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Abstract: This study examines the impact that fat-tailed distributions of the spread residuals
have on the optimal orders for pairs trading of stocks and cryptocurrencies. Using daily
data from selected pairs, the spread dynamics has been modeled through a mean-reverting
Ornstein—Uhlenbeck process and investigates how deviations from normality affect strategy
design and profitability. Specifically, we compared four fat-tailed distributions—Lévy
stable, generalized hyperbolic, Johnson’s S;, and non-centered Student’s t—and showed
how they modify optimal entry and exit thresholds, and performance metrics. The main
findings reveal that the proposed pairs trading strategy correctly captures some key stylized
facts of residual spreads such as large jumps, skewness, and excess Kurtosis. Interestingly,
we considered regime-switching behaviors to account for structural changes in market
dynamics, providing empirical evidence that optimal trading rules are regime-dependent
and significantly influenced by the residual distribution’s tail behavior. Unlike conventional
approaches, we optimized the entry signal and link heavy tails not only to volatility
clustering but also to the nonlinearity in switching regimes. These findings suggest the need
to account for distributional properties and dynamic regimes when designing robust pairs
trading strategies, providing a more realistic and effective framework of these strategies in
highly volatile and non-normal markets.

Keywords: pairs trading; fat-tailed distributions; Monte Carlo simulation; regime switching

1. Introduction

Pairs trading is a widely used trading strategy (Bagci & Soylu, 2024, 2025; Bergmann
& de Oliveira, 2025; Liou et al., 2024; Tadi & Witzany, 2025; H. Yang & Malik, 2024; Wilkens,
2025), which relies on the assumption that a known function (i.e., the spread) of the portfolio
price is a stationary, mean-reverting process (Krauss, 2016; Endres, 2020). The normality
assumption when fitting probability distribution to spreads’ residuals has been neglected
by previous research. In this context, fat-tailed distributions may overcome the restrictions
of normal spreads in the context of pairs trading performance (Goncti & Akyildirim, 2016;
Guang, 2021). Though there is an abundance in the literature on pairs trading modeled
by the Ornstein—-Uhlenbeck equation, there is very little research that evaluates optimal
trading rules using non-normal probability distributions (Endres & Stiibinger, 2019a).

In this way, a couple of studies (Stiibinger & Endres, 2018; Endres & Stiibinger, 2019b),
which focus on S&P500 oil stocks, have modelled the central-involved random process as
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a Wiener process plus a Poisson process with variable size (amplitude) each time. They
concluded that the proposed pairs trading strategy achieves a higher performance than
traditional approaches (i.e., based on traditional distance and time-series models). However,
they focused on high-frequency data, which is often, unfortunately, only accessible to a
minority of investors due to the onerous costs of the required infrastructure. Larsson et al.
(2013) used a similar approach—but the sizes of the changes in the case of a Poisson event
had distributions given by truncated Gaussians—and concluded that there is an optimal
stopping boundary that may help investors to obtain superior performance in pairs trading
strategies in the presence of jumps. Wu et al. (2020) analyzed a pair of Chinese stocks,
calculating optimal trading rules for pairs trading; they modeled returns using Poisson
processes with constant jump intensity. They concluded that excess jumps in the spread
have a significant impact on strategy profitability and the optimal timing for opening
and closing positions. Guang (2021) analyzed optimal trading rules using the t-student
distribution for modeling the noise of the spread. It showed the results of a few pairs of
stocks (e.g., Pepsi/Coca—cola, American banks, etc.) and concluded that in almost all cases,
the aforementioned approach significantly improved investment performance. Vergara
and Kristjanpoller (2024) found optimal thresholds for pairs trading of cryptocurrencies,
modeling returns (rather than residuals of a spread that follows an Ornstein—Uhlenbeck
equation) with a generalized hyperbolic distribution. Rad et al. (2016) pointed out the fact
that the spreads have fat tails. They applied the copula method using t-student copulas but
did not focus on optimal trading rules systematically.

Interestingly, Goncii and Akyildirim (2016), which is the work more closely related
to this study, focused on optimizing average profits in pairs related to commodity futures.
They considered dollar-neutral pairs (instead of beta-neutral pairs) and modeled spreads
using generalized hyperbolic probability density functions and subclasses of them (NIG
and VG density functions). Unfortunately, they neither optimized the enter value and stop-
loss nor compared the effects of normal and non-normal distributions on trading rules, and
they considered no regime switching (this is, they considered no change in the parameters
which characterize the random variables throughout the simulation). All these features
separate their work from ours. Based on the previous research findings and to the best of
our knowledge, the present article is the first study of optimal trading rules for Ornstein—
Uhlenbeck-based pairs trading of stocks using fat-tailed distributions whose conclusions
can be applied by most investors. In this way, this paper contributes to the existing literature
in several ways. Firstly, we considered four different fat-tailed distributions (i.e., Lévy
stable, generalized hyperbolic, Johnson’s Sy, and non-centered t-student) as well as normal
distribution, and we analyzed how well they suited the empirical spreads (note that nearly
all research analyzing fat tails considers only one fat-tailed distribution). We have chosen
the referred fat-tailed distributions because of their popularity; they have successfully been
applied to financial problems (Carneiro et al., 2025; Goncii & Akyildirim, 2016; Simonato,
2012; Plerou et al., 2001) and because of the fact that they are easily usable within Python.
The comparison between normal and fat-tailed distributions provides insights into the
(low) quality of the nearly ubiquitous normality assumption. Secondly, we thoroughly
analyzed optimal trading rules for all thresholds (enter value, profit-taking, and stop-loss),
which is seldom found in the literature. Our analysis of regime-switching is central to
these optimal rules (this analysis is also rare in the literature on optimal trading rules for
pairs trading). Thirdly, we performed calculations for cryptocurrencies, which have seldom
been analyzed in this context due to their relative novelty. Fourthly, we provided means
(open-source code) to replicate our results and to extend our analysis to arbitrary stocks
and cryptocurrencies. In summary, the work that we present is expected to overcome the
limitations of previous studies, whose scope was narrower and less easily applicable.
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Regime-switching is often ignored in the literature. However, recent research on pairs
trading considers regime-switching models and reveals their superior performance in
different markets. Chodchuangnirun et al. (2018) focuses on the US market and show that
a Markov-switching model with generalized conditional heteroskedasticity effects (MS-
GARCH) performs better than other conventional methods, such as kink and threshold
models. Similarly, Namwong et al. (2019) focus on the stocks of the SET100 index to
construct the pairs and apply a MS-GARCH model, and they conclude that this approach
generates positive returns, which are higher than the return from trading in individual
stocks. Focusing on the SP500 shares, Endres and Stiibinger (2019b) implement a Lévy-
driven Ornstein—Uhlenbeck MS approach and find significant results with Sharpe ratios of
3.92 after transaction costs. Chen et al. (2014) focus on the Dow Jones Industrial Average
Index stock and propose a three-regime threshold autoregressive model with GARCH
effects (TAR-GARCH) and conclude that this strategy generates positive excess returns.

This paper is structured as follows. In the next section, we present the time series
used in the empirical calculations. Section 3 briefly presents our calculation methods,
including stochastic modeling and trading strategies, measures of performance and risk of
the analyzed strategies, and assumptions underlying this work. In Section 4, we present
the main results. In the interest of thoroughness, we also analyze the out-of-sample profits
of the trading strategies and the effects of Poisson events. Finally, Section 5 outlines our
main conclusions. Additional information on the methods and results can be found in the
Supplementary Material, which also presents an analysis of single-product trading as well
as theoretical explanations to provide deeper insights.

2. Data Description

The details of the time series used in this study are shown in Table 1. We focused on
23 stocks that correspond to well-known large capitalization enterprises traded in efficient
markets—North America and Europe-during the 2017/2025 period (20 February 2017 to
20 February 2025). For representativity purposes, stocks for all 11 GICS sectors were
analyzed. We also considered four among the most traded cryptocurrencies for robustness
purposes, because their properties strongly differ from conventional stocks. Data for the
four analyzed cryptocurrencies were collected from 2021 to 2025 (20 February 2021 to
20 February 2025). The risk-free rates considered correspond to yields of either 1-year T-
bills (US) or German 1-year govies (Ger). With the aim of making the calculation replicable,
we focus on the daily time series (weekdays).

Note that in our approach the trader can only buy or sell immediately before the
closing time of each day; that is, in our framework, time is a discrete variable. It might be
argued that by proceeding in this way we are making an error in the Ornstein—Uhlenbeck
equation due to the non-infinitesimal size of the time step, which for us is one day (and,
e.g., that a correction term proportional to exp [— %} must be added to correctly reproduce
the variance of the process). However, we deemed that such an interpretation would be
mistaken. For stocks, most of the trading activity takes place near the opening and closing
times, hence properties like liquidity do strongly depend on the time of the day. If we were
using time steps lower than one day in our modeling of the time series, we should give
an account of such time of the day-dependent properties, which would make our model
much more complex. That would be analogous to considering seasonality when modeling
time series, which can be avoided if the time separation between measurements is exactly
one year.
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Table 1. Analyzed stocks and cryptocurrencies.

