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Introduccion

Este trabajo es una introduccién a las ecuaciones que modelan el comportamiento de los fluidos
newtonianos incompresibles. A lo largo del mismo se irdn introduciendo las herramientas para en
ultima instancia poder resolver satisfactoriamente un problema de mecanica de fluidos y evaluar el
resultado obtenido.

Sobran motivaciones para estudiar este tema que, habiendo nacido en la fisica y la ingenieria re-
quiere de las herramientas mds potentes de las matematicas para estudiarse en detalle. Las ecuaciones
de Navier-Stokes han demostrado tener la importancia suficiente para que algunos organismos pre-
mien el estudio de la existencia y unicidad de soluciones con cuantiosos premios. No es de extraiar
teniendo en cuenta que tienen aplicaciones en campos que van desde la aerondutica hasta medicina,
pasando por la produccién de energias renovables. La gran complejidad de este campo, unida al inte-
rés de la industria han hecho que se creen grupos de estudio dedicado en exclusiva al tema en los que
personal de todas las ramas del conocimiento une fuerzas.

El primer capitulo del escrito pretende derivar las ecuaciones fundamentales de una manera que
resulte asequible al lector. Una vez planteado el sistema de ecuaciones de Navier-Stokes, se intro-
ducen algunos conceptos del andlisis adimensional para poder llegar a las ecuaciones de Stokes, una
linealizacién no dependiente del tiempo del sistema original que resulta mas asequible para el estudio.

El segundo capitulo introduce la herramienta fundamental que utilizaremos a la hora de resolver
la ecuacion de Stokes. Se trata del método de elementos finitos, con una pequefia base de teoria de
espacios de Hilbert y distribuciones, estaremos en disposicidn de hablar de la existencia y unicidad
de soluciones de problemas elipticos y podremos al final introducir y hablar de la implementacién del
método de elementos finitos y de la convergencia del mismo.

Por tltimo el capitulo tercero habla del planteamiento de las ecuaciones de Stokes como un pro-
blema de punto silla, estudia la existencia y unicidad de soluciones del mismo y la convergencia de los
métodos de elementos finitos utilizando herramientas ya presentadas en el tema anterior. Al final se
muestran los resultados obtenidos mediante computacién para distintos espacios de elementos finitos.
Todos los programas utilizados en este tltimo punto serdn ademds adjuntados en forma de anexo.

III






Indice general

Introduccion

Summary

1. Una introduccion al modelo matematico
1.1. Laderivacion de las ecuaciones fundamentales . . . . . .. ... ... .......
1.1.1. Laconservaciondelamasa . . . ... ... ... ... . ... .......
1.1.2. Los fluidos incompresibles . . . . . . . . ... ... .. ... ........
1.1.3. Laecuaciéondel movimiento . . . . . . . . ... . ... ... ... .....
1.2. El niimero de Reynolds y la ecuacién de Stokes . . . . . . ... ... ... .. ...

2. El método de los elementos finitos

2.1. Lanecesidad de nuevas soluciones . . . . . . . . . . . . ... e

2.2. Laderivadadébil . . ... ..

2.3. Laformulacién débil del problema . . . . . . .. ... ... ... ..........
2.4. Existenciay unicidadde solucién. . . . . . .. ... oL oo
2.5. Ladiscretizacién del problema variacional . . . . . . . ... ... ... .......

2.6. Los elementos finitos . . . . .

3. Elementos finitos en la ecuacion de Stokes
3.1. Laformulacién débil del problema de Stokes . . . . . ... ... ... ... ....
3.2. Existencia y unicidad de solucién del problema variacional . . . . . ... ... ...
3.3. Problema de Galerkin para la ecuacién de Stokes . . . . . . ... ... ... ...

3.4. Un problema practico . . . . .
3.5. Laimplementacion del método

A. Programas utilizados

Bibliografia

111

VII

NN N = =

10
11
13
14

19
19
20
23
26
29

33

41



VI INDICE GENERAL

Elementos finitos en la mecanica de fluidos



Summary

Abstract

The main goal of this text is to develop the ideas needed to solve the Stokes equation. To do
so, we will first study the derivation of the main equations describing the motion of fluids, these
are the well-known Navier Stokes equations. From there we will move on and obtain the Stokes
problem that we want to study. Afterwards we will start to introduce the fundamental theory of finite
element methods, these include the definition of weak derivatives, the concept of Sobolev spaces, the
variational formulation of problems and some different types of domain decompositions. Once all
these tools have been explained we will proceed to apply them to the Stokes problem and study its
variational formulation, the well-posedness of the problem and the main ideas of mixed finite element
methods. In the end we will be prepared to solve a specific real life problem using the MINI-element
method, the results will be compared with those obtained using an unstable method.

The equations governing the motion of fluids

From now on we will consider Q to be an open, bounded, connected subset of R”. The derivation
of the Navier-Stokes equation system is based in the application of two basic physical laws:

1. The conservation of mass.
2. The conservation of momentum.

After some integration on manifolds we prove that the conservation of mass is equivalent to the
fact that this equation holds at every point of Q:

Where p is the density function of the fluid, u is the speed vector and D% = % +u -V denotes the
material derivative operator. This equation is normally called equation of mass. From the definition
of an incompressible fluid we get that it turns into

V-u=0o0nQ. (1)
Navier-Stokes equations model the behaviour of incompressible newtonian fluids, thus this result

holds. We already have one of the equations of our system.
The conservation of momentum comes from the expression

Du
T

Where Fy are the long-range forces on the fluid and Fy are the surface forces. Long-range forces are
those like gravity or electromagnetic forces, they can be considered as constants on the fluid since
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VIII Capitulo 0. Summary

they do not change a lot with distance. Surface forces appear when molecules interact with each other,
they only affect neighbouring particles of fluid and are a much more delicate case.
After applying Newton’s hypothesis we derive that for newtonian fluids equation (2) turns into:

Du 1

— =F——Vp+vAu. 3
D 0 p+VvAu (3)
Where F is the long-range forces acceleration, p is the pressure and V is the cinematic viscosity of the
fluid. Equation (3) is usually called equation of motion together with (1) they form the Navier-Stokes
equation system:

Du 1

= F--V VA
Dr p PV o)
Vu = 0.

Navier-Stokes equations describe the behaviour of some of the most interesting fluids such as
water and air. However, they are time dependent and not linear, because of this studying them is
extremely complex. We will restrict ourselves to the case of slow flows in small spaces for fluids with
a relatively high cinematic viscosity. In such flows viscous forces are much stronger than the inertial
ones and the convective term of the material derivative u- Vu can be neglected.

Definition 1. The Reynolds number is the index

Inertial forces
e=——"-—.
Viscous forces

Flows with a very small Reynolds number are called Stokes flows.

The Navier-Stokes equations for a Stokes flow can be reduced to:
—Au+Vp=~fonQ,
{ V.u=0, ©®)

this system of equations together with appropriate boundary conditions is the one we want to study.
The Stokes equation system models the behaviour of several flows such as the movement of microor-
ganisms swimming in a fluid or a lava flow.

The weak derivative

In this section we will deal with Dirichlet boundary value problems and apply the finite element
method to some of them.

First of all we have to define the existence of solutions in the weak sense. Classical solutions
of partial differential equations problems have strong requirements concerning the softness of the
functions. For example, let us consider the following problem

() = £(x) en (0,1),
{ u(O):u(l):Oe. ©

A classical solution must fulfil u € C2 Q)N 0 (ﬁ) However, the problem stated in (6) models a real
life phenomenon. It describes the deformation of an elastic string under a distribution of weights. In
case we choose such a distribution to be discrete, physical intuition tells us that the solution does not
even have to belong to C!(Q). Thus the requirements on solutions must be lowered.

We introduce the following concepts:

Elementos finitos en la mecanica de fluidos
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Definition 2. Given an open set Q C R", we define D () as the space of infinitely differentiable
functions from Q into R such that their support is compact, i.e.

D(Q)={feC”(Q):supp(f) is compact},

where the support of f is defined as supp (f) = {x € Q: f(x) #0}.

Definition 3. The dual space of D (Q) is the space of distributions D (Q)*. Any element in D (Q)" is
called a distribution.

Definition 4. Given T € D(Q)" and f € D(Q), we will write

T(f)=(T.f)
and define the derivative of T with respect to x; as
aT af

<8Tcl’f> - _<T787xl_>'

Iterating this definition, we can define higher order derivatives, given oo € N" a multi-integer . We can
define the o-order derivative of T as

(DU(T), f) = (=1)*T,D*f).
For every f € D(Q).

We can prove that for every f € L,(Q) there exists a unique 7y € D(€)* such that (Ty,g) =
Jo fg dQ. Thus we can introduce the weak derivative of order ¢ of a function in L, as the function
D f such that:
(D%f,g) = (f,D%g) for every g € D(Q).

Definition 5. A Sobolev space of order k > 0 is a space of functions in L (Q) such that their deriva-
tives of up to k™ order lie in L, (Q) as well:

HYQ)={feL,(Q):D*f cL,(Q) forall a: || < k}.
Immediately from the definition we get that H**! (Q) C Hk(Q).

Lemma 6. Consider the inner product on H*(Q) defined by:

(MVHkQ / Da D(x Q

|or| <k
the pair (H*(Q), (e, ®)ui(q)) is a Hilbert space.

Definition 7.
Hy(Q)=D(Q)={feH" (Q):f=00nT}.

The weak formulation of a general problem

The following result is called Green’s formula:

Theorem 8. Givenu,v € H' (Q) it holds:

8x, vdQ = /uvn,ds /ua—xldﬂ i=1,.

where n; denotes the i'" component of the unit exterior normal vector on T,
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X Capitulo 0. Summary

Consider the next partial differential equation with Dirichlet boundary value

{ A= )

u=0,onr.

Multiplying both sides of the equation by a test function v € H(;, integrating and using Green’s
formula we get to the weak form of the problem:

Find u € H} (Q) so that:
Vu-VyvdQ = / fv dQ for every v € H] (Q). ®)
Q Q
The weak formulation of the Stokes problem
The Stokes equation system is the following one:
—Au+Vp=~fonQ,
V-u=0, )]

u=uponl,

where Q is an open set in R”, u is the speed vector of the fluid and p is its pressure at each point.
Vector functions will be written in bold from now on. We will restrict ourselves to the case of an
homogeneous boundary value problem, this is, uy = 0.

In order for the boundary condition to be compatible with the problem, we derive from the second
equation the following requirement:

/V-udQ:/u‘nds:/uo-nds:O
Q r r

Which is trivially satisfied in the homogeneous case.

In case (u, p) solves the problem, then (u, p + C) is a solution too VC € R. Thus we must normalize
p with the condition [, p dQ = 0.

Consider the test function spaces

V = Hy(Q)", (10)

M = {qELz(Q):/Qq:O}:LLO(Q). (11)

We proceed as usual multiplying the first equation by v € V, the second by ¢ € M and integrating
both of them. After applying Green’s formula we get the weak formulation of the Stokes problem:

Find (u,p) € V x M so that:

@ () +b(v,p) = (f: V)i, = (V) forallve VandgeM. (12)
b(u,q) =0,
Where
a(u,v) = /Vu:VVdQ, (13)
Q
b(u,q) = /qV‘udQ, (14)
Q

(f,v)L, = /vadQ.

Elementos finitos en la mecanica de fluidos
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Existence and uniqueness of solutions

Definition 9. Given a bilinear forma :V xV — R where V is a Hilbert space and [ : V — R a linear
form, we say that:

1. a(e,e) is coercive or V —elliptic when 3ot > 0 such that a(v,v) > a|[v||3 Vv € V.
2. a(e,e) is continuous when AM, > 0 such that a (u,v) < M,||ully||v|lv Yu,v € V.
3. 1(e) is continuous when 3K > 0 such that l (v) < K||v|]|y Yv € V.

Definition 10. A bilinear form b : V x M — R satisfies the LBB condition if:

3B > 0 such that:

b(v,q)
inf sup > B. (15)
g<Myey [v|ll4ll

This is a compatibility condition between V and M

Theorem 11. Given a problem of the same form as the one in (12), if each one of the forms satisfies:
1. a(e,e) is bilinear, coercive and continuous.
2. b(e,e) is bilinear, continuous and satisfies the LBB condition.
3. I(e) is linear and continuous.

Then the problem has a solution in V x M and it is unique.

Lemma 12. Consider the form b(u,q) = [ qV -u dQ and functions v € (H}(Q))", q € Lro(Q). Then
the LBB condition is satisfied.

Corollary 13. There exists a solution for the Stokes problem and it is unique.

The Galerkin problem
Consider the boundary value problem

Find (uy, pp) € Vi, x M), CV X M so that:
a (W, Vi) + (Vi ) = (F Vi), ) = L(Va)
b (Wn%) - Oa

for all v, € V}, and g;, € Mj,. (16)

With the forms associated to the Stokes equations that we introduced in (13) and V},, M}, finite dimen-
sional Hilbert spaces. Problem (16) is the family of Galerkin problems associated to (12).

The idea of finite element methods is that the solution of these Galerkin problems converges to the
one of (12). However we don’t even know yet what an element is. In finite element methods we will
use h-depending finite decompositions of our domain where 4 normally is the biggest diameter of the
cells of the decomposition. Afterwards we define appropriate finite dimensional spaces of functions
based on the division of the domain.

For this problem we have the following convergence result:

Theorem 14. Consider the Galerkin problem (16) with the conditions:
1. a(e,e) is coercive.

2. The LBB condition is satisfied.

Autor: Alejandro Lopez Nieto



XII Capitulo 0. Summary

Then if (u,p) is the solution for the variational Stokes problem and (uy,, py,) is the solution of the
Galerkin problem, the following inequality holds:

_ _ < : _ : _ )
llu—unllv +1lp—pullu <c virel\f/,,”u Vh|!v+thgﬂf4hllp qnllm (17

This gives us a sense of convergence of our Hilbert spaces. A mixed finite element method will
converge if

ianhGVh Hu_VhH — 0, inf(Ihth Hp - Qh” — 0.

