000162265 001__ 162265
000162265 005__ 20251017144559.0
000162265 0247_ $$2doi$$a10.1016/j.jmaa.2025.129875
000162265 0248_ $$2sideral$$a144636
000162265 037__ $$aART-2026-144636
000162265 041__ $$aeng
000162265 100__ $$0(orcid)0000-0003-2453-7841$$aAbadías Ullod, Luciano$$uUniversidad de Zaragoza
000162265 245__ $$aRegular fractional weighted Wiener algebras and invariant subspaces
000162265 260__ $$c2026
000162265 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162265 5203_ $$aSince the fifties, the interplay between spectral theory, harmonic analysis and a wide variety of techniques based on the functional calculus of operators, has provided useful criteria to find non-trivial closed invariant subspaces for operators acting on complex Banach spaces. In this article, some standard summability methods (mainly the Cesàro summation) are applied to generalize classical results due to Wermer [51] and Atzmon [8] regarding the existence of invariant subspaces under growth conditions on the resolvent of an operator. To do so, an extension of Beurling's regularity criterion [13] is proved for fractional weighted Wiener algebras related with the Cesàro summation of order . At the end of the article, other summability methods are considered for the purpose of finding new sufficient criteria which ensure the existence of invariant subspaces, resulting in several open questions on the regularity of fractional weighted Wiener algebras associated to matrix summation methods defined from non-vanishing complex sequences.
000162265 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E48-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137294NB-I00
000162265 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162265 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162265 700__ $$aMonsalve-López, Miguel
000162265 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000162265 773__ $$g553, 2 (2026), 129875 [35 pp.]$$pJ. math. anal. appl.$$tJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS$$x0022-247X
000162265 8564_ $$s698367$$uhttps://zaguan.unizar.es/record/162265/files/texto_completo.pdf$$yVersión publicada
000162265 8564_ $$s1805702$$uhttps://zaguan.unizar.es/record/162265/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162265 909CO $$ooai:zaguan.unizar.es:162265$$particulos$$pdriver
000162265 951__ $$a2025-10-17-14:13:50
000162265 980__ $$aARTICLE