Sector Company Ticker Exchange
Energy TotalEnergies TTE NYSE
Energy Phillips66 Company PSX NYSE
Energy BP plc BP NYSE
Utilities Duke Energy Corp. DUK NYSE
Utilities Sempra Energy SRE NYSE

Consumer staples Mondelez International MDLZ NasdaqGS
Consumer staples Monster Beverage MNST NasdaqGS
Consumer discretionary Booking Holdings Inc. BKNG NasdaqGS
Consumer discretionary =~ Marriott International Inc. MAR NasdaqGS
Materials Brenntag SE BNR.DE XETRA
Materials UPM-Kymmene Oyj UPM.HE Helsinki
Industrials Caterpillar CAT NYSE
Industrials Relx plc RELX NYSE
Information tech. Alphabet Inc (Class C) GOOG NasdaqGS
Information tech. Intuit INTU NasdaqGS
Communication The Walt Disney Company DIS NYSE
Communication Verizon Communications vz NYSE
Healthcare Amgen AMGN NasdaqGS
Healthcare Stryker Corporation SYK NYSE
Financials Bank of America Corp. BAC NYSE
Financials PNC Financial Services PNC NYSE
Real estate Essex Property Trust Inc. ESS NYSE
Real estate Equity residential EQR NYSE
Cryptocurrency Bitcoin BTC-USD CCcC
Cryptocurrency Tron TRX-USD CCcC
Cryptocurrency Dogecoin DOGE-USD CcCcC
Cryptocurrency Ripple XRP-USD CCcC

This table presents concise data to identify the financial products (stocks and cryptocurrencies) whose prices are
used in this research. It includes the name of the financial product, its sector, the ticker to download the time
series from Yahoo Finance, and the name of the market where it is traded.

There exist two main methods for choosing candidates to form a pair (i.e., a traded
long—short portfolio). The first one is to take a large set of (N) products, calculate the
spreads of all (N-(N — 1)/2) pairs within this set, and choose the pairs to trade depending
on their properties, like stationarity, variance of the residuals, etc. The second is based
on fundamental information, i.e., on selecting candidates which have common features,
like sector, country, currency, market capitalization, etc. In this paper, we followed the
second method, because we found it more robust. If two stocks have similar features, it
is more justified that the spread of the pair reverts to a mean. We deemed that following
the first method would be prone to selecting pairs which behaved well in the past by mere
coincidence (data snooping), which will less likely behave so in the future. Therefore, we
constructed pairs as follows. For every GICS sector, we selected those with largest market
cap which are traded either in the US or in Europe. We took between 10 and 20 stocks
for each sector, as well as the 11 cryptocurrencies with highest market value. We then
randomly chose the two constituents of the pair among those whose spreads presented the
best stationarity properties (subject to the condition that at least one of the two stocks—or
cryptocurrencies—is widely known).

Table 2 shows the main descriptive statistics, normality tests, and stationarity tests
for the residuals of the pairs’ spreads (the way these spreads are calculated is explained
in Section 3.1.1 below). The average Kurtosis for stocks is 19.7, much higher than the
value obtained by Goncii and Akyildirim (2016) for futures of commodities (11.8); the
Kurtosis of cryptocurrencies is still higher. As shown in Table 2, the normality assumption
is clearly rejected for all the spread residuals, which also agrees with the results of Goncti
and Akyildirim (2016), and strongly supports the usage of fat-tailed distributions. Though
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not explicitly presented in Table 2, three different normality tests (Anderson-Darling,
Shapiro-Wilk, and Kolmogorov-Smirnov) support that the spreads do not follow a normal
distribution (the p-values were below 10 for all normality tests for all the analyzed
pairs). Accordingly, empirical features of the spreads suggest the use of several fat-tailed
distributions to better capture the empirical properties of stocks’ returns and spreads. The
values of the skewness and Kurtosis displayed in Table 2 also support the non-normality,
making it clear that the model used in the vast majority of the literature (normality of the
spread residuals) fails to appropriately suit to the observed data. Table 2 also shows the
test statistics of Augmented Dickey—Fuller (ADF) tests, which support the stationarity of
the spread residuals. Finally, the test statistics of the Brock, Dechert, y Scheinkman (BDS)
tests (shown in the last column, in which there is a p-value of zero in all cases) confirm
nonlinearity of the dynamics. Graphical representations of the pairs’ spreads vs. time are
included in the Supplementary Materials.

Table 2. Descriptive statistics of pairs” spread residuals.

Sector Mean St. Dew. Skewness Kurtosis AD Test ADF Test BDS Test
Materials BNR.DE/UPM.HE —0.0827 0.0172 0.2027 3.6685 13.8776 *+ 30927 ** 441
Consumer BKNG/MAR 0.0298 0.0183 0.1164 12.5727 257249 #* 30671 ** 248

discretionary

Energy PSX/TTE 0.0227 0.0186 ~1.3310 222154 154386 **  —3.514 % 309

Energy BP/TTE 0.1231 0.0105 0.0321 2.7763 7.2732 *** 2,936 **

Finance BAC/PNC 0.3404 0.0105 0.3419 3.9468 15.7640 ** 37158 ** 315
Health care AMGN/SYK 0.0265 0.0173 ~0.1989 8.2976 28.3346 % —3.3702* 420
Utilities DUK/SRE —0.2741 0.0110 —2.0222 28.0670 36,1474 %% 30831 ** 333
Information tech. GOOG/INTU 0.0239 0.0176 0.2393 4.9907 19.8525 %+  —3.1049 ** 220
Real estate EQR/ESS ~1.4987 0.0073 0.1255 4.9983 125093 #+  —3.5024 *** 282
Communications DIS/VZ 0.1415 0.0204 0.2574 6.0019 206775 —3.1276* 207
Consumer staples MDLZ/MNST —0.1857 0.0153 —0.5351 11.5898 30.6926 *** —3.5651 *** 221
Industrials CAT/RELX —0.1698 0.0201 0.2509 2.9576 9.9417 **+* —3.2606 ** 349
Cryptocurrencies ~ BTC-USD/TRX-USD ~ —17.5508 0.0598 1.7731 19.8861 32.0512**  —3.5010 *** 131
Cryptocurrencies XRP-USD/DOGE- —1.2764 0.0809 0.8088 19.9873 30.8786 ** 34110 * 190

This table comprises the main descriptive statistics, normality, stationarity, and non-linearity check for the pairs’
spread residuals. AD refers to the Anderson and Darling normality test statistic. ADF refers to the Augmented
Dickey—Fuller stationarity test. BDS refers to the Brock, Dechert and Schreinkman non-linearity test. *** significant
at 1%; ** significant at 5%.

3. Methodology
3.1. Stochastic Models

In this section, we briefly present the mathematical methods behind the calculations
of this paper. Detailed explanations of our methods for pairs trading can be found in the
Supplementary Materials.

3.1.1. Pairs Trading Modeling

Pairs trading is a trading method aimed at reducing market risk where the investor
builds a portfolio consisting of just two financial products, one being of long position and
the other being of short position. The pair, however, must be appropriately selected, so that
a known function of the portfolio price is a stationary, mean-reverting process. One of the
most popular models to account for mean-reverting processes is the Ornstein-Uhlenbeck
equation (Shreve, 2004), whose continuous time form is given by the following;:

dX(t) = (Eo(1 - ¢) — (1 — @) X(t))dt + cdW(t) 1)

where X(t) is a mean-reverting stochastic process (for us, it is the spread of a long—short
portfolio, i.e., X(¢) := s(t)) and Ey, ¢, and o are real numbers. For simplicity reasons,
we assumed that Eg and ¢ were constant and that the probability distribution of cdW ()
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remained unchanged in certain periods. Ej represents the mean towards X(t) tends, the
mean-reversion parameter (1 — ¢)—which is positive-represents the speed of such trend,
and o is the multiplicative factor of the random variable dW(t), sometimes called the
volatility of the process (Goncii & Akyildirim, 2016). Such as was used in previous research,
this paper considers the stochastic process representing fat-tailed random variables (Goncii
& Akyildirim, 2016; Yu et al., 2017; Endres, 2020). In this way, X is called a generalized
Ornstein—Uhlenbeck process or a Lévy-driven Ornstein—Uhlenbeck process.