For our purposes we will study triangulations as a particular case of domain decompositions.

Definition 15. Given Q a closed flat polygon, the set T = {K,-}?/:] is a finite triangulation of Q if:

1. K;is an euclidean trianglei =1,... N
2. U?’ZIK,‘ =Q

3. KiNK;j, i+ j is either the empty set, a complete edge of a triangle, or a vertex.

In finite elements we call each K; triangle. h will be the maximum diameter taken over all the
elements of the triangulation.

On a given triangulation of € we will consider the set of piecewise linear functions:

P, = {apt+aix+ayy:ap,a,a; € R},
Wy, = {veC’Q):v|x,eP,i=1,.. N}.

The P; — P; finite element method applied to the Stokes equation in 2 dimensions consists in taking
Vi = W;, x Wj, and M, = W, as our finite dimensional test function spaces. However, we can prove that
this couple does not fulfil the LBB condition, thus the method does not converge to the solution of the
problem.

Definition 16. Given a triangulation Ty, of Q, we will consider the set of nodal linear functions. These
are the linear functions with value 1 at a single vertex and 0 at the other vertices. Such functions are
a basis of Wy, defined on 1y,

We proceed to extend the space Vj, by defining the space B3.

Definition 17. Consider a triangulation T, of Q and W), defined on it in the usual way. Given a triangle
K; € T, then @q,, 9p, and @y, will be the nodal basis functions related to each vertex of K;.

B3 = span{ o, 0p,¢y : Ki € T4} ,
is the space of bubble functions defined on Ty,

We will consider now the finite elements method with V,, = (W, @ B3) x (W}, ® B3) applied to
the Stokes problem. A mixed finite element method using these spaces is called the MINI-element
method. It can be proved that this method satisfies the LBB condition and it is convergent. In fact (alt-
hough it requires some deep functional analysis), we know that condition (14) holds and the method
converges linearly in & with respect to the H' norm.

Elementos finitos en la mecanica de fluidos
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How the method works

Since speed is a vector function and both components are independent of each other in a general
Stokes problem, we can consider each one of the components as a different equation. We can name
each of the components u; and uh We are working with finite dimensional spaces and this means that
we can take a basis of Vj,

ol = (¢!,0),i=1,...,n;
@Y = (¢0,0),i=1,...,n;
DY, =(0,0)),i=1,...,n;
D =(0,07),i=1,....,m;

where n; is the number of vertices of our triangulation and 7, the number of triangles. We can write
the components of speed and the pressure as

n ny n
x,0 11 x,b b
wy =Y u; 0+ Y w9 Z
i=1 =1

Problem (16) with the choice of finite elements of the MINI-element method is then reduced to
solving the following linear system

~\<

(Pl +ZM) b¢j ph_zplq)l

A 0 0 0 G - by
0 A 0 0 G Uly by
0 0 D 0 Gs le | b3
0 0 0 D Ga U’; | b

G, Gy, Gy G, 0 s bs
0O 0 0 0 T 0

Where U = (i), UF = (u);b), Ul = ()", U} = (u?b) and P = (p;). The matrices are computed as
follows:

A = (aij):/QV(j)Jl--Vq)ilin,j:1,...,n1

D= ()= V¢§’-V¢,-bd9i,j=1,...,nz

G = gl, /¢ ’ dQi,j=1,...,n1;
G — gu /¢ 1L sz]—l BN IS
G = gU /d) ’ dQi=1,....myyj=1,....m
G' = (g /¢ 9 i1, oy =1,

b = (b{):/gfq)i dQparai=1,....ny j=1,2,5;
b = (b{):/gfq)ihdﬂparai:1,...,n2yj:3,4.

And the T vector represents the restriction we took for the uniqueness of p, thus

7= Jodl Jadh ].

In order to impose the Dirichlet boundary conditions we will take each row B; of the block matrix
which corresponds to a node with a Dirichlet condition and change it into a vector with a 1 in the i
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component and 0 in the rest. On the right hand side of the system we will change the i component

of the b vector into the value at the boundary. After this procedure we are ready to solve the problem.
At the end of the thesis we will solve (9) with Q = (0, 1) x (0, 1) and a not homogeneous boundary

condition, namely

lify=1,

0 at the rest of the boundary.

ug(x,y) = {

The weak formulation of this problem is a little bit different since we are looking for a solution
in a space which is slightly different from the space of test functions. However all the theory we have
developed along the section still holds and we just have to re-check the variational formulation, it will
change into

Find (u,p) € V x M such that:

a(u,v)—l—b(v,p):(f,v)o, (18)
b(u,q) =0, for all (v,q) € Vo x M.
Where
Q = (0,1)x(0,1),
V = {veH"(Q):v(x,1)=(1,0),x€[0,1] yv=0at the rest of '},
Vo = {VEHl(Q)ivh":O},

M = {qeLz(Q):/quﬂzo}.

V in this case can be seen as an affine translation of V{y. As we said before the theoretical results are
the same. After computing a MINI-element method we will see that results look very natural and are
very similar to what we could expect.

Arguing in the same way we can also study the P; — P method applied to (18). We already now
that this is an unstable method and the results of computing it go against any physical intuition. The
computational implementation of this method together with the MINI-element one can be checked at
the end of the thesis. This was the ultimate goal of our work.

Elementos finitos en la mecanica de fluidos



Capitulo 1

Una introduccion al modelo matematico

1.1. La derivacion de las ecuaciones fundamentales

Nuestro primer objetivo serd entender las ecuaciones que modelan nuestro fenémeno estudiado,
para ello necesitamos primero unas definiciones fundamentales.

Definicion 1.1.1. Un fluido es un conjunto de moléculas liquidas o gaseosas que se deforma conti-
nuamente cuando se le aplica una fuerza tangente a la superficie, el material “fluye” al ser sometido
a esta fuerza. Esta caracteristica resulta mds evidente si se compara con qué le ocurre a un cuerpo
solido en esta situacion.

Definicion 1.1.2. Se llama elemento de fluido 8T a un entorno diferencial de una particula de nuestro
material. Hay que notar que nuestro elemento se desplazard con la particula por lo que su posicion
dependerd del tiempo. De manera habitual consideraremos elementos de fluido con caras planas,
cubos alrededor de puntos que se desplazardn con el tiempo.

Definicion 1.1.3. Se llama elemento de superficie 0S a un fragmento de superficie de tamaiio tan
pequeiio como se quiera en la cercania de un punto.

1.1.1. La conservacion de la masa

Consideraremos en general un dominio abierto y acotado Q C R3. La masa de fluido comprendida
en un elemento del mismo es

p dv.
6T

Donde p es la densidad del material con el que trabajamos. Debemos tener en cuenta que como la
densidad cambia con la temperatura en general no se tratard de una magnitud constante. El principio
de conservacién de la masa nos dice que la variacion en el tiempo de la cantidad de materia en un
elemento de fluido estd determinada por la diferencia entre la masa que entre en el volumen y la que
salga. Definiendo u la velocidad del fluido en un punto e instante de tiempo, y n el vector normal
exterior unitario en la frontera de un elemento de volumen tenemos

4 dQ:f/ pu-nds. (1.1)
8S

dr St
Noétese que introducimos un signo negativo, éste indica la direccion de la variacién de masa, es
decir, si la masa aumenta o disminuye. Aplicando derivacion bajo el signo integral y el teorema de la
divergencia en (1.1) obtenemos la férmula

dp

2P 4V (pu) av =0.
578t+ (pu) dV =0



2 Capitulo 1. Una introduccién al modelo matemadtico

Como esta relacion es cierta para cualquier volumen contenido en £ podemos afirmar que en
general la ecuacion
ap

L4V (puw)=0 (1.2)

se cumple para todo punto X y todo instante de tiempo ¢.

Definicién 1.1.4. Se llama derivada material de una funcion cualquiera definida en R® x R al ope-

rador lineal D 2

oo +u-V.
La derivada material puede observarse como el indice de variacion de una funcion en el tiempo,
siguiendo la corriente.

La ecuacion (1.2) se llama ecuacion de continuidad o de conservacion de la masa y admite la
expresion equivalente

1.1.2. Los fluidos incompresibles

Las ecuaciones de Navier-Stokes son conocidas por modelar el comportamiento de fluidos incom-
presibles, sin embargo, atin no sabemos qué quiere decir esto. Una manera intuitiva de ver cuando un
fluido es incompresible es la siguiente. Sea T el volumen de un elemento de fluido y consideraremos
el indice de expansion local

ldr 1
r(x,f)=lim-—=1im— [ V.-udVxV-u
7—0 T dr =0T .Jst

Se entenderd entonces que un fluido es no compresible cuando este ratio del volumen instantdneo
alrededor de todo punto tienda a 0, es decir, cuando se cumpla V -u = 0. Esta no es una definicién
muy rigurosa, en general se dice que un fluido es incompresible cuando la densidad de un elemento de
fluido no es dependiente de cambios en la presion. Se puede llegar a demostrar mediante un estudio
mas profundo que si asumimos que los cambios de temperatura en nuestro material son despreciables
(lo cual se puede hacer en muchos casos), entonces la definicion formal es equivalente a que

Dp dp

—=—=—+4u-Vp=0

Dt ot P
Esto quiere decir que si vamos siguiendo una particula cualquiera del fluido y estudiamos la densidad
del material en un entorno a su alrededor, ésta serd constante en el tiempo. En particular obtenemos
de nuevo la condicién V -u = 0 sustituyendo en (1.2). Esta condicién serd la primera de nuestras
ecuaciones.

1.1.3. La ecuacion del movimiento

La ley de conservacion del momento (segunda ley de Newton) nos dard la segunda de nuestras
ecuaciones, las fuerzas que actian sobre una porcién de nuestro fluido pueden separarse en general en

1. Fuerzas de volumen: se trata de las fuerzas que experimentan variaciones pequefias con la dis-
tancia. Una consecuencia directa es que podemos considerar que una de estas fuerzas afecta por
igual a todos los puntos de un elemento de fluido que estemos considerando, de modo que sobre
dicho volumen la fuerza serd directamente proporcional a la masa contenida por una aceleracion
constante. Ejemplos serian la gravedad o la fuerza electromagnética.

Elementos finitos en la mecanica de fluidos



1.1. La derivacion de las ecuaciones fundamentales 3

2. Fuerzas de superficie: se trata de las fuerzas con origen en la interaccién molecular que decrecen
muy rapidamente cuando aumenta la distancia. Se consideran despreciables a no ser que haya
un contacto directo entre dos elementos. Si dos elementos de fluido estan en contacto directo, la
interaccidn se producird sélo sobre las particulas que estén a una distancia corta de la frontera.

Considerando elementos con caras planas y considerando la distancia de penetraciéon de las
fuerzas pequefia en comparacién con la superficie de una cara elemento, la fuerza ejercida
sobre dicha cara sera proporcional a la superficie de la misma X (n, x,7) 65, donde n es el vector
normal unitario exterior de la cara que consideramos.

Definicion 1.1.5. A la magnitud fuerza por unidad de superficie

Fuerza ejercida sobre esta cara del elemento
L(n,x,t) =

Area de dicha cara

se la llama esfuerzo.

La fuerza aplicada sobre nuestro elemento serd de signo contrario a la normal exterior Fg =
—X (m,x,7) 8S. Para determinar el esfuerzo sobre un elemento de superficie de un elemento de fluido
que corresponde a un punto en un tiempo fijo definimos el tensor de tensiones o € R?*4. g; j sera la
componente i del esfuerzo sobre un elemento de superficie con vector normal en la direccién j del
espacio, asi queda

Ei(l‘l) = Ojjn;.

Donde n; es la componente j del vector normal unitario exterior con respecto a nuestro elemento
de superficie 0S. Podemos diferenciar los esfuerzos en funcién de la direccién de la normal de la
superficie en la que actian. Los esfuerzos en direcciones paralelas al sistema de referencia en el que
trabajamos se llaman normales y sus valores se reflejan en la diagonal de la matriz o. Los esfuerzos
asociados con los valores de la matriz fuera de la diagonal se llaman tangenciales.

Consideraremos ahora el momento sobre un elemento de fluido, se trata de la cantidad

/‘pu dt.
T

La fuerza ejercida sobre dicho elemento se define como la variacién del momento en el tiempo. Con
una serie de deducciones se llega a la expresion

d Du
dt[;pu T /;Dtp T v+ Fg

Por la conservacién del momento se tiene
Fuerza ejercida = Fuerzas de volumen + Fuerzas de superficie,

y se llega a que
Du
/Ep dT :FV 'i_}.?S7
T

con Fy = / FpdryFs = / Vo dz, desde el punto de vista de las componentes queda la expresién
T T

D
/—“pdr:/deH/v-odr.
th JT T

La igualdad es cierta para cualquier eleccién del volumen, por tanto tiene que ser que en todo punto
de Q se cumple la ecuacion

D
pFltl:pF—i-V-G. (1.3)

Autor: Alejandro Lépez Nieto



4 Capitulo 1. Una introduccién al modelo matemadtico

Esta ecuacion es la que se suele denominar ecuacion del movimiento. Sin embargo, para poder
determinar el estado de un fluido a través de ella tenemos que entender mejor lo que son F y ©.

F representa la aceleracién inducida por las fuerzas que hemos llamado de volumen. En la mayoria
de los casos se trata sencillamente de la aceleracion gravitatoria, constante en todo el fluido y no hay
mayor problema, nos abstendremos de evaluar casos mds generales.

