000162211 001__ 162211
000162211 005__ 20251017144612.0
000162211 0247_ $$2doi$$a10.1002/adfm.202502999
000162211 0248_ $$2sideral$$a144800
000162211 037__ $$aART-2025-144800
000162211 041__ $$aeng
000162211 100__ $$0(orcid)0000-0003-4874-6672$$aGarcia-Peiro, Jose I.$$uUniversidad de Zaragoza
000162211 245__ $$aEvolving Platinum‐Copper Nanostructures for Enhanced Photothermal Therapy and Controlled Copper Release in Cancer Therapy
000162211 260__ $$c2025
000162211 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162211 5203_ $$aNanotechnology provides a panoply of new tools in cancer therapy, enabling advanced treatments such as chemodyamic therapy (CDT), radiation therapy (RT), photothermal therapy (PTT) or photodynamic therapy (PDT). The therapeutic effect can be increased by combining one or more of these actions and this is usually considered already from the design of the nanoparticles (NPs). Bimetallic NPs are obvious candidates in this respect, being able to trigger a multifunctional response associated to each metal and achieving a synergistic action in combined therapies. In this work, we designed platinum‐copper bimetallic NPs (PtCu NPs) capable to evolve during treatment and fulfill a dual role as chemotherapeutic agents, (controlled release of ionic Cu), and as tumor ablation agents under near infrared (NIR) irradiation. Tuning the synthesis conditions demonstrated the influence of metal composition and alloying degree on the Cu release pattern when exposed to physiological media. The Cu ions released disrupt the redox balance in cells by generating reactive hydrogen species (likely hydroxyl radicals •OH through reaction with H2O2 overexpressed in the tumor microenvironment) while simultaneously oxidizing glutathione (GSH). After Cu release, the remaining Pt‐rich structures present enhanced photothermal (PT) response. The efficacy of the combined therapy enabled by these NPs has been evaluated in vitro and in vivo.
000162211 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000162211 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162211 700__ $$0(orcid)0000-0001-8762-5457$$aSancho-Albero, María$$uUniversidad de Zaragoza
000162211 700__ $$aMiguel, Silvia
000162211 700__ $$aMosseri, Andrea
000162211 700__ $$aHornos, Felipe
000162211 700__ $$aContreras-Montoya, Rafael
000162211 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000162211 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000162211 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162211 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000162211 773__ $$g(2025), e02999 [15 PP.]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X
000162211 8564_ $$s2996051$$uhttps://zaguan.unizar.es/record/162211/files/texto_completo.pdf$$yVersión publicada
000162211 8564_ $$s2615568$$uhttps://zaguan.unizar.es/record/162211/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162211 909CO $$ooai:zaguan.unizar.es:162211$$particulos$$pdriver
000162211 951__ $$a2025-10-17-14:18:05
000162211 980__ $$aARTICLE