Our pairs trading strategy defines the spread of a long—short portfolio formed by
two financial products which presents the mean-reverting property. Such as was used in
existing research (Vidyamurthy, 2004; Zeng & Lee, 2014; Goncti & Akyildirim, 2016), we
defined the spread as the following;:

s(t) = log [p (1)] = vlog[p"(1)] @

where p indicates the price of a financial product and A and B are indices of the two stocks.
The weights of both stocks forming a pair are =1 and F+, thus assuming that they are
infinitely divisible. Dividends are assumed to be immediately reinvested. Although some
authors (Huck & Afawubo, 2014; Elliott et al., 2005) prefer defining the spread by avoiding
logarithms (p?(t) — ypB(t)), or using standardized prices (Carrasco-Blazquez et al., 2018),
this paper defines the spread such as shown in Equation (2). This definition implies that the
absolute return of the spread is approximately equal to the absolute return of our portfolio
(see proof in Section S.2 of the Supplementary Materials). The - coefficient has a strong
impact on the mean-reversion property of the spread (an inappropriate choice may make
the spread non-stationary). Notwithstanding, there is no unified criterion in the literature
to assign a value to 4. Among the possible methods to do so, we shall mention three
widely used approaches: (i) dollar-neutrality; (ii) Vidyamurthy’s cointegration approach
(which is often beta-neutral), and (iii) the Vector Error Correction Model (VECM). The
most straightforward calculation is to define dollar-neutral pairs, where the initial values
of the long and short positions fully offset each other (y = p(0)/p?(0)). If the prices
(pA(t), pB(t)) are divided by their initial values, then this is equivalent to setting 7 = 1.
Using dollar-neutral pairs is a popular approach (Elliott et al., 2005; Galenko et al., 2012;
Goncti & Akyildirim, 2016) because it requires little funding. However, the investor is
exposed to noise because the prices at just one time (t = 0) are used to calculate . This
can be avoided through variations of the dollar-neutral method which uses information on
prices at several different times. Between them, we cite the definition of -y as the slope of the
ordinary least squares linear regression of p (t) vs. pB(t) (Huck & Afawubo, 2014). A third
approach to calculating cointegration coefficients is the VECM (Engle & Granger, 1987).
Under this approach, 7 is computed as a two-stage least squares procedure, regressing
expressions that involve both prices and returns of A and B (Carrasco-Blazquez et al., 2018;
Nair, 2021).

A further way to calculate v is Vidyamurthy’s cointegration approach (Vidyamurthy,
2004). This method provides high, stable, and robust returns (alpha) (Huck & Afawubo,
2014), also in pairs trading of cryptocurrencies. It has also been stated that returns from
cointegration tend to present less extreme values (i.e., a lower Kurtosis coefficient) than
other methods, like distance or copula methods (Rad et al., 2016). Given the aforementioned
advantages, this paper focuses on this approach to calculate the value of .

Pairs trading relies on the hope that the spread reverts to a mean. To avoid a drift
that shatters mean-reversion, the spread is defined so that it is stationary. This value of
v in Equation (2) is chosen so that, even if the time series log[p”(t)], log[p®(t)] are not
stationary, their linear combination s(t) is stationary. This is the definition of cointegration:
two non-stationary time series are said to be cointegrated if there is a linear combination of
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them that is stationary (Vidyamurthy, 2004). Stocks prices p(t), p(t) are frequently non-
stationary because stock markets tend to be bullish in the long term; therefore, the choice
of  is central to the profitability of pairs trading. A common way to find an appropriate
value for 7y is from the regression of common trends. This is based on the assumption that
each of the log-prices of Equation (2) can be deconstructed into two terms: (i) a common
trend nB (t), which is non-stationary and is most often related to the evolution of markets
and (ii) a random walk term eB(t), which is stationary and idiosyncratic (that is, it is
unrelated to the general behavior of markets):

log [pA(t)} = n(t) + e (t) (3a)

log [pP(t)] = nP (1) +¢P(1) (3b)

To guarantee cointegration, we needed the common trends to be proportional (18 (t)
n(t)). Indeed, their proportionality constant is v (this is n/(t) = yn®(t)), which is called
the cointegration coefficient. In the simplest case, the common trends are proportional to a
single observable quantity that accounts for the market behavior (e.g., an index like the
S&P 500 or the price of a share of an ETF which tracks it). Let us call R! (for I = A, B) to the
log-returns of the stock prices (R!(t) := log[p!(t)] — log[p'(t — 1)]), Ry to the market
returns (e.g., Ry (t) := log[pETE(t)] — log[pFTE(t —1)], where pETF is the price of the
aforementioned share of an ETF that tracks the S&P 500 index), and Ry to a risk-free rate
(e.g., the yield of the T-bills with maturity in one year). R, corresponds to the returns
of the indices displayed in the fourth column of the table presented in Section S.2 of the
Supplementary Materials (for the cases with one single risk factor). We can then express
the returns of stocks A, B as follows:

RA(E) = Ry() = B4Rk (£) = Ry(8)) + rlyec(t) (42)

RE() = Ry (t) = B (Rt (1) = Ry (1)) + rEyec(8) (4b)

where [31 are the slopes of the linear regression of (Rl(t) — Rf(t)> vs. (Rmkt(t) — Rf(t))
(as given by the well-known Capital Asset Pricing Model, CAPM) and ripec indicate returns
which are specific (idiosyncratic) of the corresponding time series. Here we have considered
a risk-free rate following the procedure indicated by Do et al. (2006), yet many authors
simply assume that Ry = 0. Imposing 7y = B4/ B® in Equation (2) implies that the absolute
returns of the spread (s(f) — s(t — 1)) will be the following:

s(t) —s(t—1)=(1— V)Rf(t) + r?}}ec(t) + rfpec“) ®)

where the first term of the right-hand side is expected to have a low size because frequently
7 =~ 1; this is the absolute returns of the spread lack market (non-stationary) components
and will hence depend on idiosyncratic components, which are assumed to be stationary.
Note that this does not mean that our portfolio is perfectly beta-neutral: When we enter
our position, we are long (short) one dollar in stock A and short (long) - dollars (or other
currency) in stock B. Since 7 is the quotient of betas, at inception our portfolio is beta-
neutral; however, after the first day the values of our two positions have varied, and their
quotient will most likely not remain equal to . Hence, our portfolio will have a non-zero
exposure to the market, even if the spread is perfectly beta-neutral (beta-neutral portfolios
would require continuous rebalancing).
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Since there is no guarantee that r;?m (1), rfpec(t) are indeed stationary, we performed

stationarity tests of the spreads (see Table 2), and those pairs whose spreads fail to pass the
test are discarded.

If we considered several risk factors instead of only one, that is, if we rely on the
Arbitrage Pricing Theory (APT instead of CAPM), then Equation (4) becomes the following;:

RA®) = Ry(t) = L0 B (Ri() = Ry(1) + e () (62)
NgF

RE() = Ry(t) = ) BP(Ri(t) = Re(1)) +rhec(t) (6b)
i=1

where Ngr is the number of considered risk factors (e.g., stocks, cryptocurrencies, or
commodities indexes) and R;(t) are their respective returns (see the returns of the indices
displayed in the fourth column of the table presented in Section S.2 of the Supplementary
Materials). In this case, v would be the slope of the linear regression (y-vs.-x) of the cloud
of points (x, y) where x = Ef\ff pE (Ri(t) - Rf(t)) andy = E?ﬁf BA (Ri(t) - Rf(t)).

Note that for simplicity’s sake we consider a constant value for the betas in
Equations (4) and (6); an interesting discussion about the stationarity of the betas can
be found in Agrrawal and Clark (2007).

In order to obtain the parameters of the Ornstein—Uhlenbeck equation (Ey, ¢, and o
from Equation (1)), we performed a discretization such as indicated by Goncti and Aky-
ildirim (2016). We made dt — At :=1 and dX(t) — X(t) — X(t —1) :=s(t) —s(t — 1),
and we renamed dW(t) — AW(t) as &(t). Equation (1) hence becomes the following:

s(t) =(1—@)Eg+ @s(t —1) +oe(t — 1) ()

where oe(t — 1) are the residuals, being ¢ their scaling parameter. We will later fit these
residuals to different fat-tailed distributions. The ordinary least squares linear regression
of s(t) (i-e., y) vs. s(t — 1) (i.e., x) provides the Ey and ¢ parameters. The residuals of the
regression (ce) can be fit to any probability distribution which is deemed appropriate. If the
analyzed data present the appropriate properties (i.e., stationarity of the spread and low
autocorrelation of residuals), then the selected pair can be traded with profit expectations.
To evaluate the optimal rules for such trading, we set a maximum horizon, which is defined
as the maximum number of days that a portfolio is held before selling. We then performed
a Monte Carlo (MC) analysis for different values of the thresholds (trading rules) that
determine the strategy. These are the following: (i) the enter threshold, which determines
the minimum absolute value of the spread to build a position (i.e., to enter the trade);
(ii) the profit-taking threshold, which determines the value of the spread to unwind (finish)
the portfolio making a profit; and (iii) the stop-loss threshold, which determines the value at
which the portfolio is unwound having a loss.