El estudio del tensor de tensiones ¢ plantea una mayor dificultad. En un fluido estético se tiene
o = —pl, donde I representa el tensor identidad d x d con d la dimensidén del espacio y p es la pre-
sién. Sin embargo, cuando el fluido estd en movimiento no es cierto que la presion actuard sobre todos
los elementos como una constante en todas las direcciones. Podemos dividir el esfuerzo en dos tipos
segln su origen:

1. Esfuerzo interno: Debido a la presion del fluido, se manifiesta cuando éste se mueve al cambiar
la presion respecto a la que habia en el estado de reposo. El tensor asociado a este esfuerzo
viene dado por

o = —pl.

2. Esfuerzo viscoso: Se originan como respuesta a la deformacion del fluido. Estdn estrechamente
relacionados con la viscosidad p, una magnitud que mide lo espesos que son los fluidos. La
experiencia nos dice que cuesta mds mover una masa de fluido més espeso, como puede ser la
miel, que desplazar una masa de agua, esto va directamente ligado a la viscosidad. El origen
de esta oposicion del fluido al movimiento es puramente molecular, surge de las colisiones de
moléculas de nuestro material que se producen cuando lo perturbamos. Se dice que un fluido es
newtoniano cuando su esfuerzo viscoso satisface la siguiente relacion (propuesta en su dia por
el propio Newton)

oy = u(Vu+vul).

Observacién 1.1.6. A la forma Vu + Vu' se la llama también tensor de deformacion, asi que la
caracteristica de los fluidos newtonianos es que el tensor esfuerzo viscoso es una funcion lineal del
tensor deformacion.

Hay que decir que la familia de los fluidos newtonianos comprende a muchos de los fluidos habituales
como el agua o el aire bajo condiciones de temperatura y presiéon normales.
Agrupéandolo todo tenemos una expresion del tensor de esfuerzo en un fluido newtoniano

6=01+0,=—pl+u(Vu+Vvu’).
Si introducimos todo esto en la ecuacién (1.3), obtenemos
Du
pp, = PE=Vp+u(Vu+V(V-u).

En forma vectorial y teniendo en cuenta V - u = 0 se tiene que

Du 1

2o P _vVpiva

Di o pTvAL (1.4)
V-u = 0.

Y asi hemos llegado por fin al sistema de ecuaciones de Navier-Stokes (1.4) que modela el com-
portamiento de fluidos newtonianos incompresibles. Sin embargo el objetivo final de este trabajo es
una linearizacion de este sistema que veremos en la seccién siguiente.

Observacion 1.1.7. A la magnitud v = B se la llama viscosidad cinemdtica, en contraposicion a |

que suele ser la viscosidad dindmica o absoluta. Todas estas variables dependen del estado del fluido,
entre otras cosas se ven afectadas por las temperatura pero en muchos casos se pueden considerar
como constantes.

Elementos finitos en la mecanica de fluidos
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1.2. El nimero de Reynolds y la ecuacion de Stokes

Hay que distinguir que podemos hablar de flujos y fluidos. Un fluido es el material concreto con
el que estemos trabajando sea agua, aire o gel. El concepto de flujo es el de un fluido junto con
las condiciones en que se encuentra, por ello podemos clasificar los flujos utilizando la siguiente
definicién.

Definicion 1.2.1. Se llama niimero de Reynolds a la relacion

L

Re="= (1.5)

A un flujo con un niimero de Reynolds muy pequeriio (cercano a cero) se le llama flujo de Stokes.

En (1.5) L y U son una longitud representativa del problema planteado (por ejemplo el didmetro
del dominio) y una velocidad representativa (podria ser una velocidad constante en la frontera), con
esto podemos permitirnos definir nuevas variables

uv=— x'=- t’:g 1P Po

= donde pg es una presion representativa para el problema
U I 2 p pU? Po €esuna p p vap p

Con estas nuevas variables podemos escribir (1.4) en forma adimensional. Dos flujos con las
mismas condiciones iniciales y de contorno en forma adimensional y mismo nimero de Reynolds
se llamarédn dindmicamente similares y admitirdn una misma solucién en forma adimensional. Esto
explica por qué el movimiento de sangre en una arteria principal y en un capilar siguen ecuaciones
tan distintas y da una caracterizacion de los flujos de Stokes.

En general los flujos con nimeros de Reynolds bajos son aquéllos tales que la velocidad y longitud
caracteristicas son pequefias en comparacion con las viscosidad cinematica.

Ademds de la definicién (1.5), el nimero de Reynolds admite también la expresion

Fuerzas inerciales
Re = - . (1.6)
Fuerzas viscosas

Hay que notar las consecuencias directas de (1.6) sobre los flujos de Stokes. En un flujo de este
tipo las fuerzas viscosas dominardn a las inerciales. A causa de esto el término convectivo u-Vu
que aparece en la derivada material de (1.3) se puede despreciar. Como resultado nuestro sistema de
ecuaciones ha pasado a ser lineal y ademds de esto, por tratarse de un flujo lento, podemos considerar
que sera constante en el tiempo y conformarnos con resolver el sistema de ecuaciones estacionario
(ajustando las constantes como nos convenga)

{ —Au+Vp=F, (17

V.u=0.

Equipado con las condiciones de contorno que adecuadas.

Hemos llegado a nuestra meta, el sistema de ecuaciones de Stokes. Aunque por norma general este
sistema es interesante por ser mds sencillo de resolver que (1.4), de hecho resulta que si que modela
algunos ejemplos concretos como pueden ser microorganismos nadando, un flujo de lava, algunos
polimeros viscosos o el comportamiento de la sangre en los capilares.

Autor: Alejandro Lépez Nieto






Capitulo 2

El método de los elementos finitos

Antes de nada hay que decir que con el objetivo de simplificar todo un poco y aliviar la carga de
teoria, en adelante trabajaremos con problemas de ecuaciones en derivadas parciales con condiciones
de contorno de tipo Dirichlet. Todo lo que esta por desarrollarse a partir de ahora admite una extensién
relativamente sencilla a condiciones de contorno de tipo Neumann tan s6lo con un poco de trabajo y
notacidn extra. El libro [B] es una excelente guia a este efecto.

2.1. La necesidad de nuevas soluciones

Dado un problema de ecuaciones en derivadas parciales, se tiene por norma general la formulacién
fuerte del mismo. Se conoce como solucion cldsica a aquélla que es continua en la frontera de un
abierto @ C R" y con derivadas continuas del orden de la ecuacién en el interior del abierto, por
ejemplo:

{ —Au=f, enQ, @
u=0, en = 0dQ. ’
Se trata de una ecuacion en derivadas parciales de segundo orden, por tanto a la solucién clésica u
de dicha ecuacion se le exigird u € C? (Q)NC° (ﬁ), se puede ver que existen problemas fisicos reales
descritos por esta ecuacién que admiten soluciones mas relajadas.
Si consideramos el comportamiento de una cuerda eldstica de extremos fijos al ponerle pesos, el
fenémeno fisico viene descrito por el siguiente problema de valor en el contorno:

{ —u" (x) = f(x) en (0,1), (2.2)

Se trata de una ecuacion diferencial de segundo orden y una solucién cldsica tendra que ser C> en
(0,1) y continua en [0, 1]. Si probamos a poner dos pesos en los puntos 0,4 y 0,6 la intuicién fisica (y
la realidad) nos da la solucién mostrada en la Figura (2.1).

Si esta vez ponemos un Unico peso en el punto intermedio, la deformacién de nuestra cuerda serd
algo como lo reprensentado en la Figura (2.2).

Sin embargo, claramente, estas soluciones no son C? en el interior. Nuestros motivos para buscar
nuevas soluciones estdn ahora mds que justificados, y por tanto debemos plantear la formulacién débil
(variacional) del problema.
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Figura 2.1: Deformacién de una cuerda eldstica por dos masas puntuales.

Figura 2.2: Deformacion de una cuerda eldstica por una dnica masa puntual.

2.2. La derivada débil

Definicion 2.2.1. Sea Q C R" abierto, definimos D () como el espacio de funciones infinito diferen-
ciables de Q en R con soporte compacto, i.e.

D(Q)={feC”(Q):supp(f)es compacto}

donde supp (f) ={x € Q: f(x) #0}.
Definicion 2.2.2. Al espacio dual de D (Q) se le llama espacio de distribuciones D (Q)".

Una vez introducido esto, podemos hablar de derivacion en sentido débil.

Definicion 2.2.3. Sea T € D(Q)" y f € D(Q), escribimos

T(f)=(T.f),
y definimos la derivada de T respecto de la variable x; como
aT af
—.f) =—(T,=).
<8x[’f> ( ’8xl->

Iterando esta definicion, sea oo € N" un multiindice'. Podemos definir la derivada de orden o de T
(DX(T), f) = (=1)/*KT, D).
Donde se entiende que si f € D()
olal

DYf=— 0
! axix'...ax,?”

f con derivadas en el sentido habitual.

!Cada componente del vector indica el orden de derivacién respecto de la variable correspondiente, ademés

n
o = Zai
i=1

Elementos finitos en la mecanica de fluidos
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Notemos que la derivada débil estd bien definida dado que f es infinito derivable y las derivadas
parciales conmutan.

Estd claro que D (Q) C L, (), puesto que si aplicamos las propiedades del soporte compacto:

L1 a@<my s <=vreD(@).
Existe una relacion interesante entre 7 € D (Q)" y L, (Q), dado que sig € D(Q) y f € Ly (Q), se
tiene que

|15 4@ < flallgl <

por la desigualdad de Holder y es lineal por la linealidad de la integral, en otras palabras, la expresién
anterior define un funcional lineal en D (Q) y L, () puede observarse como un subespacio de D (Q)*
como sigue. Para todo f € L, () podemos encontrar una distribucién Ty tal que

(Ty.5) = [ fed@vgeD(@).
Ademads la aplicacion que lleva la funcién f al funcional correspondiente 7 es inyectiva. Esto es una
consecuencia del siguiente resultado de andlisis funcional:
Teorema 2.2.4. Sea Q abierto en R", entonces D (Q) es denso en L, (Q) 1 < p < oo,

Demostracion. Se dejara sin demostracion, ésta se halla en la pagina 109 de [Bre]. O

Entonces si tenemos f, f* € L, (Q) tales que [, (f — f*) g dQ = 0 para todo g € D (2), se sigue
f—febD (Q)L. Considerando L; con el producto interno (f,g)Lz(Q) = o fg dQ. (Lz, (o, o)Lz(Q)) es
un espacio de Hilbert y se puede descomponer en un subespacio cerrado y su complemento ortogonal:

L, (Q) =D(Q)+D(Q)" =D(Q).
Por tanto D (Q)L =0y se tiene que efectivamente f = f*. Ahora podemos entonces hablar de deriva-

das débiles para funciones en el espacio L (€2). Por abuso de notacion escribimos también D f para
la derivada débil de orden @ € R" de f € L, (Q), es decir, la funcién tal que

(f,D%g) = (—1)!*|(D*f,g) para todo g € D(Q).
Donde D%g estd tomada en el sentido habitual.

Definicion 2.2.5. Se llama espacios de Sobolev de orden k a los espacios de funciones Ly (Q) tales
que sus derivadas en sentido débil de hasta orden k se hallan también en L (Q):

HY(Q)={f €L, (Q):D%f € L, (Q) paratodo o : |a| < kY.
De la definicion se sigue inmediatamente que H**'(Q) C H*(Q).

Podemos generalizar estos espacios para L, (Q) con p # 2 pero no serd necesario para los prop6-
sitos de este trabajo.

Observacion 2.2.6. Hemos observado ya que D () C L, (). Por otro lado las funciones en D(Q)
son infinito diferenciables en el sentido habitual, en particular las derivadas habituales cumplen la
condicion de las derivadas en el sentido débil y pertenecen a D(Q2), por tanto

D(Q)cH' (Q).
Visto esto la siguiente definicion tiene sentido.
Definicion 2.2.7. 2 Definimos la clausura de D(Q) en H'(Q)
Hy(Q)=D(Q)={feH" (Q):f=0enT}.

2En el caso unidimensional podemos extender f por continuidad y definir asi el valor en la frontera. Si f es una funcién
vectorial hay que considerar la condicién f|r = 0 en el sentido de trazas como se presenta en la pagina 325 de [Bre], no
entraremos en més detalle.

Autor: Alejandro Lopez Nieto
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2.3. La formulacion débil del problema

Sea el problema unidimensional con el que hemos empezado este mismo capitulo:

—u" (x) = f(x),
{ 1(0) = u(1) = 0. 2.3)

Lo pasaremos a formulacion variacional. Para ello, multiplicamos la primera ecuacién por una
funcidn test v € V, espacio de funciones test que aun no vamos a especificar, e integramos la expresion
sobre Q. Como resultado obtenemos:

—/Olu"vdx:/olfvdx 2.4)

si integramos el término izquierdo por partes

1 1
—/ u”vdx:—[u’v]l—i—/ u'v' dx
0 o Jo

considerando funciones test tales que v(0) = v (1) = 0, la expresién que nos queda para resolver es

/Olu/v’dx:/olfvdx. (2.5

Para toda funcién test que valga 0 en los extremos, seguimos con la necesidad de definir cuales
van a ser nuestros espacios de funciones test y soluciones. Si impusiésemos la condicién de que
la solucién fuese C! estariamos siendo muy exigentes puesto que en los ejemplos fisicos vistos las
derivadas primeras no son continuas. Aqui es donde emplearemos los espacios de Sobolev, por Holder
el término de la izquierda en (2.5) estd bien definido para «’, v/ funciones L,. Si u, v, f son L; el
término de la derecha estara también bien definido. En resumen, la ecuacion (2.5) tiene sentido para
u,v € H} (0,1).

Observacion 2.3.1. En particular las soluciones cldsicas son soluciones en este nuevo sentido, hemos
ampliado el espacio de soluciones y las grdficas (2.1) y (2.2) satisfacen sin problema las nuevas
condiciones.

