBahr-Kalus, Benedict
000162016 700__ $$aParkinson, David
000162016 700__ $$aCamera, Stefano
000162016 700__ $$aNorris, Ray
000162016 700__ $$aHopkins, Andrew
000162016 700__ $$aBilicki, Maciej
000162016 700__ $$aGupta, Nikhel
000162016 7102_ $$12004$$2038$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Astronomía y Astrofísica
000162016 773__ $$g42 (2025), e062 [18 pp.]$$pPubl. Astron. Soc. Aust.$$tPUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA$$x1323-3580
000162016 8564_ $$s1990122$$uhttps://zaguan.unizar.es/record/162016/files/texto_completo.pdf$$yVersión publicada
000162016 8564_ $$s3441421$$uhttps://zaguan.unizar.es/record/162016/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162016 909CO $$ooai:zaguan.unizar.es:162016$$particulos$$pdriver
000162016 951__ $$a2025-10-17-14:20:49
000162016 980__ $$aARTICLE