The products which form the chosen long—short pairs have important features in
common: they belong to the same GICS sector and to the same region, are traded in the
same market with the same currency, as well as similar regulations, and both have large
market capitalizations. Hence, they are expected to depend on the same economic forces.
This supports the expectation that, when the spread (X in Equation (1)) moves far away
from the mean (Ep), such market forces will move it again towards this mean.

3.1.2. Probability Distributions

Each pair spread is fitted to five different distributions: (i) normal, (ii) Lévy stable,
(iii) generalized hyperbolic, (iv) Johnson’s Sij, and (v) non-centered t-student. All distribu-
tions have a loc and a scale parameter, which account for the location and scale (size) of the
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residuals. The four fat-tailed distributions also have two parameters each to account for
the skewness and fatness of the tail. The generalized hyperbolic distributions that we have
considered also have a fifth parameter (p-parameter) which accounts for the form. We called
p, the set of two, four, or five parameters of the distribution plus the parameters of the
Ornstein—Uhlenbeck equationl. For the normal distributions, the loc and scale parameters
are the mean and standard deviation of the spread residuals. The former is always zero
(by consequence of the definition of ordinary least squares linear regression), and hence
the only actual parameter of the distribution is the scale (¢ and Ej are found by simple
ordinary least squares linear regression of s(t) vs. s(t —1)). The parameters of the four
fat-tailed distributions are calculated by maximum likelihood (ML), which is the standard
method to this end (Borak et al., 2011). The calculation of the parameters through ML is
made by minimizing the loss function:

loss(p,) *Z In[pdf(ps)] 8)

where N; stands for the number of residuals and pdf is the probability density function.
We calculated the optimal parameters of the distribution (i.e., those minimizing the loss
function), by using the gradient descent method (Barzilai & Borwein, 1988). This method
guarantees that a local minimum of the loss function is eventually reached. Apart from
performing gradient descent iterations that involve all parameters, in order to minimize the
loss function we performed a series of iterations that involved only the skewness parameter
or the tail parameter. This was because the gradient with respect to the scale parameter is
often much higher than the rest, which can make the skewness and tail parameters move
very little away from their initial values unless such individual iterations are performed.
In addition, to find appropriate solutions we included some randomness in the evolution,
and we tried different random and deterministic starting values for the gradient descent
method, except with the Lévy stable distribution This was because calculations of the pdf
of the stable distribution are much slower than for non-centered t-student and generalized
hyperbolic, which precluded promptly, performing many calculations using the stable
distribution. The slowness of maximum likelihood fittings to Lévy stable distributions has
already been pointed out by other authors (Kawai, 2012).

3.2. Trading Strategies

We searched for optimal trading strategies using synthetic data, due to their advan-
tages (Lopez de Prado, 2018). That is, for a given value of the set of trading rules, we
generated numerous (200,000) time series. Each of these synthetic time series is one path
of our Monte Carlo simulations and corresponds to the evolution of s(t) of Equation (7).
The time series of s(t) are generated with up to five different probability distributions for
oe: normal, Lévy stable, generalized hyperbolic, Johnson’s Sy;, and non-centered t-student.
The trading rules consist of four numbers, which determine the thresholds for entering and
exiting (unwinding) our positions. The enter value is the value of the spread s(t) at which
we built our long—short portfolio (i.e., we bought product A and sold product B or vice
versa). The limit orders are the profit-taking and stop-loss thresholds. If our position is long in
spread, i.e., if the enter value is negative (we define it by subtracting E) because we bet that
the spread will increase, then the profit-taking is a value of the spread which is above the
enter value, and the stop-loss is a value of the spread which is below the enter value. The
converse happens if our position is short in spread (i.e., if the enter value is positive because
we bet that the spread will decrease); in this case the profit-taking is below the enter value,
and the stop-loss is above the enter value. As soon as either the profit-taking or the stop-loss
threshold is exceeded, we determined that the portfolio is unwound, obtaining a profit (if
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the profit-taking was surpassed) or a loss (if the stop-loss was exceeded). The last trading
rule is the maximum horizon, which determines the uppermost time for holding a pair. If
after such a period holding our pair we have reached neither the profit-taking nor the
stop-loss thresholds, then the position is unwound anyway (at a profit or a loss). We did not
make calculations to optimize the maximum horizon because we assumed that the trader
may have had exogenous limitations for it. Therefore, each of the (e.g., 200,000) synthetic
paths provides a profit (or loss), which is defined as the difference between the spread
when unwinding the position minus the spread when the position was built (times —1 if we
were short in spread). We considered transaction costs equal to 0.5% per year for shorted
stocks and 1.2% for shorted cryptocurrencies. This is a proxy for fees and commissions
and slippage and market impact (see the Supplementary Materials for a discussion about
this choice).

When we tested each set of parameters corresponding to a given trading strategy
(horizon and enter, profit-taking, and stop-loss thresholds), we used the same set of gener-
ated random variables which account for the evolution of prices. This is aimed at avoiding
statistical error (Bouchaud & Potters, 2003; Goncti & Akyildirim, 2016). Otherwise, the
differences between the synthetic price time series may lead to distorted results. For sim-
plicity’s sake, we assumed that, at the initial time (+ = 0) of each MC path, the spread
lies exactly at Eyg. The generation of synthetic time series allows mitigating the backtest
overfitting, which is a major common drawback of quantitative investing modeling (L6pez
de Prado, 2023). Making an analysis based solely on the observed price time series would
give excessive weight to the realized values of the random variable, altogether neglecting
other values, that were equally likely, but not realized.

3.3. Performance Measures

For each set of trading rules (enter value, profit-taking, stop-loss, and maximum
horizon), our software calculates eight measures of performance and risk: the Sharpe ratio
of profits (SR), the rescaled Sharpe ratio calculated from semi-deviation (SR’), standard
deviation, semi-deviation, profit average, probability of loss, Value-at-Risk (VaR), and
Expected Shortfall (ES). In this paper, we focused on the first two to account for the risk-
adjusted returns, but choosing other criteria is a matter of taste. For example, the hierarchical
risk-parity method (Lopez de Prado, 2016) focuses on standard deviations of returns, and
other authors prefer to simply use the expected profit to measure performance (Goncii &
Akyildirim, 2016).

We define the profit average, the profit standard deviation, and the Sharpe ratio as

the following:
1 N
Yp = 7Np i:pl Ti )
1 Np 2
= (i — 1
0r = | g i (i = ) (10)
Ur
SRy := — 11
=l an

where r; stands for the annualized cumulative return of the i-th Monte Carlo path (note
that a path can contain several enter and exit points; the cumulative return is the addition
of all of them) and N, is the number of paths. For a given Monte Carlo path, we annualize
its total return (r;) by multiplying it by the number of trading days of a year and dividing it
by the time span of the path. In the analysis of pairs trading, we define each individual
return as r := s(tout) — S(ti), where o is the time of closing (unwinding) our position
and t;, is the time of building it. In the analysis of trading a single product (presented in
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the Supplementary Materials), we define the return as r := p(t,yt) — 1 for calculations of a
single product (p(t;,) := 1).
We define the semi-deviation and its corresponding Sharpe ratio as follows:

s %3 Y (max( (e — 1),0])2 (12)
p

SR’ = I 13
= (13)

where only the returns that are below average are counted measuring the variability. The

rescaling factor (v/2) is included to provide a more understandable comparison between
SR, and SR}; this term would make both Sharpe ratios equal if the returns were fully
symmetric. We deem the rescaled Sharpe ratio from semi-deviation (SR)) a more reliable
measure of performance than the bare Sharpe ratio (SR,) because it penalizes the variability
of below-average profits, which better suits the loss aversion of investors (Thaler, 2015).
Therefore, we present SR’ in most of the plots (heatmaps) of this article. Note that SR’ is
conceptually similar to the Sortino ratio because its denominator is also a semi-deviation.

We define the ES, such as indicated by the European Banking Authority, though
keeping a negative sign for losses; that is the following:

ES = Dcle (T3 1) + (ady = [aNp]) 7y 41 (14)
where the | x | signs indicate the integer part (floor) of x and the indices (i) of r; are ordered
so that r; are monotonically increasing. For both VaR and ES, we set « = 0.01 (1%). Note
that Equation (14) is based on Historical Simulation, which makes that formula potentially
inaccurate (Garcia-Risuefio, 2025); however, we used it because its usage is widely extended
due to regulatory requirements. An interesting discussion about the properties of the ES
can be found in Gribkova et al. (2025).

In the Supplementary Materials, we also provide examples of the VaR and the prob-
ability of loss. We define the VaR using the historical method (Choudhry, 2013), that is
as the (aNp)-th worst return. We define the probability of loss Py, as the number of
Monte Carlo paths whose return is negatively divided by the total number of paths; this is

Poss = (Z?jl 1ri<0> /Np'

4. Results and Discussion

In this section, we present the calculated features of pairs trading. Complementary
remarks on single-product trading can be viewed in the Supplementary Materials.