Para dimensién mayor que uno, podemos plantear la férmula de Green, ésta nos da una versién
de la integracién por partes en espacios de mayor dimension.

Teorema 2.3.2. Sean u,v € H' (Q), entonces se tiene:

auva’Q—/uvn,‘als—/uavdQ,i—l,...,n,
Q 0x; r o Jdx;

donde n; es la i-ésima componente del vector normal exterior unitario en I. Se trata de una conclusion
sencilla del teorema de la divergencia de Gauss.

Aplicando esto por ejemplo a la ecuacién de Poisson homogénea en dimensién 7 llegamos a:

{ *AM:f,

u=0,enl,
—/vAudQ:/fde,

Q Q
u=0,enl,

—/ vAudQ:—/vVu-nds+/ Vu-Vde:/Vu~Vde.
Q r Q Q
Obtenemos asi la formulacidn débil del problema:

Elementos finitos en la mecanica de fluidos
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Encontrar u € H} (Q) tal que:
(2.6)

/Vu-vvdsz:/fdeparatodoveH(} (Q).
Q Q

En el caso de que u sea una funcién vectorial y las componentes de este vector sean independientes
unas de otras, entonces resolver el problema es tan sencillo como hacerlo componente a componente.
Hay que remarcar que esto no es algo que sea siempre posible.

2.4. Existencia y unicidad de solucién

Definicion 2.4.1. Sea una forma bilineal a:V XV — R conV un espacio de Hilberty [ :V — R una
forma lineal, entonces se dice:

1. a(e,e) es coerciva o V—eliptica cuando It > 0 tal que a (v,v) > a|v||} Vv € V.
2. a(e,e) es continua cuando IM, > 0 tal que a (u,v) < M,||ullv||v||y Yu,v € V.

3. 1(e) es continua cuando 3K > 0 tal que | (v) < K||v||y Vv € V. A estas funciones nos referimos
como funcionales lineales de V a lo largo del trabajo.

Lema 2.4.2. SeaV un espacio de Hilbert, a:V xV — R forma bilineal simétrica, coerciva y continua
vl :V — R funcional lineal, entonces son equivalentes:

1. u eV es solucion de:
a(u,v)=1(v) paratodov V.

2. u €V minimiza en'V la expresion 3a(v,v) —1(v).
Demostracion. Seau €V tal que
a(u,v) =1(v) paratodov e V.

Entonces, para todov € V
1 1 1, . .
54 (u+tvu+tv) —1(u+tv)— 54 (u,u) —1(u) = 5ta (v,v) > 0si v, t son distintas de 0.

Y por tanto ¥ minimiza la expresién. Veamos el reciproco, sea u € V minimizando %a (v,v)—1(v),
entonces la funcién F, (t) = Ya(u+tv,u+1tv) — I (u+1tv) tiene un mfnimo en 0 para todo v € V,
necesariamente su derivada en el origen serd O por ser éste un punto critico.

F,(t+h)—F,(t) 1

? :5ha(v,v)+a(u—|—tv,v)+l(v).

Tomando & — 0y # = 0 nos queda F, (0) = a(u,v) — [ (v) =0 paratodo v € V
O

Teorema 2.4.3. SeaV un espacio de Hilbert real con producto interno asociado (e, @)y, a:V xV —R
forma bilineal coerciva y continua y [ : V. — R una forma lineal continua. Entonces el problema

Q2.7)

Encontrar u €V tal que:
a(u,v)=I1v) W eV,

tiene solucion uinica. Este resultado se conoce como teorema de Lax-Milgram. Un problema de este
tipo se llama problema eliptico.

Autor: Alejandro Lépez Nieto
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Demostracion. Definimos los operadores
A,V — R AV — v*
v = a(u,v), u +— a(u,e).
Aplicando el teorema de representacion de Riesz se tiene que existen x,,y € V tales que A,(v) =

(Xu,v)v y I(v) = (y,v)v para todo elemento v € V. Ademas ||A,||y = |[xu|lv y [lZ]ly = l|¥]lv-
Podemos entonces considerar el operador que lleva cada elemento u € V a x,,

x: V. —» V
u — X,

De esta forma (2.7) admite la formulacion equivalente:

2.8
x(u) =y. (2.8)

La existencia y unicidad de solucién es equivalente entonces a que x € L(V,V) sea biyectivo’.
Vemos la inyectividad, sea v € V tal que x(v) = 0 entonces se tiene que:

alvly <a(v,v) =A,(v) =0.

{ Encontrar u € V tal que:

Por tanto por la coercividad de a(e,e) debe ser v =0 y el operador es inyectivo. Para ver que x es
suprayectiva veremos primero que x(V) es cerrado. Sea la sucesién {x,,},. que converge ay € V
cuando n — oo, entonces:

a(Vm —VnyVm — Vn)

[Vin — vallv

1%y, =Xy, lv = [1X(vin) = xX(va)[lv+ = la(vin — Vi, @) [lv+ > > al[vin—vallv.

Esto quiere decir que {v,},y €s una sucesién de Cauchy en un espacio de Hilbert. Entonces existe
v € V limite de dicha sucesion cuando » tiende a infinito. x(v) € x(V) y se tiene por la continuidad
de x que x(v) =y, por tanto x(V) es cerrado. Nos falta ver que x(V)* es 0 y habremos completado el
teorema.

Tomamos vy € x(V)+

, entonces:

o3Il < alvo, vo) = (x(v0), vo)y = .
Y debe ser vg = 0. Como x(V) es cerrado, podemos hacer la descomposicion
V=x(V)®x(V)* =x(V).

Gracias a esto tenemos que X es biyectiva y por tanto el problema tendrd solucién y serd tnica.
O

Observacion 2.4.4. Se puede demostrar que para Q C R" definiendo el producto escalar en H* (Q)
)y = L [ (D%0)(D%) dex
<k’
el par (Hk (Q), (e, ')Hk(9)> es un espacio de Hilbert.

En particular para k = 1 como H} (Q) = D (Q) se tiene que HJ (Q) es cerrado y por tanto es
Hilbert con el producto escalar inducido. Tomando entonces:

a(u,v):/ Vu-VvdQ, (2.9)

Q
I(v) = / fvdQ. (2.10)
Q

Vemos que el teorema de Lax-Milgram se puede aplicar al problema (2.6) y deducimos que tendrd
solucion y serd tinica.

3Hx(u)HV = ||xullv = ||Aullv+ < Mg||u|ly por tanto x es continua.

Elementos finitos en la mecanica de fluidos
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2.5. La discretizacion del problema variacional

Una vez hemos conseguido plantear nuestro problema variacional queremos resolverlo mediante
métodos numéricos. Para ello si el problema est4 planteado en un espacio de Hilbert V, nos restringi-
remos a un subespacio de dimension finita V;, C V donde & es un pardmetro real, asi nuestro problema
(2.7) pasa a ser:

{ Encontrar u, € Vj, tal que: .11)

a(uh,vh) = l(Vh) Yv, € V).

Al problema (2.11) se le llama normalmente problema de Galerkin. Nos interesa saber si las
soluciones uy, en esta familia {V} },, de espacios de Hilbert con dimensién dimV}, = N, < e convergen
realmente a la solucién del problema inicial planteado (2.7).

Observacion 2.5.1. La familia de problemas (2.11) cumple las condiciones de Lax-Milgram y por
tanto tiene solucion vnica para todo h.
Ademds de eso, si sustituimos u, solucion de (2.7) en (2.11), se tiene que

a(u,vy) —1(vy) =0 vy, €V, Vh. (2.12)

La propiedad (2.12) se llama consistencia fuerte, el teorema de Lax-Richtmyer afirma que para
métodos consistentes estabilidad y convergencia son caracteristicas equivalentes, asi que demostran-
do la convergencia para la familia {V),}, demostramos también la estabilidad.

Para ver la convergencia del método que hemos planteado empleamos el lema de Céa.

Lema 2.5.2. Bajo las hipotesis de (2.4.3), sean u la solucion del problema (2.7) y uy, las soluciones
de la familia de problemas planteados en (2.11), entonces se tiene:

M,
lu = wnlly < == inf {lu—=vally- (2.13)

Demostracion. Primero de todo notamos que

a(u—upu—up) = alu—wup,u—vy)+alu—uy,vy—up)
= a(u—uh,u—vh)+a(u,vh—uh)—a(uh,vh—uh)

= a(u—wup,u—vp)+1(vp—up) —1(vp—up) = a(u—up,u—vp)
Aplicando esto y la coercividad:
ol|u—up||? < a(u—up,u—up) = a(u—up,u—vy) < My||u—up]|||u— vy
Y tenemos el resultado. 0

Observacion 2.5.3. Esta cota se alcanza para un tinico elemento en Vy, (debido a propiedades de
los subconjuntos convexos cerrados en espacios Hilbert). Si ademds la forma a(e,e) es simétrica *,
una consecuencia directa de (2.4.2) es que este elemento es la proyeccion ortogonal de u en Vy,; si
queremos minimizar el error de nuestro método debemos aspirar a encontrarla.

Para que nuestro método de elementos finitos converja necesitamos que la familia de espacios de

dimension finita converja al espacio total en el siguiente sentido:

Iim inf ||v— =0 todov V.
h_)()VhthHv villv para todo v

4Este es un caso habitual, como sucede en (2.6).

Autor: Alejandro Lépez Nieto



14 Capitulo 2. El método de los elementos finitos

Bajo qué condiciones esto se cumple se ve mds adelante en este tema. Concretamente en el teore-
ma (2.6.3) que, esencialmente, nos da la convergencia con unas condiciones bastante relajadas’® sobre
la solucién.

Por ser {V},}, una familia de espacios de Hilbert de dimensién finita, podemos encontrar una base

{¢:, i=1,... N} para cada uno de ellos, asi la solucién de los problemas de Galerkin pasa a ser un
problema del dlgebra lineal u;, = Zﬁ\ll ui(}),-, llamando:

aijj :a(q)ja(Pi)a (214)

i =1(6). (2.15)

Con A = (a;j), u= (u}) y L= (I;) se obtiene el sistema:
Au=L. (2.16)

Asi nuestro problema ha pasado a ser resolver un sistema lineal, a la matriz A se la llama matriz
de rigidez del problema.

2.6. Los elementos finitos

El origen del nombre de este método numérico parte del concepto de elemento que vamos a definir.
A la hora de encontrar las familias de subespacios de dimension finita trabajaremos con descomposi-
ciones finitas de nuestro dominio. Este puede llegar a ser un tema de gran complejidad en geometria,
asi que nos adaptaremos solamente a las necesidades finales de este trabajo e introduciremos casos
sencillos en una y dos dimensiones.

Definicion 2.6.1. Sea Q = (a,b), sea la particion a =ty <t} < ... <ty_1 <ty = b. A los intervalos
Kj=tj_1,tj]para j=1,...,N se les llama elementos. Tomando h =maxj— _n(tj —tj_1) llamamos
T, a dicha particion.

Una vez definidos los elementos en el caso de una dimensién podemos introducir espacios de
funciones sobre ellos. Sea P, = {ap+ajx+...+a,x :a; € R, i=0,...,r}, podemos considerar por
ejemplo:

1. Las funciones P; sobre los elementos:

Vi={veCa,b|:v|x, € P, i=1,....N}.

Una base de esta familia de funciones se ve en la Figura (2.3):

nH—x _.
do(x) — tl_t0s1x€K1
0 en el resto
X—1_ .
ﬁSIXGKi
(P,‘(X) = ﬁSiXEKH_] lzlaaNil
0 en el resto
X—IN-1 _-
¢N(X) _ N—In 1 six € Ky

0 en el resto

Se trata de un espacio vectorial de dimensién N + 1 (sin imponer condiciones en los extremos),
ademds estd claro que % < N, por tanto la dimensién aumenta a medida que reducimos h.

SRealmente, para Q con contorno suficientemente suave se tiene que u € H%(Q), ver [Bre] pagina 298

Elementos finitos en la mecanica de fluidos
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bi

Ly i+ Y  ER——

ti+1

Figura 2.3: Funciones nodales para los elementos P; en un espacio de dimension 1.

2. Otro ejemplo més general son las funciones P, sobre los elementos

Vi={vela,b]:v|g, €P,i=1,....,N}.

En general estos son espacios de dimensién rN + 1.

Teniendo esto en cuenta podriamos resolver ya (2.2). La formulacién variacional es:

{ Sea V) = {vj, € Vi, : v4(0) = wy(1) = 0}, encontrar u, € V) tal que: (2.17)

Jo uvi, dx = [ fv, dx para todo v, € V.

Consideraremos por simplicidad el caso de elementos finitos P; sobre una particién en N segmentos
de igual longitud 4, la dimensién de V,? es N — 1. Por tanto nuestra matriz de rigidez viene determinada
por:

aij = /Olqu’-(x)q)i’(x)dx:0si|i—j]>li,jzl,...,N—l (2.18)
ai; = /01(¢;)2(x)dx:2,i=1,...,N—1 (2.19)
i = ai+17,-:/()l¢i’(x)¢i’+1(x)dx:l,izl,...,N1 (2.20)
L = /Olf(x)(l),-(x) dv,i=1,...,N—1 (2.21)

Y sabemos que los coeficientes de las funciones nodales en los extremos serédn 0.

Queda una matriz tridiagonal, diagonal dominante (no en el sentido estricto) con todas las ventajas
computacionales que esto implica.

Para ver la convergencia del método quedaria demostrar que los espacios de dimension finita sobre
los que trabajamos convergen en el sentido de que

lim inf ||v—w|ly =0 paratodov e V.

h—0v, V),
Esto se cumplird, para ello nos basta con aplicar (2.6.3) puesto que se cumplen las hip6tesis. Ademads
en este caso el método convergerd linealmente con 4 en la norma H'.

