000162131 001__ 162131
000162131 005__ 20251017144633.0
000162131 0247_ $$2doi$$a10.1103/PhysRevB.106.134403
000162131 0248_ $$2sideral$$a130554
000162131 037__ $$aART-2022-130554
000162131 041__ $$aeng
000162131 100__ $$0(orcid)0000-0002-2567-9529$$aBlasco, J.$$uUniversidad de Zaragoza
000162131 245__ $$aStructural and magnetic properties of Ca 3 Mn 2 - x Ru x O 7 ( 0 < x = 0.9 )
000162131 260__ $$c2022
000162131 5203_ $$aWe here report on the study of the crystallographic and magnetic properties of layered perovskites Ca3Mn2−xRuxO7 (x 0.9). We observe a solid solution between Mn and Ru atoms in the whole series and all samples present the same orthorhombic structure independently of the Ru content. Different magnetic structures, depending on the Ru content in the sample, have been determined using neutron powder diffraction. For low Rudoping (x 0.1), there is a dominant G-type antiferromagnetic ordering in the perovskite bilayers but, differently from undoped Ca3Mn2O7, the magnetic moments are located on the ab plane. For higher Ru concentration (x 0.3), the predominant G-type ordering is preserved along the y axis while an A-type component is developed along the x axis and its intensity increases as Ru content does. This component is characterized by a ferromagnetic ordering in the a direction of one of the Mn(Ru)O6 layers, coupled antiferromagnetically with the neighbor Mn(Ru)O6 layer within the same bilayer. The study of the macroscopic magnetic properties shows that ferromagneticlike correlations are enhanced with increasing Ru content as deduced from the shift to higher temperature of the onset of the magnetic transition temperature. The magnetic transitions take place in two steps. At higher temperatures (140–200 K), short-range magnetic correlations are established. Tiny spontaneous magnetization is observed in the hysteresis loops with small coercive field. At TN ≈ 115–125 K, long-range antiferromagnetic ordering is developed. The ferromagnetic component remains with a strong increase of coercivity. We discuss in the paper the possible origins of this ferromagnetic contribution.
000162131 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2019-000917-S$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-17R-RASMIA$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-098537-B-C21$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-098537-B-C22
000162131 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000162131 590__ $$a3.7$$b2022
000162131 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b157 / 343 = 0.458$$c2022$$dQ2$$eT2
000162131 591__ $$aPHYSICS, CONDENSED MATTER$$b24 / 67 = 0.358$$c2022$$dQ2$$eT2
000162131 591__ $$aPHYSICS, APPLIED$$b50 / 160 = 0.312$$c2022$$dQ2$$eT1
000162131 592__ $$a1.468$$b2022
000162131 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ1
000162131 593__ $$aCondensed Matter Physics$$c2022$$dQ1
000162131 594__ $$a6.7$$b2022
000162131 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162131 700__ $$aRodríguez-Velamazán, J. A.
000162131 700__ $$aGarcía-Muñoz, J. L.
000162131 700__ $$0(orcid)0000-0002-8021-8709$$aCuartero, V.$$uUniversidad de Zaragoza
000162131 700__ $$0(orcid)0000-0001-8303-932X$$aLafuerza, S.
000162131 700__ $$aSubías, G.
000162131 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000162131 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000162131 773__ $$g106, 13 (2022), 134403 [12 pp.]$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000162131 8564_ $$s2801261$$uhttps://zaguan.unizar.es/record/162131/files/texto_completo.pdf$$yVersión publicada
000162131 8564_ $$s2967732$$uhttps://zaguan.unizar.es/record/162131/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162131 909CO $$ooai:zaguan.unizar.es:162131$$particulos$$pdriver
000162131 951__ $$a2025-10-17-14:27:29
000162131 980__ $$aARTICLE