4.1. Fitting of Probability Distributions

We calculated spreads using the method presented in Section 3.1.1 (see Equation (2)),
using pairs of the products listed in Table 1; the list of pairs is displayed in Table S1 in the
Supplementary Materials. The spreads of the 13 analyzed pairs pass the stationarity test (see
Table 2). The normality of the spread residuals was checked through the three normality
tests, including Anderson-Darling’s (see Table 2). The results reveal that all the analyzed
spreads are non-normally distributed. Then, the analyzed spreads were fitted to the normal
and to four fat-tailed distributions. As an example, Figure 1 presents the histograms of the
spreads (blue bars) for an example spread (pair of energy stocks, PSX/TTE). In each subplot,
the curve represents the best fit found for a given distribution. As expected, the normal
distribution fits much worse to the histogram than the fat-tailed distributions. This property
holds for all the analyzed pairs (see the rest of the figures in the Supplementary Material).
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Residuals of spreads of PSX / TTE

The subplots of our Figure 1 that correspond to normal and to generalized hyperbolic
distributions present the same behaviors reported by Figures 2 and 4-6 of Goncii and
Akyildirim (2016).
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Figure 1. Fitted spreads to the probability distributions (TTE/PSX example). The blue bars present
the histogram of the spread residuals. The curves in each subplot correspond to the best-found fitting
to it for each of the five analyzed probability distributions. The normal probability density function
(red curve) fits to the histogram much worse than the fat-tailed density functions (yellow, blue, green,
and pink curves).

Note that, for the analyzed periods, all the spreads listed in Table 2 (except BP/TTE)
qualitatively display oscillation around one single value of the mean (see Figures S1-S3 in
the Supplemental Materials), while the BP/TTE spread displays several different values
around which the spread oscillates (see Figure 4 below in this document). Therefore,
we fitted the spread residuals of every pair (except BP/TTE) to a unimodal distribu-
tion. Concerning BP/TTE, we fitted the spreads of different time windows to different
unimodal distributions.

In Tables 3-7, we showed the fitting parameters of the spread residuals. These values
clearly reveal that the tails of the residuals’ distribution are notably fat; for example, the
average value of the number of degrees of freedom (Nj¢) of t-student distributions is 3.84 for
stocks and 2.06 for cryptocurrencies (note that the heavy-tailed Cauchy distribution has
N4 =1, and the normal distribution has Ny = o0), the average a-param of the generalized
hyperbolic distribution is 0.141 for stocks, and the average value of the & parameter of
the stable distribution is 1.70 for stocks (note that the Cauchy distribution has « = 1,
and the normal distribution has &« = 2). Tables 3-7 also show the loss function, which
takes similar values for the four fat-tailed distributions, though among them the stable is
the worst in most cases. Specifically, in six cases the generalized hyperbolic distribution
provides the best fitting (i.e., lowest loss function) among all five analyzed distributions; in
five cases, the non-centered, t-student function presents the best fitting; in two cases the
Johnson Sy fits best, in all cases considering the minimum loss function as the decision
for determining the quality of the distribution. In Table 8, we displayed a comparison
using the Akaike information criterion (AIC), which includes a penalty depending on
the number of parameters of the distribution (which are two for the normal, four for
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non-centered t-Student, Johnson’s S;, and Lévy stable, and are five for the generalized

hyperbolic distribution). The number displayed in Table 8 (the AIC) is the following:

where Npgrams is the number of parameters of the distribution, 7 is the number of points
of the time series (spread), and loss(p,;) is the loss function as defined in Equation (8).
Interestingly, the Akaike criterion relegates the generalized hyperbolic distribution for all
stocks: for them, the best choice according to AIC would be the non-centered t-student

distribution in all cases except one, where Johnson’s Sy; should be preferred.

Table 3. Spreads fitting to normal distribution.

Spread Name @ Eyp R? Loc Scale Loss

TTE/PSX 0.985 —0.440 0.970 —4.107Y 1.84-102 —2.5761
BAC/PNC 0.979 —1.622 0.959 3.10°17 1.05-102 —3.1409
BKNZ/MAR 0.988 2.714 0.977 3.10716 1.83-1072 —2.5800
UPM.HE/BNR.DE 0.991 —0.511 0.984 -8-10717 1.72-1072 —2.6441
AMGN/SYK 0.990 0.623 0.979 3.10°18 1.73-1072 —2.6410
DUK/SRE 0.986 0.597 0.972 -3.107%7 1.10-102 —3.0897
GOOG/INTU 0.991 —1.093 0.983 -8-10717 1.68-1072 —2.6669
ESS/EQR 0.986 1.309 0.972 —1-10716 7.31-103 —3.4989
DIS/VZ 0.990 —0.169 0.980 1-107Y 2.04-102 —2.4756
MNST/MDLZ 0.988 —0.720 0.978 -2.107% 1.53-1072 —2.7616
CAT/RELX 0.991 1.403 0.982 —2.10716 2.01-102 —2.4889
TRX-USD/BTC-USD 0.963 —11.906 0.942 -2.10"15 5.98-102 —1.3982
DOGE-USD/XRP-USD 0.976 1.552 0.949 —2.10716 7.60-102 —1.1575

This table shows the fitting parameters of the spread residuals to the normal distribution. The loss function values
are shown in the last column.

Table 4. Spreads fitting to non-centered t-student distribution.

Spread Name Loc Scale sk.param. df Loss

TTE-vs.-PSX —1.69-1073 1.33-1072 1.03-107! 4.49 —2.6668
BAC-vs.-PNC —1.80-1073 7.48-1073 1.92-10°! 3.97 —3.2098
BKNG-vs.-MAR —4.833-10¢ 1.20-1072 3.37-102 3.54 —2.7029
UPM.HE-vs.-BNR.DE 1.523-1073 1.25-102 9.60-102 4.10 —2.7055
AMGN-vs.-SYK —4.86-104 1.10-1072 3.80-102 3.24 —2.7640
DUK-vs.-SRE 1.01-10°° 6.78-1073 1.13-102 3.35 —3.2582
GOOG-vs.-INTU 1.11-1073 1.15-1072 —7.40-102 3.64 —2.7530
ESS-vs.-EQR 471-107¢4 542-.1073 —7.30-1072 4.40 —3.5599
DIS-vs.-VZ —244.1073 1.39-1072 1.37-1071 3.63 —2.5672
MNST-vs.-MDLZ 3.33-107° 957-103 3.06-1073 3.14 —2.8922
CAT-vs.-RELX —6.20-1074 1.54-1072 2.97-102 473 —2.53437
TRX-USD-vs.-BTC-USD 1.71-1073 2.70-102 —7.62-102 1.86 —1.6071
DOGE-USD-vs.-XRP-USD 4871073 3.73-1072 8281072 2.26 —1.3909

This table shows the fitting parameters of the spread residuals to the non-centered t-student distribution. The loss

function values are shown in the last column.
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Table 5. Spreads fitting to Johnson-Sy; distribution.

Spread Name Loc Scale a Param. b Param. Loss

TTE-vs.-PSX -1.175-1073 2.048-102 —6.594-1072 1.477 —2.6659
BAC-vs.-PNC —1.261-1073 1.085-1072 —1.242-1071 1.384 —3.2097
BKNG-vs.-MAR —2.802-107% 1.616-1072 —1.804-1072 1.277 —2.7016
UPM.HE-vs.-BNR.DE —1.051-1073 1.857-1072 —6.136 1072 1.416 —2.7055
AMGN-vs.-SYK —2521-107% 1.403-1072 —1.866-102 1.208 —2.7633
DUK-vs.-SRE 1.459-10~% 8.843-1073 6.114-1073 1.234 —3.2562
GOOG-vs.-INTU 8.333-107% 1.583-1072 5.055-10—2 1.305 —2.7527
ESS-vs.-EQR 3.032-1074 8.352-1073 4389102 1.474 —3.5596
DIS-vs.-VZ —1.670-1073 1.904 - 1072 —8.551-102 1.305 —2.5668
MNST-vs.-MDLZ 8512-10° 1.204-1072 2.073-1073 1.188 —2.8919
CAT-vs.-RELX —4178-10% 2.470-102 —1.845.1072 1.541 —2.53439
TRX-USD-vs.-BTC-USD 1.291-1073 24221072 5110-102 0.834 —1.6151
DOGE-USD-vs.-XRP-USD 3.380-1073 3.712-1072 4.822.102 0.938 —1.3937

This table shows the fitting parameters of the spread residuals to the Johnson-Sy; distribution. The loss function

values are shown in the last column.

Table 6. Spreads fitting to generalized hyperbolic distribution.