A continuacién extendemos el método de los elementos finitos de forma natural a dos dimensio-
nes. Podemos definir también elementos en Q C R? mediante triangulaciones y divisiones del dominio
en cuatrilateros y mas formas poligonales. El caso de las triangulaciones es especial puesto que es el
tipo de divisién que utilizaremos nosotros y ademds es uno muy comun y estudiado. Para facilitar las
cosas consideraremos tnicamente dominios poligonales.

Autor: Alejandro Lépez Nieto



16 Capitulo 2. El método de los elementos finitos

Definicion 2.6.2. Sea Q una porcion poligonal cerrada de plano, llamamos a T = {Ki}f.vz | triangula-
cion finita de Q cuando:

1. K; es un tridngulo euclideoi=1,... N
2. U?[:IK,' =Q
3. KiNK;j, i # j es vacio, un lado completo o un vértice.

En elementos finitos cada tridngulo K; se llama elemento. En el caso de las triangulaciones la
magnitud h indicando el tamaiio del espacio vectorial sobre el que trabajamos se toma como el
didmetro mdximo sobre todos los tridngulos.

Figura 2.4: Ejemplos de triangulaciones aceptable (izquierda) y no admisible (derecha).

Podemos definir como antes espacios de funciones sobre estos nuevos elementos. Més adelante
usaremos en concreto funciones de tipo P, sobre cada tridngulo. Una base de esta familia de funciones
serdn las funciones nodales. Se tratard de interpoladores lineales con valor 1 en el nodo al que estidn
asociados y 0 en los nodos vecinos. Entendemos que en una triangulacién dos nodos (vértices de tridn-
gulos) son vecinos cuando existe un eje que los conecta. La dimension del espacio de funciones P
sobre una triangulacion serd |V| = Ndmero de vértices de la triangulacién. Si introducimos una con-
dicién de contorno de tipo Dirichlet, el espacio Py g = {v € P; : v(i) = 0 para todo i nodo Dirichlet}
tiene dimensién |V | — I con I = Nimero de nodos Dirichlet. En el caso de un problema en una dimen-
sion el célculo de la matriz de rigidez es relativamente sencillo, sin embargo, en dos dimensiones todo
se vuelve mds complejo. Para facilitar todo introducimos los conceptos de ensamblaje y elemento de
referencia.

El elemento de referencia es un elemento que consideraremos como estdndar, en el caso unidi-
mensional bien puede ser el segmento K = [0,1]. Si estamos trabajando con una triangulacion se suele
tomar K = {()2, PER?: %I >0yi+9< 1}. La idea es que el calculo de integrales de las funciones
nodales sobre este elemento es sencillo y el resultado estard relacionado con los elementos de nuestra
triangulacion por una transformacién afin con una matriz Bk en la parte lineal. Asi por ejemplo para
el caso de la ecuacion de Poisson (2.6) en dos dimensiones tenemos que calcular para el término de la
izquierda

ay= [, Vor vor=1 | V6, Vo

Si consideramos elementos finitos P;, entonces las funciones nodales sobre el elemento de referencia
son

=
<>
|
—_
|
=
|
=

< S S

[SAEEN;

—~

=

AR

S— N
Il

D
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Podemos entonces calcular la matriz de rigidez de este problema. Para ello utilizaremos la siguiente
matriz auxiliar:

M = (m;j) = /kv(ﬁj.vé,- parai,j=1,2,3.

Se tratard de una matriz 3 x 3 conteniendo los valores de la matriz de rigidez sobre el elemento
de referencia. Podemos utilizar esta matriz para calcular la matriz de rigidez del sistema completo.
Sean £, las coordenadas en el elemento de referencia y (x,y) = F(£,7) la transformacién afin que
lleva el elemento de referencia a un elemento genérico. Dicha transformacién afin admite la siguiente

expresion:
X x
= Fx(X,9 :a[(—i-BK(A).
(3)=rete) :

Figura 2.5: Transformacién afin al elemento de referencia.

aj = /QV¢]-~V¢Z-=;/KV¢]~-V¢Z~
B dP;(%,5) d9;(x,
= ;‘detBK’/k< ox s

<
<
S~—
~~
N
QO
=
NB]
~

0
3o 3o\ (L LN\ [ & 2\ [ %
- Zm@tBK’/k( e a(i) ( 5 5 ) ( 5 & ) 54
K X y y y a9
~ N 9(5;3
APy 00 IR L
— Y [det By /K< e, a;)BKl (Bx") (ﬁ;;
K a9
N N ¢
99q 8%) o
= det B Ay Ve ;
;| € K’/[%( ax/\ ax K 8;;?
_ 9a 99p 99a 99 ¢ 99
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18 Capitulo 2. El método de los elementos finitos

Construyendo las matrices

99; I¢; X x b; 99
M= () = ,ea(fe]aaibe’ My:(mg):/,ea?e a(;’

= (o) = [ 3

parai,j=1,2,3y teniendo en cuenta que M® = (M>*)T y C es simétrica la expresién superior queda:
ajj = ; \det BK‘ [Cnmgﬁ +Cop (m)gﬁ _|_m)[?’a) +C22mgg} )

Podemos aplicar por otro lado un procedimiento similar para el término de la derecha en la ecua-
cién de (2.6), de este modo calculamos

biz;/Kf@:;’detBH/kf%-

Donde f(%,9) = f(Fk(%,9)). Lo tnico que nos faltarfa para acabar es introducir las condiciones de
tipo Dirichlet en la frontera. Para ello, sea i € I nodo Dirichlet, sustituiremos a;; por §; j,j =1...,|V|
y b; por la condicién de contorno en el nodo i que en este caso particular es 0.

Con esto se implementa facilmente el método de los elementos finitos y ya tendriamos un algorit-
mo para en este caso resolver el problema (2.6) con elementos P;.

Para ver la convergencia aplicariamos nuevamente el lema de Céa (2.5.2) seguido de (2.6.3).
Ademis la velocidad de convergencia serd lineal con 4 en la norma H'.

Se pueden definir elementos de muchos otros tipos y distintos espacios de funciones sobre ellos,
sin embargo esto que hemos desarrollado servira para los propdsitos finales del trabajo. Con toda esta
teoria que hemos venido estudiando hasta ahora hemos podido introducir las ideas fundamentales del
método de elementos finitos y estamos ya en condiciones de resolver problemas elipticos de hasta dos
dimensiones. Los casos de mds dimension aumentan la dificultad y complejidad pero se dejan intuir a
través de las ideas introducidas. Sin embargo, nuestro objetivo es algo aiin mds complejo que esto. La
ecuacion de Stokes tiene por incégnitas dos funciones (velocidad del fluido y presién), esto empeora
notoriamente la situacion.

Teorema 2.6.3. Sea el operador de interpolacion I1; : V — V), donde V), es el espacio de elementos
finitos P, sobre nuestra division regular® de Q 7,. Entonces, sir > 1 ym = 0,1 se tiene la acotacion:

lv— Hhv\Hm < CKH™! ’"|v|H,+| ypara todo v € H™ (Q).

= \/ Y | 0wy de.
|ot|=k

equivalente en H(’)‘ a la norma habitual. Esto asegura la convergencia del método para la mayoria
de las funciones que podamos imaginar. Ademds da una estimacion de la velocidad de convergencia.
Tendremos convergencia con orden W', Asi pues cuanto mds “grados de libertad” haya sobre el
espacio de polinomios, mejor serd nuestra convergencia.

Donde | - |y« es la seminorma

Demostracion. Puede verse en la pagina 93 de [Q] O

5No vamos a entrar en detalle respecto a lo que es un mallado regular, asumiremos que las divisiones del dominio que
utilizamos son regulares. Para mds informacién sobre este tema consultar la pagina 96 de [Q]

Elementos finitos en la mecanica de fluidos



Capitulo 3

Elementos finitos en la ecuacion de Stokes

3.1. La formulacion débil del problema de Stokes

Planteamos el problema:
—Au+Vp=~fenQ,
V-u=0, (3.1)
u=upenl,

donde esta vez Q es un abierto de R”, u representa la velocidad del fluido en un punto y p es la
presién del fluido en un punto. Notemos que u estd escrito en negrita puesto que ahora la velocidad
es una funcidn vectorial. Resulta sencillo ver que a una solucidn cldsica del problema se le exigird
(u,p) € [Cz (Q)nc° (ﬁ)] " x ! (). Por lo tanto sobran los motivos para querer hallar una formu-
lacién débil del problema. Para ello empezaremos trabajando con un problema con condiciones de
contorno homogéneas:

—Au+Vp=~fenQ,

V-u=0, (3.2)

u=0enT.

Consideraremos los espacios de funciones test
V = Hy(Q)", (3.3)

M = {qELz(Q):/;qzo}:Lz,o(Q). (3.4)

Aplicamos el procedimiento habitual a (3.1) multiplicando las correspondientes ecuaciones por
funciones test v € V, g € M e integramos las dos ecuaciones.

/v-AudQ—i—/ V-VpdQ = /v~fd£2, (3.5)
Q Q Q
/qV-udQ = 0. (3.6)
Q
Aplicando la férmula de Green obtenemos:
/vAudQ = /Vu:VVdQ—/ (Vu-n)vds:/Vu:VVdQ, (3.7)
Q Q 0Q Q
/V-Vde _ —/pV-VdQ+/ (V-n)pds:—/pV-de. (3.8)
Ja Q Q Q

Donde n es el vector normal unitario exterior y

8u,~ av;
Vu:VV:Zaxj 8x]"
ij i

19
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Una de las primeras cosas que notamos es que si (u,p) es una solucién del problema, entonces
(u,p+C) es también solucién VC € R. Para evitar este pequefio contratiempo normalizaremos p con
JopdQ=0.

Observacion 3.1.1. Ademds, para que el problema esté bien planteado, de la ecuacion de incom-
presibilidad (3.6) se deriva que para que la condicion en la frontera Dirichlet sea compatible debe

cumplirse:
/V-udQ:/wnds:/uo-nds:O.
Q r r

Esto quiere decir que se preserva la cantidad de fluido dentro de la region estudiada. El balance
entre fluido que entra y sale de la region debe ser nulo.

3.2. Existencia y unicidad de solucion del problema variacional
El problema variacional de Stokes tiene la forma:

Hallar (u, p) € V x M tales que:
Cl(ll,V) +b(V,p) = (fav)Lz(Q) =1 (V) )
b(u,q) =0,
Un problema del tipo de (3.9) se llama problema de punto silla. Para esta familia de problemas se
tiene el siguiente resultado:

paratodoveVyqgeM. (3-9)

Lema 3.2.1. Sea el problema (3.9) con a:V xV — R forma bilineal simétrica, coerciva y continua
con 'V un espacio de Hilbert, | : V — R lineal y continuay b : V x M — R bilineal y continua. Sea
F (v) = Ya(v,v) — 1 (v), entonces son equivalentes:

1. El problema del minimo

F(u)= ml’élF (v) bajo la restriccion b (v,q) = 0 para todo q € M.
ve

2. u es solucion de (3.9).

Demostracion. Tomamos L (v,q) = F (v)+b(v,q). Solucionar el problema de minimizacién plantea-
do es lo mismo que calcular la solucién de

inmaxL(v,q). 1
minméxL(v,q) (3.10)

Si denotamos Ly 4(t,h) = L(u+1tv, p+hg) donde (u, p) es una solucién de (3.10). Entonces (0,0)

es un punto critico de Ly 4(¢,/) paratodo v €V y g € M. Y por tanto las derivadas parciales de esta
funcidn respecto a cada componente en (0,0) son 0.

Lvg 0.0) = h,me(t,O)—Lv,q(O,O):Hm%(a(uﬂv,a(u—l—tv)—a(u,u))—tl(v)+tb(v,p)
ot 1—0 t t—0 t

= a(u,v)—I(v)+b(v,p)=0.

(.11
Ly, o Lvg(0,h) —Ly4(0,0) . b(u,p+hg)—b(u,p) _
=7(0,0) = Iim : = lim p = b(u,q) = 0. (3.12)

Para todo v € V y g € M. Esto que hemos obtenido no son otra cosa que las ecuaciones que
aparecen en el problema (3.9).
Para ver el reciproco, sea (u,v) una solucién de (3.9). Entonces si tenemos que

veK={veV:b(v,q) =0paratodogec M}.

Elementos finitos en la mecanica de fluidos
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se cumple que

Flu+v)—F(u) = 5(a(u+v,u+v)—a(u,u))+I(u)—I(utv)

(v,v) >0,

[SIESSTE

y por tanto u minimiza a F en K.
O

Viendo el problema desde este punto de vista podemos aprovecharnos de 2.4.3 para demostrar la
existencia y unicidad de solucién de (3.9). Cabe remarcar que probar este resultado para la funcién u
no tiene una gran dificultad, es en la otra variable de nuestro problema donde surgen los problemas
como veremos ahora mismo.

Observacion 3.2.2. K ={v eV :b(v,q) =0 para todo g € M} es un espacio de Hilbert con el pro-
ducto interior heredado (se ve que es cerrado, contiene a sus puntos de acumulacion).

De esta observacion se desprende por (2.4.3) que a (u,v) —/ (v) = 0 para todo v € K tiene solucién
Unica en K. Queda entonces ver bajo que condiciones existe una tnica p € M tal que:

b(v,p)=1(v)—a(u,v) paratodov eV. (3.13)

En otras palabras, ver en qué casos existe una funcién p € M tal que el funcional lineal definido
por [(e) —a(u,e) € V* puede ser expresado en la forma b(e,p) = [(e) —a(u,e). La existencia y
unicidad de soluciones de (3.9) queda entonces ligada a la de este nuevo problema. No se trata de un
tema para nada evidente, pero se puede deducir la existencia de una condicién que caracterizard los
casos en que (3.13) tiene solucién tnica.