Spread Name Loc Scale b Param. a Param p Param Loss

TTE-vs.-PSX —7546-107° 2.825-102 6.617-1073 7.487-1073 —2.248 —2.6666
BAC-vs.-PNC —6.262-107%  1.416-102 8.099 - 102 4401-1071 —1.762 —3.2099
BKNG-vs.-MAR —2.742-107% 2.263-102 6.031-1073 7.532-1073 —1.770 —2.7029
UPM.HE-vs.-BNR.DE 9.823-107° 2.529.10~2 5.633-1073 2.000-10~2 —2.043 —2.7053
AMGN-vs.-SYK —-3966-10° 1.978-102 2.498-1073 2.002-1072 —1.618 —2.7639
DUK-vs.-SRE 1.648 -10~* 12421072 —1.782-1072 1.803-102 —1.676 —3.2582
GOOG-vs.-INTU 3.324-107* 2.080-1072 —2430-10"2 3.315-10°1 —1.624 —2.7531
ESS-vs.-EQR 1.499-104 1.128-1072  —3.160-1072 2.122-10°! —2.159 —3.5599
DIS-vs.-VZ —6.468-10"% 2.588-102 40181072 2.112-1071 —1.738 —2.5671
MNST-vs.-MDLZ 1.268 -10~* 1.588-1072  —8.602-1072 2.241-1071 —1.401 —2.8923
CAT-vs.-RELX —3954-10"% 3.342-1072 3.207 - 1072 5.813-1072 —2.360 —2.53443
TRX-USD-vs.-BTC-USD  1.214-1073 1.419-1072  —5.196-10"% 1.873-10°! 0.066 —1.6208
DOGE-USD-vs.-XRE- 2150-107*  4.020-107%  2130-107°  2.490-107! —0.592 —1.3921

usD

This table shows the fitting parameters of the spread residuals to the generalized hyperbolic distribution. The loss
function values are shown in the last column.

Table 7. Spreads fitting to Lévy stable distribution.

Spread Name Loc Scale B w Loss

TTE-vs.-PSX 1.076 - 10~4 1.055- 102 1.057 101 1.771 —2.6640
BAC-vs.-PNC 4212-107° 5948 -103 1.327-101 1.715 —3.2061
BKNG-vs.-MAR 9.657 - 10~° 9.714-1073 4331-1072 1.697 —2.7014
UPM.HE-vs.-BNR.DE —8.969 -10° 9.861-103 6.902-102 1.707 —2.7002
AMGN-vs.-SYK 1.190 - 104 8.941-1073 4.463-1072 1.653 —2.7609
DUK-vs.-SRE 1.720-10~* 5.466-1073 4284-1072 1.662 —3.2568
GOOG-vs.-INTU 5.256 - 10> 9.231-1073 —3.348 - 102 1.687 —2.7497
ESS-vs.-EQR —2419-10° 4277-1073 —5.984-102 1.747 —3.5558
DIS-vs.-VZ 7.915-107° 1.110- 102 1.107-10! 1.682 —2.5636
MNST-vs.-MDLZ 7.616-107° 7.723-1073 1.385-1073 1.606 —2.8875
CAT-vs.-RELX —9.711-10° 1.207 - 102 3.309 - 1072 1.768 —2.5299
TRX-USD-vs.-BTC-USD —3.380-103 2.265-1072 —0.637-102 1.284 —1.597
DOGE-USD-vs.-XRP-USD —5.851-10* 3.160-1072 —6.865-102 1.447 —1.381

This table shows the fitting parameters of the spread residuals to the Lévy stable distribution. The loss function

values are shown in the last column.
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Table 8. Akaike information criterion for the analyzed distributions.

Spread Name Normal t-Student Johnson’s Sy Gen. hyperb. Lévy Stable
TTE-vs.-PSX —10,073.7 —10,424.5 —10,421.0 -10,421.7 —10,413.6
BAC-vs.-PNC —12,622.4 —12,895.4 —12,895.0 —12,893.8 —12,880.5
BKNG-vs.-MAR —10,367.6 —10,857.7 —10,852.4 —10,855.7 —10,851.6
UPM.HE-vs.-BNR.DE —10,223.4 —10,456.9 —10,456.9 —10,454.1 —10,436.4
AMGN-vs.-SYK —10,612.8 —11,103.3 —11,100.5 —11,100.9 —11,090.8
DUK-vs.-SRE —12,416.6 —13,090.0 —13,081.9 —13,088 —13,084.3
GOOG-vs.-INTU —10,716.9 —11,059.1 —11,057.9 —11,057.5 —11,045.8
ESS-vs.-EQR —14,061.6 —14,302.8 —14,301.6 —14,300.8 —14,286.3
DIS-vs.-VZ —9947.9 —10,312.1 —10,310.5 —10,309.7 —10,297.7
MNST-vs.-MDLZ —11,097.6 —11,618.6 -11,617.4 -11,617.1 —11,599.8
CAT-vs.-RELX —10,001.4 —10,180.17 —10,180.24 —10,178.4 —10,162.1
TRX-USD-vs.-BTC-USD —2800.8 —3215.8 —3231.9 —3241.3 —3195.6
DOGE-USD-vs.-XRP-USD —2317.9 —2782.2 —2787.8 —2782.6 —2762.3

This table shows the values of the Akaike information criterion for each of the analyzed time series (spreads)
and each of the 5 analyzed probability distributions. Bold numbers indicate the best fitting (minimum Akaike
information criterion).

4.2. Trading Rules

In this section, we presented the performance of different trading strategies. We
first (Section 4.2.1) displayed the case that is commonly assumed in the literature, which
corresponds to the Ornstein-Uhlenbeck equation with constant parameters. Section 4.2.2
presents an attempt to overcome such limitations of the model, considering discrete changes
in the mean (Ey) through Poisson events.

4.2.1. Mean Reversion with Constant Parameters

Figure 2 shows the heatmaps indicating profitability of the trading strategies. Each
subplot corresponds to calculations made using synthetic data to generate time series of
the spreads. A different distribution was used to generate the residuals of the spreads in
each case; all were carried out using 200,000 Monte Carlo paths. They present the rescaled
Sharpe ratio from semi-deviation (SR’), which measures risk-adjusted profitability (see the
Supplementary Materials for other performance metrics). The maximum horizon of all
figures corresponds to one year. The x (enter value) and y (profit-taking) axes of Figure 2
represent the value of the spread when the position is built and unwound, respectively.
Note that the heatmaps of this paper present values of the profit-taking and stop-loss
thresholds which correspond to additive values with respect to the enter value, and the
enter values correspond to additive values with respect to the corresponding Ey.

As can be noted in Figure 2, different distributions lead to differences in the maximum
value of the Sharpe ratios (SR’). Hence, the choice of distribution to fit the spread residuals
has non-trivial consequences on the trading strategy. This is more clearly seen in Figure 3
(see Supplementary Materials for examples corresponding to other pairs). Each point of the
curve of the left subplot corresponds to the maximum value SR sweeping all profit-taking
thresholds and a given enter value. The right subplot corresponds to the maximum value
SR sweeping all enter values for a given profit-taking threshold (measured with respect
to the enter value). These plots inform us about several interesting findings: (i) The value
of the maximum SR strongly depends on the distribution chosen to model the residuals
of the spread (it is nearly six for the normal distribution, and four for the t-student and
generalized hyperbolic distributions). (ii) The optimal profit-taking threshold also strongly
differs for different distributions (it is 0.064 for the normal distribution and 0.048 for the
t-student distribution). Accordingly, this will probably have an impact on the number of
times a trade is entered. These results correspond to an analysis where no stop-loss orders
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are in force (i.e., the stop-loss parameter is set to ==00). Our analyses indicate that farther
(higher size) stop-loss parameters lead to higher values of the Sharpe ratios, and thus the
optimal trading rules consist of setting them to —oo (if the bet is long in spread) or to +oco
(if the bet is short in spread).
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Figure 2. Sharpe ratios” heatmaps from fitting to each probability distribution (XRP-USD/DOGE-
USD example): heatmaps which present the Sharpe ratio SR’ as a function of different values of the
trading rules (enter value and profit-taking thresholds). Each point of the heatmaps was calculated
using synthetic data (200,000 Monte Carlo paths) for the time series of the residuals of the spread.
Each subplot corresponds to the synthetic data being generated with a different probability density
function (in all cases, using the parameters of the optimal fitting of the observed residuals to the
corresponding distribution).
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Figure 3. Trading rules performance (TTE/PSX example). (Left): Sharpe ratios vs. enter value
(maximum for all profit-taking thresholds) for the five analyzed distributions; (Right): Sharpe ratios
vs. profit-taking threshold (maximum for all enter values).

Although the analysis shown in Figures 2 and 3 is based on static parameters of
the Ornstein-Uhlenbeck equation (E, ¢), in a real-life trading action, the investor would
probably set a finite stop-loss threshold. In the next section, we overcome this drawback,
allowing a regime switching process for the Ejy parameter.

4.2.2. Regime Switching and Stop-Loss Orders

This section comprises the analysis of optimal trading rules with regime switching,
modeling the switch as a Poisson process and the noise using the previously considered
fat-tailed distributions. This analysis complements previous research (Bai & Wu, 2017; Y.
Yang et al., 2017; Altay et al., 2018), which considers optimal trading rules in the presence
of regime switching, but not the effect of fat-tailed distributions. This analysis also extends
the work of Endres and Stiibinger (2019b), which does so through jump components (rather
than fat-tailed distributions), but it does not optimize the trading rules as we do (their enter
value is (Ey & o(t)/2), and the profit-taking threshold is the opposite of the enter value
around Ejp).

Figure 4 shows the BP/TTE spread calculated from 2008 to 2024. As can be seen,
different regions where the spread oscillates around distinct values exist (approximately
indicated with red horizontal lines). Recalculating the spread for the period from 2010 to
2020 indicates that it is stationary, and hence it could be considered a candidate for pairs
trading before March 2020. However, the regime switching it then undergoes advises
against it. The change of the long-term mean level of the spread (Ey) has a dramatic effect
on the optimal trading rules. As stated above, if one generates synthetic data naively,
ignoring changes in Ey, then the most profitable strategies omit a stop-loss order. They
involve holding your portfolio until the spread finally reverts to the mean, no matter how
large your temporary loss is.

Nevertheless, a more realistic approach which includes regime switching for synthetic
data leads to optimal trading rules with a non-infinite stop-loss threshold, as we will see be-
low. Let us assume that the long-term mean level of the spread (Ey) can change. We modeled
the transition as a Poisson event. Results can be seen in Figure 5. The intermediate period
is a time window from August 2010 to February 2020, which corresponds to 2310 trading
days. Hence, we set a daily probability of the Poisson event of 1 /2310 ~ 0.0004329. We
also assume that, if such an event takes place, there is a 50% probability of Ey increasing or
dropping; we set the size of the variation of Ej equal to 0.62 because that is the difference
between the values of the long-term mean level separately calculated using data from
the two time stretches marked with red lines in Figure 4 (the set of residuals of each time
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window is fitted to a different unimodal distribution). Accordingly, Figure 5 shows the
heatmaps ignoring (left graph) and considering (right graph) Poisson events (it corresponds
to the t-student distribution, see Supplementary Materials for other distributions. The
optimal thresholds are those which maximize the SR’. This figure shows that for a given
enter value the optimal stop-loss in the absence of changes in Ej (Poisson events) has an
infinite size (stop-loss = +oc0), while in the presence of changes in Ej it has a finite value. It
can be stated that regime switching reduces the maximum attainable SR’, though the value
with regime switching is still relatively high (about 0.5).

0.8

0.6 4

Figure 4. BPE/TTE spread in the presence of regime switching. The blue line represents the observed
spread (calculated using all the data of the period between 2008 and 2024). The dashed red lines
present the approximate values of E the spread oscillates around. The clear difference between both
dashed lines indicates that a regime switching happened.
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Figure 5. Effect of the regime switching in the context of Poisson events: heatmaps which present
the Sharpe ratio obtained from synthetic data of the spread residuals modeled with a t-student
distribution. Each point corresponds to a given pair of thresholds (profit-taking and stop-loss). The
(left) graph shows the SR’ without Poisson events for changes in the long-term mean level (Ey) of
the Ornstein—Uhlenbeck equation; the (right) considers changes in the long-term mean level. In the
former case, the stop-loss which maximizes the Sharpe ratio is infinite; in the latter case, it is finite.

The result of Figure 5-left agrees with previous research (Lépez de Prado, 2018), which
states that the optimal rules for pairs trading consist of unwinding the position as soon as
a small profit is realized and waiting (eventually for long periods) until your position is
in-the-money, in case it is temporarily out-of-the-money (in practice, this is equivalent to
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setting a stop-loss threshold of infinite size, i.e., never to make an stop-loss order). However,
such a bogus conclusion is due to naive modeling, i.e., to the unrealistic assumption that
the Ep must forcedly remain unchanged. Note that in practice the price of a given stock
can abruptly change for many reasons, like the company launching a new product, its
board choosing a mistaken strategy, etc. This phenomenon can easily cause that E, takes
a new value or even make both prices no longer cointegrated. The results displayed in
Figure 5-right show that when the naive modeling is avoided, i.e., when we consider
regime switching, the optimal stop-loss order is no longer an infinite size. Figure 5-right
also reveals that considering regime switching severely reduces the maximum SR’. This
indicates that spreads that are expected to be especially prone to changes in Ey should be
discarded in actual pairs trading.

4.3. Out-of-Sample Calculations

For the sake of completeness, we also present the out-of-sample profits of trading
rules calculated using the methods presented in this paper. These results correspond to the
actual profits that would have been obtained if an investor had traded the spreads of the
analyzed pairs following optimal trading rules calculated using different probability density
functions to fit the spread residuals. For every pair of stocks, we considered carrying out
pairs trading between 20 February 2021 and 20 February 2025; for pairs of cryptocurrencies,
we have considered carrying out pairs trading between 20 February 2023 and 20 February
2025. For every 3 months, we took the data of the spreads in the 5 years immediately
before the beginning of that period. We fitted the residuals of the spreads of that 5-year
period to each chosen probability density function and used the found probability density
function to calculate optimal trading rules (heatmaps), calculated using 20,000 Monte Carlo
paths. In each case, we set an arbitrary stop-loss parameter depending on the size of the
past variations of the spread. Our trading rules cover both the positions short in spread
(positive spread) and long in spread (negative spread). The trading rules specify when we
enter and when we unwind the pair; the profit is calculated as the difference between the
observed prices on both dates (note that, if the spread reaches a profit-taking threshold but
unwinding the position results in a loss, then we do not unwind the position, because that
would be contradictory to the concept of profit-taking). Whenever we enter a trade, we
buy one dollar (or euro) of the long stock, and we sell short y dollars (or euros) of the short
stock (or the converse). Therefore, the cost of entering our position can be either positive or
negative (if the size, measured in currency units, of the shorted position is higher than the
size of the long position). We set a maximum horizon of 2 years; in all cases we consider
transaction costs of 0.5%.

The results are shown in Table 9 (for stocks) and Table 10 (for cryptocurrencies).
Columns with label “#” indicate the number of times that a trade was entered; columns
with label Cost indicate the average cost of entering our position. The column with label
Profit is the profit corresponding to the whole considered period measured in currency
units (USD or euros). For example, if the price of a given entered long position is 1 dollar
(it can be either 1 or 'y, which is usually approximately 1) then a total profit of, for example,
0.16 implies that the profit was 16% of the cost of entering the long position.
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Table 9. Stocks’ out-of-sample pairs trading profitability.

Negative Spread Positive Spread Total
Sector Pair Distribution

# Cost Profit # Cost Profit # Cost Profit

Consumer BKNG Normal 2 —0.008 0.109 3 0.008 0.382 5 0.002 0.491
discretionary /MAR t-student 2 —0.008  0.153 2 0.008 0.154 4 0.000 0.307
Johnson-Sy; 5 —0.008 0.438 2 0.008 0.249 7 —0.003 0.687

Gen. Hyperb. 4 —0.011 0.335 0 0.000 4 —0.011 0.335

Levy stable 1 —0.011 0.001 1 0.011 0.059 2 0.000 0.060

Materials UPM.HE Normal 3 0.071 0.060 4 —0.067 0.271 7 —0.008 0.332
/BNR.DE t-student; 3 0.071 0.170 3 —0.074 0.148 6 —0.001 0.318

Johnson-Sy; 3 0.075 0.080 3 —0.074 0.179 6 0.001 0.259

Gen. Hyperb.; 3 0.071 0.062 3 —0.063 0.145 6 0.004 0.207

Levy stable 3 0.060 0.092 2 —0.061 0.155 5 0.012 0.248

Industrials RELX Normal 1 —0.091 0.117 2 0.127 0.011 3 0.054 0.128
/CAT t-student 1 —0.105 0.231 3 0.130 0.021 4 0.071 0.252

Johnson-Sy; 0 0.000 2 0.129 0.011 2 1.129 0.011

Gen. Hyperb. 2 —0.143 0.330 1 0.208 —0.004 3 —0.026 0.326

Levy stable 1 —0.184 0.416 2 0.206 0.153 3 0.109 0.569

Communication VZ/DIS Normal 1 —0.214 0.103 2 0.214 0.012 3 0.072 0.115
services t-student 1 —0.214 0.074 2 0.214 0.012 3 0.072 0.086
Johnson-Sy; 1 —-0.214 0.074 2 0.214 0.012 3 0.072 0.086