Definicion 3.2.3. Se dice que una forma bilineal b : V x M — R satisface la condicion LBB cuando:

3B > 0 tal que se cumple:

b
inf sup 2r) > B.
aeMyey [v]lqll

(3.14)

Se puede contemplar esta propiedad como una condicion de compatibilidad necesaria entre los espa-
cios de soluciones.

La condicién LBB impone automdticamente unicidad para la solucién (si existe) del problema
(3.13). En efecto, sea 0 # p € M tal que b (v, p) = 0 para todo v € V, entonces si se cumple la condicién
LBB debe ser p = 0. De otra manera se tendria

b
inf sup (v.9) <0.
aeMvey [Ivl[l4l]

Por la linealidad en la segunda variable de la forma b si hay solucién serd unica. Falta por ver en-
tonces que, efectivamente, la solucién existe. Sea K = { f € V* tales que f(v) = 0 para todo v € K}.
Tenemos entonces el siguiente teorema.

Teorema 3.2.4. Definimos el operador
B: M—K'cv~
p—b(ep).
Entonces son equivalentes:

1. b cumple la condicion LBB.

Autor: Alejandro Lépez Nieto



22 Capitulo 3. Elementos finitos en la ecuacion de Stokes

2. B es un isomorfismo lineal y se tiene |Bp|| > B||p|| para todo p € M.

Demostracion. Asumiendo que b cumple la condicién LBB, definimos el inverso de B en B (M)
B ':B(M)— M.

El operador B es lineal y continuo por serlo también b, utilizando la condicién LBB vemos que el
inverso también es lineal continuo:

1B(p) || = b (e.p) ]| = p””(H(f)” > Bllpll

v#0

Como B! es continuo y M = B! (B(M)) es cerrado, debe ser B (M) cerrado. Definimos el operador
dual de B como:

B V¥ oM
f—f(B(e)).

Veremos ahora que (Ker B*), = {g € V* : fg = 0 para todo f € Ker B*} = K°.

Aplicando el teorema de representacion de Riesz dos veces, sea f € Ker B* y g € V*, entonces
fg = (uy,u,) para dos elementos us,u, € V, se tiene que f(B(p)) = (uy,up, ) = 0 para todo p € M
y por tanto uy € K. De hecho sea u € K, el funcional definido por (u,u,) pertenece claramente a
Ker B*.

Sea g € (Ker B*),, entonces fg = <uf,ug> = 0 para todo f € (Ker B*) = K por lo que se cumple
u, € Ktyg(v)=(v,u,) =0siveK, es decir, g € K°.

Sea g € V), entonces u, € K+ y como u; € K para todo f de (Ker B*),, estd claro que fg =
(up,ug) =0.

Queda por demostrar ahora que B (M) = B (M) = (Ker B*), = K°. Para ello tenemos el siguiente
resultado:

Lema 3.2.5. Sean E y F espacios de Banach 'y B € L(E,F) son equivalentes:
1. B(E) es cerrado.

2. B(E) = (Ker B*),.

Demostracion. Sea B(E) cerrado veremos que B (E) = (Ker B*),. Tomamos f € Ker B*, g € B(E)
entonces ¢ = B(p) para alglin p € E'y fg = 0 por tanto g € (Ker B*). Para ver (Ker B*), C B(E)
aplicamos Hahn-Banach, en particular se deriva la existencia de un funcional lineal / € F* tal que

I(x) = infyep(g) X — y||. Se ve trivialmente que este funcional pertenece a Ker B*, asi que si v €

(Ker B*),, necesariamente [ (v) =d(v,B(E)) =0y asiv e B(E) = B(E).
El reciproco es trivial porque (Ker B*), es cerrado. Como M y V* son espacios de Banach, se
tiene el resultado. O

Aplicando el resultado anterior tenemos una direccién del teorema, el reciproco se deriva automé-
ticamente de la continuidad de B~!. O

Con todo esto podemos por fin enunciar un resultado de existencia y unicidad similar (y con moti-
vos sobrados) al de Lax-Milgram en la seccién anterior. En la demostracién anterior hemos utilizado
la condiciéon LBB para demostrar la continuidad de un operador inverso, la propiedad LBB puede
entonces ser observada como una especie de coercividad mixta.

Teorema 3.2.6. Sea el problema (3.9) con las condiciones:

1. La forma a(e,e) es coerciva y continua.

Elementos finitos en la mecanica de fluidos
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2. b(e,e) es continua y satisface la condicion LBB.
Entonces existe una tinica solucion (u, p) para (3.9).

Tomando las formas:
a(u,v)= / Vu: VvdQ, (3.15)
Q
b(u,q):/qV-udQ. (3.16)
Q

Se puede escribir el problema de Stokes como un problema de punto silla. As{ pues la existencia
y unicidad de soluciones depende integramente de que se cumplan las condiciones de (3.2.6). La
coercividad de a (e, ®) se comprueba de manera directa con la norma definida para H' (Q) en (2.4.4).

La demostracién' de que se cumple la condicién LBB es bastante mas compleja y por desgracia
no habra tiempo de realizarla. Daremos por hecho que se cumple.

3.3. Problema de Galerkin para la ecuacion de Stokes

Tomamos subespacios de dimensién finita, V;, x M. Debemos buscar en particular familias de
subespacios que cumplan (3.2.6). Si no es asi veremos que el método serd inestable y no converger4.
Queremos ahora solucionar el problema:

Encontrar (uy, pj) € V, X M), tal que:
a(up, Vi) +b (i, pr) = (£,Vh)1 () para todo vy, € Vj,
b (Uhth) = 07

para todo g, € Mj,. @317

La coercividad de a (e, ®) se cumple suponiendo que el problema variacional la cumpla en general.
Si las familias de subespacios {V}, x M;}, cumplen la condicién LBB se tiene existencia de una tinica
solucién.

Para ver la convergencia del método tenemos el siguiente resultado:

Teorema 3.3.1. Sea el problema (3.17) con las condiciones:
1. a(e,e) es coerciva.
2. Se satisface la condicion LBB.

Entonces se tiene que para (u, p) solucion del problema variacional de Stokes:

| —upllv +lp—pullu < c | Inf [Ju—wpllv+ inf [|p—gqnlnu]|- (3.18)
v,EV), qQhEM),

Se trata de una condicion muy similar a la del lema de Céa.

Demostracion. Observemos que siendo (u, p) la solucién de nuestro problemaen V x M y (uy, py) la
solucién de la version discreta del problema variacional, cualquier par de funciones (uy, p;) € Vi, x M,
serd solucion de:

{ a(uhfuI,Vh)ib(Vh,Prpz) =a(u—uy,vy)+b(vy, p—pr), para todo v, € Vi, gy € My(3.19)

b(u, —uy,qn) = b(u—uz,q;).

Una idea de la misma se puede encontrar en las paginas 159-160 de [B].

Autor: Alejandro Lépez Nieto
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Como trabajamos en un espacio de dimensién finita esto es equivalente a siendo V;, = span{®;} con
dimension d; y M, = span{¥;} con dimensién d», si consideramos

A = (a,-j):/QVCDj-Vd),- dQ matriz d; x dy,

= (b,]):/(pjv\Pl dQ matriz d; X d»,
Q

F = (F)=a(u—u;,®P;)+b(P;,p— p;) matrizd; x 1,
G = (G;)=b(u—u;,¥,;) matrizd, x 1.

Llamaremos f'y g a los elementos de V* y M* con coordenadas en la base dual las componentes
de F y G respectivamente.

Si denotamos como U y P a los vectores cuyas componentes son respectivamente las coordenadas
de u, —u; y py — py respecto de las bases tomadas, entonces se cumple el sistema

(mr
Podemos escribir U = Uy + U, y P = Py + P,. Elegimos estos vectores de tal modo que

{ ;}?g;j’gf; =5 (3.21)

(gm0

Y llamamos uy, ug, pry p, alos elementos de Vj, y M}, tales que sus coordenadas respecto de las
bases dadas son Uy, U, Py y P, respectivamente. Si multiplicamos (3.21) por U fT , teniendo en cuenta
que U]TBPf = P}TBTUf = 0y del hecho de que a(e,e) es coerciva nos queda

aljuyly < wfdup = ULF < |luglly|£llv--

Y por tanto
alluglly < | fllv-. (3.23)

Sean M,y M, las constantes de continuidad de las formas a y b respectivamente, tenemos que

M
la(e,up) llv- < = Flfllve (3.24)
La condicién LBB restringida al espacio V}, X M}, puede escribirse como 3 > 0 independiente de &
tal que

v/ Bg
inf sup ——F—— >
aneMi,ev, [ Vallvllanlla

Considerando la dualidad entre el espacio de matrices d; X 1y V,*, entonces esta claro que

b(Vi, qn vl Bg
Ib(o,an)| = sup 2Vt _ g — |Bgllv- = Bllaallur-
O#VhEVh HVhHV OyéthVh ”VhHV

Es una definicién equivalente de la condicién LBB. Ademis a||v||? < a(v,v) < M,||v||?, por tanto

a < M, y asi obtenemos que

1 1 M, 2M,
sl < & lb(o.) o< (1) Ul < 2 329

o

1
Ve = E”f—a(%“fﬂ

Elementos finitos en la mecanica de fluidos
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Ahora nos toca estudiar que sucede en la parte g del sistema, multiplicando los términos por ug
se tiene la siguiente desigualdad

ol[uglly <ufAu, = —ulBp, = —piB uy = —ple <|pglullgll. (3.26)

Por otro lado, aplicando la condicién LBB como antes

1 1 M,
[Pgllm < BHb(%pg)Hv* = Blla(%ug)llv* < ?HugHv- (3.27)
Si combinamos (3.26) y (3.27), llegamos a

M,
Juglly < OTEHgHM*- (3.28)

Y una combinacidén de (3.27) y (3.28) nos da

2

M
| Pellm < angHgl M+ (3.29)

Sumando por un lado (3.23) y (3.28) y por otro (3.25) y (3.29) y aplicando la desigualdad trian-
gular se tiene el resultado:

1 M,
u,—u < — « 4+ *,
|| h IHV— OC||f|V a ||gHM

2M, M?
— < 4 —2
lpn—pillm < ap 1 £1lv aﬁ2”g|

(3.30)

M*-

Abhora bien, por la forma en que hemos construido f y g, podemos afirmar que

£ 1[v- /]

< ve <Mgllu—w|ly + Myl p— pilm,
lgllars < g

My < Mp|u—ugfly.

Aplicando la desigualdad triangular queda que

lu—wlly <Ci inf [[u—w,|ly +C inf ||p—qplum, (3.31)
Vi€V qneEM;,

|p—pullu < C5 inf [[u—v,|y+Cs inf [[p—qplu- (3.32)
Vi€V qn€My,

Sumando las expresiones (3.31) y (3.32) y tomando ¢ constante suficientemente grande tenemos nues-
tro resultado.
O

Con toda esta teoria queda visto que todo método numérico que cumpla las condiciones de com-
patibilidad convergera, nuevamente tendremos que encontrar las proyecciones ortogonales de la solu-
cién sobre los espacios de dimension finita. Nuestro par de espacios de elementos finitos debe aspirar
a crecer hacia el espacio total en el sentido de

ian;,EV], ||u_Vh|| — 07 infthsz ”p - QhH — O

Sabiendo todo esto ya podemos permitirnos plantear el problema que vamos a resolver, se tratard
de un rectangulo con condiciones de contorno de tipo Dirichlet. Asi la velocidad en el contorno sera
cero en todos los lados de dicho cuadrado salvo en uno en el que serd constante en una direccién
tangente a la frontera.

Autor: Alejandro Lépez Nieto
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3.4. Un problema practico
Vamos a plantear el problema que queremos resolver:

Encontrar (u,p) € V x M tal que:
a (ll,V) +b (V,p) = (f7V)L2(Q) ’
b(u,q) =0,

for all (v,q) € Vo x M. (3.33)

Donde se tiene:

Q = (0,1)x(0,1),
V = {VEHI(Q)XHI (Q):v(x,1)=(1,0),x€[0,1] yv=0enel restode I'} ,
Vo = {V€H1(9)2V|r:0},

M = {qeLz(Q):/quQ:O}.

Nos surge la duda de si este problema tendra realmente solucién y si en tal caso serd Unica, por lo
visto anteriormente tenemos claro que el caso Dirichlet homogéneo si que tiene solucién Unica,
tomamos asi el par de problemas siguiente:

Encontrar (u, p) € Vy x M tal que:

=(f
ZEEZ% t%fw) VL@ paratodo (v,q) € Vo. x M 039
Encontrar (u, p) € V x M tal que:
a(u,v) =0, (3.35)
blug) =0, para todo (v,q) € Vo X M.

Sean (1, p) solucién de (3.34) que sabemos tiene solucidn tnica y (ug,0) solucién de (3.35) que
admite la solucién

u(x,1) = (1,0)sixe[0,1],

u(x,y) = (0,0) enelrestode Q.

a(w,v)+b(v,p) = a(@,v)+b(v,p)+a(u,v)= (V) q),
b(u,q) = b(d,q)+b(u,q) =0,
u(x,1) = wp=(1,0) sixe][0,1],
u(x,y) (0,0) en el resto de Q.

Por tanto u es solucion de (3.33) y se tiene ademds que es la tnica solucién. En efecto, sea fig otra
solucidn de (3.35), entonces ug — tip €s solucion de:

Encontrar (u, p) € Vy x M tal que:
a(u,v) =0,
b(u,q) =0,

para todo (v,q) € Vo x M. (3.36)

Sabemos que (0, p) es solucién de este problema y ademds por Lax-Milgram es unica, asi que
llegamos a lo que queriamos, ug = .