Gen. Hyperb. 1 —-0.214 0.053 2 0.214 0.012 3 0.072 0.065

Levy stable 1 —-0.214 0.034 3 0.214 0.024 4 0.107 0.058

Consumer MDLZ Normal 1 —0.051 0.185 3 0.051 0.097 4 0.026 0.282
staples /MNST t-student 1 —0.051 0.222 2 0.051 0.160 3 0.017 0.382
Johnson-Sy; 1 —0.051 0.194 2 0.051 0.141 3 0.017 0.334

Gen. Hyperb. 1 —0.051 0.185 2 0.051 0.027 3 0.017 0.212

Levy stable 1 —0.051 0.106 4 0.051 0.053 5 0.031 0.159

Healthcare SYK Normal 7 0.170 0.006 2 —0.170 0.163 9 0.095 0.168
/AMGN t-student 3 0.170 —0.251 1 —0.170 0.005 4 0.085 —0.245
Johnson-Sy; 4 0.170 —0.019 1 —0.170 0.005 5 0.102 —0.014

Gen. Hyperb. 5 0.170 0.070 1 —0.170 0.157 6 0.073 0.227

Levy stable 2 0.170 0.064 4 —0.170 0.285 6 —0.057 0.349

Utilities SRE Normal 4 0.048 0.061 3 —0.048 0.149 7 0.007 0.210
/DUK t-student 3 0.048 —0.021 2 —0.048 0.112 5 0.010 0.091

Johnson-Sy; 4 0.048 0.040 2 —0.048 0.099 6 0.016 0.139

Gen. Hyperb. 4 0.048 0.040 2 —0.048 0.099 6 0.016 0.139

Levy stable 3 0.048 —0.017 1 —0.048 0.032 4 0.024 0.015

Energy TTE Normal 2 —0.038 0.052 6 0.031 0.496 8 0.014 0.547
/PSX t-student 1 —0.038 0.027 8 0.032 0.718 9 0.024 0.745

Johnson-Sy; 1 —0.038 0.027 5 0.034 0.480 6 0.022 0.507

Gen. Hyperb. 1 —0.038 0.027 7 0.032 0.639 8 0.023 0.666

Levy stable 3 —0.038 0.184 6 0.023 0.340 9 0.003 0.524

Financials PNC Normal 2 —0.041 0.049 4 0.041 0.214 6 0.014 0.263
/BAC t-student 2 —0.041 0.055 3 0.041 0.136 5 0.014 0.191

Johnson-Sy; 2 —0.041 0.049 3 0.041 0.136 5 0.014 0.185

Gen. Hyperb. 5 —0.052 0.185 0 0.000 5 —0.052 0.185

Levy stable 4 —0.019 0.199 4 0.019 0.219 8 0.000 0.418

Information INTU Normal 4 0.058 0.121 4 —0.058 0.192 8 0.000 0.313
Technology /GOOG t-student 4 0.058 0.100 5 —0.058 0.226 9 —0.006 0.327
Johnson-Sy; 4 0.058 0.101 4 —0.058 0.271 8 0.000 0.372

Gen. Hyperb. 4 0.058 0.128 4 —0.058 0.307 8 0.000 0.434

Levy stable 2 0.058 0.234 4 —0.058 0.328 6 —0.019 0.562

Real EQR/ESS Normal 7 —0.020 0.304 4 0.020 0.144 11 —0.006 0.448
State t-student 4 —0.020 0.213 4 0.020 0.192 8 0.000 0.405
Johnson-Sy; 6 —0.004 0.180 2 0.004 0.106 8 —0.002 0.286

Gen. Hyperb. 4 —0.004 0.121 2 0.004 0.106 6 —0.002 0.227

Levy stable 1 —0.004 0.050 4 0.004 0.221 5 0.003 0.271

This table presents the out-of-sample profits of the 11 analyzed pairs of stocks (one for each GICS sector). The
profits depend on the optimal trading rules, which were calculated using synthetic data with spread residuals
following one of the five analyzed probability distributions; hence each block has five rows. The first vertical
block indicates the sector, tickers of the two stocks of the long—short pair, and name of the distribution. The last
three blocks correspond to the bets which are short in spread, long in spread, and sum of both, respectively. For
each, we displayed the number of times a bet was entered, the average profit, and the cost of entering the position
(which can be negative because the pair is long—short).
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Table 10. Cryptocurrencies’” out-of-sample pairs trading profitability.
Negative Spread Positive Spread Total
Spread Distribution . . ;
# Cost Profit # Cost Profit # Cost Profit
BTC-USD Normal 0 0 0
/TRX-USD t-student 3 —0.099  0.562 0 3 —0.099  0.562
Johnson-S; 0 0 0
Gen. Hyperb. 0 0 0
Levy stable 2 0.099 0.190 2 —0.099  0.738 4 0.000 0.927
XRP-USD Normal 1 —0.054 0.117 2 0.054 1.124 3 0.018 1.242
/DOGE-USD t-student 1 —0.054 0.183 2 0.054 1.354 3 0.018 1.537
Johnson-Sy; 1 —0.054  0.073 2 0.054 1.124 3 0.018 1.197
Gen. Hyperb. 1 —0.054 0.182 2 0.054 1.124 3 0.018 1.307
Levy stable 4 —0.054  0.469 5 0.054 2.371 9 0.018 2.841

This table presents the out-of-sample profits of the 2 analyzed pairs of cryptocurrencies. The profits depend on
the optimal trading rules, which were calculated using synthetic data with spread residuals following one of the
five analyzed probability distributions; hence each block has five rows. The first vertical block indicates the sector,
tickers of the two cryptocurrencies of the long-short pair, and name of the distribution. The last three blocks
correspond to the bets which are short in spread, long in spread, and sum of both, respectively. For each, we
display the number of times a bet was entered, the average profit, and the cost of entering the position.

The results displayed in Tables 9 and 10 indicate that the cointegration method pro-
duces consistent positive returns, as indicated by previous research (see e.g., Goncii &
Akyildirim, 2016; Rad et al., 2016). Tables 9 and 10 also indicate that the out-of-sample
profits obtained usually differ for trading rules derived using fittings of the spread residuals
to different probability density functions. This is reasonable because different functions
lead to different trading rules, which lead to results that can clearly differ for one single set
of historical prices. Nevertheless, for a given pair the total profits are usually positive and
are usually the same order of magnitude.

5. Conclusions

This study determines optimal trading rules for Ornstein—Uhlenbeck-based pairs
trading strategies applied to stocks and cryptocurrencies. The spread residuals are modeled
by using fat-tailed distributions (i.e., Lévy stable, generalized hyperbolic, Johnson’s Sy,
and non-centered t-student), covering a gap in existing research where such distributional
assumptions are narrowly considered in the context of trading thresholds. The model
determines efficient entry, profit-taking, and stop-loss levels, addressing more realistic
statistical properties of the spread residuals than the naive normality and non-regime
switching assumptions, which are widely present in the literature.

The empirical model assesses the adequacy of the selected fat-tailed distributions to
account for heavy tails and skewness. After that, we extended existing frameworks by
introducing regime-switching dynamics in trade rules optimization. Specifically, we used a
Poisson-based, Markov-switching process that can capture structural breaks and changing
market conditions, thereby increasing the strategy’s practical relevance.

The main findings reveal that the choice of distribution to model the spread residuals
has a significant effect on optimal trading thresholds, especially profit-taking levels. Under
the mean reversion model with constant parameters, larger stop-loss thresholds improve
profitability. However, the need to shorten the finite stop-loss thresholds in real trading
highlights the need to add regime-switching processes to pairs trading rules optimiza-
tion. When a Poisson process accounting for regime-switching is considered, the trading
thresholds are more conservative but better reflect real market constraints. Although the
introduction of regime shifts reduces expected profitability, it confirms that optimal pairs
trading strategies require unwinding positions with reduced performance.
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Note

1

References

Future research can benefit from the results of this study by focusing on more precisely
addressing the magnitude and persistence of regime shifts when modeling residual spreads
with fat-tailed distributions. Therefore, it could consider time-varying parameters or higher-
frequency data to better address transitions and tail behavior, as well as more sophisticated
models, like GARCH (to give account of volatility clustering) or copulas, which were
omitted from this paper for the sake of simplicity. We will also consider tweaking the fitting
to Lévy stable distributions. Another planned research line is to apply the knowledge from
fat tails presented in this paper in more sophisticated trading strategies, e.g., using further
market data, like Value Line ranks, as made in Waggle et al. (2001). The present research is
not free from limitations. The assumption of specific parametric fat-tailed distributions and
Poisson-based regime switching processes may not capture all the features and complexities
of real market dynamics. Furthermore, while transaction costs are considered in the form of
explicit fees, other parameters such as slippage, bid-ask spreads, and liquidity constraints
are not explicitly addressed and should be considered by further research.
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