Elementos finitos en la mecanica de fluidos
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La convergencia de cualquier método serd en este caso igual que en el homogéneo dado que la
diferencia de soluciones del problema a resolver y del problema de Galerkin no homogéneo serd una
solucién del problema (3.34), con todo esto podemos plantear el método de elementos finitos y ver la
solucién. Probaremos en primer lugar el método P; — P;. Este método resultara ser inestable puesto
que, como veremos en (3.4.1), no satisface la condiciéon LBB. Sin embargo una pequefia ampliacién
de los subespacios de soluciones de las velocidades nos dard un buen método convergente llamado
método del MINI-elemento.

Se trata de seleccionar las componentes de la velocidad en los espacios de funciones P; & B3 donde
B3 denota las funciones burbuja sobre cada uno de los elementos. En nuestro elemento triangular de
funciones nodales en los vértices @p, @, ¢3 la funcién burbuja es el producto de estas tres funciones
D = ¢, ¢3, se trata de una funcidn cibica y considerando el elemento de referencia habitual para
elementos triangulares tenemos la funcién burbuja de referencia

b(%,9) = &5 — 9 — 1%,

Para una triangulacién dada la dimensiéon del espacio B3 tiene dimension |F| = Ndmero de caras
(tridngulos) de la triangulacién. Los nodos para la velocidad y la presién sobre el elemento de
referencia se reflejan en la figura (3.1). De esta forma tendremos 11 grados de libertad por elemento,
en lugar de los 9 que tiene el método P; — P.

O [

Figura 3.1: Nodos de presion (izquierda) y velocidades (derecha) sobre el elemento de referencia para
el método MINI.

Proposicion 3.4.1. El método de elementos finitos P| — P; no cumple la condicion LBB.

Demostracion. Consiste en ver que realmente existen elementos pj, € M), tales que
/ prV - v, dK = 0 para todo v, € Vj, (3.37)
K

para todo K € T, triangulacion con la que estamos trabajando.

En particular, en el algoritmo que utilizaremos para la simulacién més adelante trabajaremos con una
triangulacién del tipo de la figura (3.2). Si p, = zl.ﬂl pi®; y tomamos valores de p; = 1 para i un nodo
cuadrado, p; = —1 para i un nodo circulo y p; = 0 en los nodos tridngulo, entonces se trata de un
simple ejercicio de comprobacion ver que, efectivamente, 0 £ p, € M;, y cumple (3.37).

Estas familias de soluciones falsas carecen de significado fisico. Son ellas las que perturban la
solucidn real del problema y la hacen comportarse de forma errética, este hecho hace que se las
llame spurious modes (modos falsos).

Autor: Alejandro Lopez Nieto
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Figura 3.2: Spurious modes sobre una triangulacion concreta.

Proposicion 3.4.2. El método del MINI-elemento cumple la condicion LBB.

Demostracion. Para verlo utilizaremos una estrategia bastante habitual, se trata de hallar una
proyeccién II, : V — Vj, con las propiedades

b(v—TII,v,q,) =0 paratodo v €V, g, € M, (3.38)
|TI,v|lv < C||v|ly paratodov e V. (3.39)

Si encontramos dicho operador y nuestros espacios totales V' y M cumplen la condiciéon LBB,
automadticamente nuestros espacios de elementos finitos heredaran la propiedad, de (3.38), (3.39) y
LBB en el espacio total se deriva

b(v,q) b(IIxv,q)
Bllgllo < sup < Csup ——————.
lallo < sup= o™ < CSup T ol

Abhora, restringiendo las normas en ambos lados se tendré el resultado. En realidad nos bastard con
definir IT, como
HhV = H]V + H2 (V — H]V) s

paraIl; : V — Vj, tales que:

Ty v|ly < c1]|v|]|v paratodo v eV,
T (1 —11;)v||y < c2||v|lv paratodo v €V, (3.40)
b(v—TIIpv,q,) =0 paratodo v €V, g, € Mj,.

Es evidente que dicho operador cumplird (3.38) y (3.39). La cuestién es entonces si podemos
construir tal operador. En el caso del MINI-elemento lo definiremos como

1. I, serd el operador de Clément IT; : V — V), tal que I[1;v = zl.ﬁl v(t;)®;, donde ¢; son los
nodos de la triangulacién y ®; son funciones base de los polinomios de grado 1 sobre los
tridangulos. Se puede demostrar® que efectivamente si V = H' (Q), se cumple la condicién
ITTiv|lv < ci||v||v paratodov e V.

2. T, serd el operador IT, : V — (B3)? tal que se cumple [, (ITv — V) - g;, = 0 para todo g, € Mj,.
La existencia de dicho operador se demuestra tomando funciones burbuja que tengan el mismo
valor medio que v sobre cada elemento, la unicidad se deduce rdpidamente del hecho de que
los espacios de funciones burbuja tienen dimensién 1 en cada tridngulo K. Podemos también
demostrar® que |[TIyv||y < ||v]|v.

2Este operador IT; no es otra cosa que H,ll en (2.6.3), basta con tomar la desigualdad triangular inversa y sale el resultado.
3pé4gina 471 [BBF]
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Con estas dos proyecciones sobre el espacio de dimension finita tenemos el resultado deseado puesto
que el operador I, que componen cumple, efectivamente, las condiciones exigidas. Es mas, se tiene

la acotacién *:

[u—willv +[[p = pullv < ch([[ull2 o) + [[Plla)-

Esto quiere decir que la velocidad de convergencia en el método del MINI-elemento serd lineal con
h. O

3.5. Laimplementacion del método

Tenemos que la funcién velocidad tendrd dos componentes. Por ello consideraremos que
Vi = W), X Wy, y entonces podemos tomar funciones base ®;,i = 1,...,2N donde N = |V |+ |F| serd
la dimensidn del espacio W), = P; & B3 y tomamos esta base como

ol = (¢!,0),i=1,....|V];
®F = (¢0,0),i=1,...,|F|;
Dy = (0,¢)),i=1,...,|V];
@, =(0,07),i=1,...,|F|;

. 1% F
donde las funciones {(,‘bl-l }1.:‘1 conforman una base de P; y {¢ih }!1 conforman una base de Bs.
Podemos entonces juntar nuestra variable bidimensional en una tinica variable con dimensién doble,
aplicando esto queda

Encontrar (uj, uh,ph) € W, x W), x Mj, tales que:

/Vuh v dQ—i—/Vu,y Vv dQ - /phath /ph— dQ =0, 341
8uh

dQ+/qh 8h dQ =0, para todo v}, v} € VP y g, € M.

A su vez podemos diferenciar los valores en el espacio lineal P; de los del espacio de burbujas Bs.
Sabiendo todo esto tenemos entonces que calcular:

A = (aij):/gwj-wi’dm,j:1,...,yV\;

D = (d,,-):&j/V¢j?-V¢}’in,j:1,...,|F|;

G\ = (g /¢ ’dQlJ_l...,\v\;
G = (&) /¢ ld.Q.l]—l...,|V|;
G = ()= [0 a0i=1 iyi=1. . IFL
Gt = (¢ /¢ O Qi1 [Vly =1, |Fl

b = (b{):/gfgbi dQparai=1,...,|V|yj=1,2,5;

b = (b{):/Qfd)ibdearai:1,...,]F|yj:3,4.

4A la hora de considerar la norma en V tomamos la extensién natural al producto de la norma H!, esto es,

Hvisva)ll st = 1/ v ”12-11 + HVZH%I, . La demostracién del resultado estd en la pagina 471 [BBF]
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Utilizando el mecanismo de ensamblado y elementos de referencia explicado en el tema anterior
podemos calcular cada una de esas matrices. En el problema de Stokes el cdlculo de los vectores b;
es por norma general sencillo. La funcién f es en muchos casos una constante puesto que, como
vimos en la teoria de (1.1), f no es otra cosa que la aceleracion debida a las fuerzas de largo alcance.
No debemos olvidar que el sistema saldrd singular dado que pj, viene definida mds una constante,
para resolver este contratiempo hay que afiadir entonces la condicién

\4

dQ = ,-/ ,dQ =0,
/Qph i;p K

Integrada con la fila
T:(Ti):/(j)idearai: L...,|V].
Q

El sistema a resolver queda entonces:

A 0 0 0 G U by
0 A 0 0 G U{V by
0 0 D 0 Gs lx . bs
0 0 0 D Gy 0 by
3 3 3 3

0 0 0 0O T 0

Donde las componentes de los vectores U;' y U,y son las coordenadas con respecto de la base del
espacio de funciones Py de u; y u% las soluciones de las componentes de velocidad del problema en
el espacio vectorial de dimension finita. Uj) y UZ son las coordenadas respecto de la base de B3 de uy,
y u{l respectivamente. P es el vector de componentes las coordenadas respecto de la base del espacio
de funciones P; de pj, solucién de la presién del problema de dimensién finita.

En el caso del método P; — P, el sistema seria sencillamente

A 0 G - by
0 A G U{" | b
G, G, 0 Pl | bs
0 0 T 0

Podemos programar ambos métodos de elementos finitos de manera relativamente simple, los
resultados para f = 0 se pueden observar en las figuras (3.3) y (3.4).

En el caso inestable de la Figura (3.3), est4 claro que la solucién de la presién desaffa cualquier
intuicién fisica puesto que la experiencia nos dice que un fluido se desplaza de mayor a menor
presion (un buen ejemplo lo encontramos en el tiempo atmosférico), llama ademas la atencién que
los valores se disparan en la cercania de la esquina (1, 1) pero puede tratarse de un problema de
precision aritmética. También se observa un comportamiento mds irregular en la parte derecha de la
gréfica de velocidades. Hay que decir que se han representado los vectores velocidad normalizados
para que fueran mds ficiles de apreciar. La simulacién se ha llevado a cabo sobre una triangulacién
de un mallado 31 x 31 del tipo de (3.2), esto quiere decir que h = %

En la gréfica de la velocidad estable de la Figura (3.4) se puede observar en que el fluido gira
alrededor de un punto en el interior de la caja , lo cual parece algo bastante natural. Por otro lado si
cotejamos ambos graficos de velocidad y presion, la presion es superior en el extremo izquierdo e
inferior en el derecho y el fluido se desplaza de izquierda a derecha. Esto también es natural puesto
que los fluidos tienden a ocupar zonas de bajas presiones. El valor O de la presion en el resto de la
gréfica parece tener sentido. Por lo tanto, nuestra solucién numérica parece algo consistente desde el
punto de vista fisico. En cuanto al tipo de divisién del dominio utilizada, hemos usado una
triangulacién de un mallado 31 x 51, algo parecido a (3.2) pero de mayores dimensiones, 4 asociada
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Apéndice A
Programas utilizados

Programa principal para el método del MINI-elemento.

[mxx,myy,mxy]=matriz2;

nsl = 30; % Subdivisiones en la direccion x

ns2 = 50; % Subdivisiones en la direccion y.

d = 3; % Grados de libertad de la parte lineal por elemento.
nt = (nsl+1)*(ns2+1); % Numero total de vertices .

[globales ,x,y,nel]=gen2(nsl ,ns2);

coord=zeros(nt,2);
mx=zeros (d,d);

my=zeros (d,d);
mx(1,:)=—1/6;
mx(2,:)=—mx(1,:);

my (1,:)=mx(1,:);
my(3,:)=—my(l,:);
a=zeros (nt,nt);
gl=zeros(nt,nt);
g2=zeros (nt,nt);
g3=zeros(nel ,nt);
g4=zeros (nel ,nt);
m=zeros (nel ,nel);
A=zeros (3xnt+2xnel+1,3xnt+2xnel);
b=zeros (3xnt+2xnel+1,1);
nodos=zeros (1,3);
c=zeros(2,2);

v=zeros (1,2);

mk=zeros (d,d) ;

rk=zeros (d+1,d);
nk=zeros (1,1);
lk=zeros(d,1);
t=zeros(l,nt);

sol=zeros (3*nt+2xnel ,1) ;
coord = [x;y]’;

% Ensamblado

for k=1:nel

nodos=globales (k,:) ;
[c,C,deter]=InvDet(coord (nodos ,:));
mk=deterx(c(1l,1)s*mxx+c(1l,2)*x(mxy+mxy’)+c(2,2)*myy) ;
a(nodos ,nodos)=a(nodos ,nodos)+mk;

nk=deter=(c(1,1)+c(1,2)+c(2,2))/180;
m(k,k)=m(k,k)+nk;

rk(1:3,:)=deter *(C(1,1)+mx+C(1,2)+my) ;
gl (nodos ,nodos)=gl (nodos ,nodos )+rk (1:3,:);
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rk (1:3 ,:)=deter *(C(2,1)*mx+C(2,2)*my) ;
g2 (nodos ,nodos)=g2(nodos ,nodos)+rk (1:3,:);
rk (4 ,:)=deter«(C(1,1)*[—1/120,1/120,0;]1+C(1,2)*x[—-1/120,0,1/120;]);
g3(k,nodos)=g3(k,nodos)+rk (4,:);
rk (4 ,:)=deter«(C(2,1)*[—-1/120,1/120,0;]+C(2,2)*x[ —1/120,0,1/120;]);
g4 (k,nodos)=g4(k,nodos)+rk (4,:);
t(nodos)=t(nodos)+1.0/6xdeter ;
end
Gl=gl.’;
G2=g2.’;
G3=g3.";
Gé4=g4 .’

% Construimos la matriz por bloques

A(l:nt,l:nt)=a;

A(nt+1:2xnt ,nt+1:2%xnt)=a;

A(2*xnt+1:2xnt+nel ,2xnt+1:2%xnt+nel )=m;
A(2«nt+nel+1:2xnt+2*nel ,2xnt+nel+1:2«nt+2*nel )=m;
A(2+xnt+1:2xnt+nel ,2*xnt+1+2+nel:3xnt+2xnel )=g3;
A(2+xnt+nel+1:2xnt+2+nel ,2x nt+1+2%nel:3xnt+2xnel )=g4;
A(l:nt,2xnt+1+2xnel:3*nt+2+nel)=gl;
A(nt+1:2%nt,2xnt+1+2xnel:3*xnt+2+nel)=g2;
A(2xnt+142+nel:3xnt+2*nel ,1:nt)=Gl;
A(2+*nt+1+2xnel:3xnt+2xnel ,nt+1:2%xnt)=G2;

A2+« nt+1+2xnel:3xnt+2xnel ,2*xnt+1:2xnt+nel )=G3;
A2*xnt+14+2+nel:3xnt+2*nel ,2x nt+nel+1:2xnt+2xnel )=G4;
A(3*nt+2*xnel+1,2xnt+2xnel+1:3xnt+2*xnel)=t;

% Introducimos condicion Dirichlet en la direccion x

%0 en [0,1]x{0}
for k=1:(nsl+1)
for i=1:3xnt+2xnel
A(k,i)=0;
end
b(k)=0;
A(k,k)=1;
end

%0 en {0})x[0,1]
for k=1:nsl+1:ns2xnsl+ns2+1
for i=1:3xnt+2*nel
A(k,i)=0;
end
b(k)=0;
A(k,k)=1;
end

%0 en {1}x[0,1]
for k=nsl+1:nsl+1:nt
for i=1:3xnt+2*nel
A(k,i)=0;
end
b(k)=0;
A(k,k)=1;
end

%1 en [0,1]x{1}
for k=ns2*nsl+ns2+1:nt
for i=1:3xnt+2*nel

A(k,i)=0;
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end

b(k)=1;

A(k,k)=1;
end

% Introducimos condicion Dirichlet en

%0 en [0,1]x{0}
for k=1:(nsl+1)
for i=1:3xnt+2xnel
A(nt+k,i)=0;
end
b(nt+k)=0;
A(nt+k, nt+k)=1;
end

%0 en {0})x[0,1]
for k=1:nsl+1:ns2+«nsl+ns2+1
for i=1:3xnt+2xnel
A(nt+k,i)=0;
end
b(nt+k)=0;
A(nt+k, nt+k)=1;
end

%0 en {1}x[0,1]
for k=nsl+1:nsl+1:nt
for i=1:3xnt+2xnel
A(nt+k,i)=0;
end
b(nt+k)=0;
A(nt+k, nt+k)=1;
end

%1 en [0,1]x{1}

for k=ns2*nsl+ns2+1:nt
for i=1:3xnt+2xnel

A(nt+k,i)=0;

end
b(nt+k)=0;
A(nt+k,nt+k)=1;

end

% Resolvemos sistema
sol=A\b;

% Dibujamos la solucion

X=reshape(coord (:,1) ,nsl+1,ns2+1);
vx=reshape(sol (l:nt),nsl+1,ns2+1);
Y=reshape(coord (:,2) ,nsl+1,ns2+1);

la direccion

vy=reshape(sol(nt+1:2%nt),nsl+1,ns2+1);

% Normalizacion de las velocidades
for i=1:nsl+1
for j=1:ns2+1

k=norm ([vx(i.j) vy(i.j)1):
if k<0.00000001
vy(i,j)=0;
vx(i,j)=vy(i,j);
else

vy(i,j)=vy(i,j)/k;
vx(i,j)=vx(i,j)/k;

y
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end
end
end
Z=reshape(sol (2xnt+2+«nel+1:3xnt+2xnel),nsl+1,ns2+1);

% Grdfica de la presion
surf(X,Y,Z)
pause

% Grdfica de velocidades
h=quiver (X,Y,vx,vy);
axis square

shading interp

title (’Solucién’)

Programa principal para el método P, — P;.

[mxx,myy, mxy]=matriz2 ;

nsl = 30; % Subdivisiones en la direccion x
ns2 = 30; % Subdivisiones en la direccion y.
d = 3; % Grados de libertad por elemento.

nt = (nsl+1)x(ns2+1); % Numero total de vertices.

[globales ,x,y,nel]=gen2(nsl,ns2);

mx=zeros (d,d);
my=zeros (d,d);
mx(1,1:3)=—1/6;
mx(2,:)=—mx(1,:);
my(1,:)=mx(1l,:);
my (3 ,:)=—my(l,:);
mMX=—mX ;

my=—mny ;
coord=zeros(nt,2);
a=zeros (nt,nt);
gl=zeros(nt,nt);
g2=zeros(nt,nt);
m=zeros (nel ,nel);
Gl=zeros(nt ,nt);
G2=zeros (nt ,nt);
A=zeros (3xnt+1,3xnt);
b=zeros (3xnt+1,1);
nodos=zeros (1,3);
c=zeros (2,2);
mk=zeros (d,d) ;
lk=zeros(d,1);
t=zeros(l,nt);
sol=zeros(3*nt,1);
coord = [x;y]7;

% Ensamblado

for k=1:nel
nodos=globales (k,:) ;
[c,C,deter ]=InvDet(coord(nodos ,:));
mk=deter *(c(1,1)*mxx+c(1,2)*(mxy+mxy’)+c(2,2)*myy);
a(nodos ,nodos)=a(nodos ,nodos)+mk;
t(nodos)=t(nodos)+1.0/6xdeter;
end

for k=1:nel

nodos=globales (k,:) ;
[c,C,deter]=InvDet(coord (nodos ,:));
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mk=deter *(C(1,1)*mx+C(1,2)x*my) ;
gl (nodos ,nodos)=gl (nodos ,nodos )+mk;
mk=deter x(C(2,1)*mx+C(2,2)*my) ;
g2 (nodos ,nodos)=g2(nodos ,nodos)+mk;
end

Gl=gl.’;

G2=g2."’;

A(l:nt,1:nt)=a;
A(nt+1:2%nt,nt+1:2%xnt)=a;
A(l:nt,2xnt+1:3xnt)=gl;
A(nt+1:2%nt,2xnt+1:3xnt)=g2;
A(2xnt+1:3%xnt,1:nt)=Gl;
A2+«nt+1:3%xnt,nt+1:2xnt)=G2;
AB*xnt+1,2%xnt+1:3%xnt)=t;

% Introducimos condiciéon Dirichlet
% Condiciones de contorno sobre la componente x de la velocidad

%0 en [0,1]x{0)}
for k=1:(nsl+1)
for i=1:3xnt
A(k,i)=0;
end
b(k)=0;
A(k,k)=1;
end

%0 en {1}x[0,1]

for k=nsl+1:nsl+1:nt
for i=1:3xnt

A(k,i)=0;

end
b(k)=0;
A(k,k)=1;

end

%0 en {0}x[0,1]
for k=1:nsl+1:ns2xnsl+ns2+1
for i=1:3*%nt
A(k,i)=0;
end
b(k)=0;
A(k,k)=1;
end

%0 en en [0,1]x{0)}

for k=1:(nsl+1)
for i=1:3%nt

A(k,i)=0;

end
b(k)=0;
A(k,k)=1;

end

P 1 en [0,1]x{1}
for k=ns2#nsl+ns2+1:nt
for i=1:3%nt
A(k,i1)=0;
end
b(k)=1;

Autor: Alejandro Lopez Nieto




38

A(k,k)=1;
end
% Condiciones de contorno sobre la componente y de la
%0 en [0,1]x{0)}
for k=1:(nsl+1)

for i=1:3%nt

A(nt+k,1)=0;

end

b(nt+k)=0;

A(nt+k,nt+k)=1;
end

% 0
for

en {1}x[0,1]
k=nsl+1:nsl+1:nt
for i=1:3xnt
A(nt+k,i)=0;
end
b(nt+k)=0;
A(nt+k,nt+k)=1;
end

% 0
for

en en [0,1]x{0)}

k=1:nsl+1:ns2%nsl+ns2+1

for i=1:3xnt
A(nt+k,i)=0;

end

b(nt+k)=0;

A(nt+k, nt+k)=1;

end

% 0
for

en [0,1]x{1}

k=ns2*nsl+ns2+1:nt

for i=1:3xnt
A(nt+k,i)=0;

end

b(nt+k)=0;

A(nt+k, nt+k)=1;

end

% Resolvemos sistema

sol=A\b;

X=reshape(coord (:,1) ,nsl+1,ns2+1);
vx=reshape(sol (1:nt),nsl+1,ns2+1);
Y=reshape(coord (:,2) ,nsl+1,ns2+1);
vy=reshape(sol(nt+1:2%xnt) ,nsl+1,ns2+1);
Z=reshape(sol (2xnt+1:3xnt,:) ,nsl+1,ns2+1);

% Normalizaciéon de las velocidades
for i=1:nsl+1
for j=1:ns2+1
k=norm ([ vx(i,j)
if k<0.00000001
vy (i,j)=0;
vx (i, )=vy (i)
else
vy (i j)=vy (i j)/k;
vx(i,j)=vx(i,j)/k;

vy(i.j) D

end
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end
end

% Grdfica de presion

surf(X,Y,Z)
shading interp
pause

% Grdfica de velocidades
h=quiver (X,Y,vx,vy);

axis([—0.2 1.2 -0.2 1.2])
title (’Solucidon’)

Programa auxiliar gen2 que genera la malla.

% Programa para generar mallas 2D.

function [globales ,x,y,nel]=gen2(nsl,ns2)

nel = nsl*ns2x2; % Numero total de elementos.
nt = (nsl+1)*(ns2+1);
aux = zeros(nt,l);

% En el siguiente bucle creamos la matriz de conectividad.

for j = 1:ns2

ind = 1+(j—1)*(nsl+1);

for i = 1:2:2xnsl1—1
elem = i + (j—1)*2xnsl;
globales (elem,1:3)= [ind,ind+1,ind+nsl +1];
ind = ind+1;

end

ind = nsl+(j—1)*(nsl+1)+3;

for i = 2:2:2xnsl
elem = i + (j—1)*2xnsl;
globales (elem,1:3)= [ind,ind —1,ind—nsl —1];
ind = ind+1;

end

% En el siguiente bucle definimos las coordenadas de los nodos de la malla.

xl = 0;
X2 = 1;
yl = 0;
y2 = 1;

hl = (x2—x1)/nsl1;
h2 = (y2—yl)/ns2;

for j = 1:ns2+1
for i = 1:nsl+1
nodo = (j—1)x(nsl+1) + 1i;
x(nodo) = hlx(i—1) + x1;
y(nodo) = h2x(j—1) + yl;
end
end

% Dibujamos la malla de triangulos.
for i=1:2:nel
nodos = globales(i,:);

hold on
fill (x(nodos) ,y(nodos),’w’)
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xl = int2str(i);
x2 = int2str (nodos(1));
text (x(nodos(1))+ 0.35xhl,y(nodos(1))+0.25xh2,x1, Color’,[1 0 0]);
text (x(nodos(1))+0.1xhl,y(nodos(1))+0.1%xh2,x2,  Color’ ,[0 O 0]);
end
for i=2:2:nel
nodos = globales (i,:);
hold on
fill (x(nodos) ,y(nodos),’w’)
xl = int2str(i);
text (x(nodos(1))— 0.25%hl,y(nodos(1))—0.25xh2,x1, Color’,[1 0 0]);
end
pause
hold off

return

Programa auxiliar matriz2 que contiene matrices de rigidez en el elemento de referencia.

function [mxx,myy,mxy] = matriz2
mxx=[0.5 —-0.5 0.;
—0.5 0.5 0.;
0. 0. 0.;1;
myy=[0.5 0. -0.5;
0. 0. 0.;
-0.5 0. 0.5;1;
mxy=[0.5 0. —-0.5;
—-0.5 0. 0.5;
0. 0. 0.;1;
return

Programa auxiliar InvDet que calcula la matriz de transformacién afin, su determinante, su inversa
traspuesta y el producto de su inversa por su inversa traspuesta.

function [c,C,deter]=InvDet(v)

% Calcula c=B_k"{ —1}(B_k"{ —1})"T y deter=abs(detB_k)

M=[v(2,1)-v(l,1),v(3,1)=v(1,1);v(2,2)-v(1,2),v(3,2)—v(1,2)]; % Matriz de la
% transformacion afin

deter=det (M) ;

M=inv (M) ;

C=M’;

deter=abs(deter) ;

c=MxM’ ;

return

Programa auxiliar pf que calcula el promedio de la funcién f sobre el elemento de referencia.

function prom=pf(v)

% Calcula el promedio de la funcion f (f=0)
prom = 0;

return

Elementos finitos en la mecanica de fluidos




Bibliografia

[B] D. Braess, Finite elements: theory, fast solvers, and applications in eslasticity theory,
Cambridge University Press, Cambridge, 2007.

[BA] G.K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, Cambridge,
1967.

[BBF] D. Boffi, F. Brezzi, M. Fortin, Mixed finite element methods and applications, Springer,
Berlin, 2013.

[Bre] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer,
2010.

[ESW] H. Elman, D. Silvester, A. Wathen, Finite elements and fast iterative solvers: with
applications in incompressible fluid dynamics, Oxford University Press, Norfolk, 2006.

[LB] M.G. Larson, F. Bengzon, The finite element method: theory, implementation, and
applications, Springer, Berlin, 2013.

[Q] A. Quarteroni, Numerical models for differential problems, Springer, Milano, 2009.

41






	Introducción
	Summary
	Una introducción al modelo matemático
	La derivación de las ecuaciones fundamentales
	La conservación de la masa
	Los fluidos incompresibles
	La ecuación del movimiento

	El número de Reynolds y la ecuación de Stokes

	El método de los elementos finitos
	La necesidad de nuevas soluciones
	La derivada débil
	La formulación débil del problema
	Existencia y unicidad de solución
	La discretización del problema variacional
	Los elementos finitos

	Elementos finitos en la ecuación de Stokes
	La formulación débil del problema de Stokes
	Existencia y unicidad de solución del problema variacional
	Problema de Galerkin para la ecuación de Stokes
	Un problema práctico
	La implementación del método

	Programas utilizados
	Bibliografía

