000162272 001__ 162272
000162272 005__ 20251017144602.0
000162272 0247_ $$2doi$$a10.1002/cctc.70141
000162272 0248_ $$2sideral$$a144942
000162272 037__ $$aART-2025-144942
000162272 041__ $$aeng
000162272 100__ $$aMosseri, Andrea
000162272 245__ $$aGlutathione Threshold‐Triggered Selective Breakability of Organosilica Nanocapsules
000162272 260__ $$c2025
000162272 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162272 5203_ $$aBiomolecules like proteins and enzymes can target and disrupt cancer cell pathways more specifically and with lower toxicity than traditional treatments. However, their lack of stability and methods for their effective delivery still present unsolved challenges. Silica nanocapsules have been proposed as carriers capable of protecting sensitive loads but their use is limited by their low biodegradability. For this reason, breakable silica structures, able to disassemble when exposed to representative levels of biomolecules readily available in the tumor microenvironment (TME), appear as ideal delivery vectors. In this work, we focus on the optimization of the synthesis parameters governing the breakability of organo‐silica nanocapsules containing cleavable disulfide bonds. The objective is to trigger selective release in the presence of glutathione (GSH), a key molecule overexpressed in tumor cells. However, disulfide bonds can also be degraded in the presence of other molecules, which reduces the selectivity of delivery. We have modified the synthesis to obtain a response that leads to silica disassembly only when GSH levels are above a certain threshold, while remaining stable against other reductants, such as those present in standard extracellular culture media. The selection of the proper silica precursor was critical to obtain silica capsules that is able to disassemble and release Cytochrome C (CytC) upon exposure to GSH concentrations typical of those existing in the TME.
000162272 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-148732NB-I00$$9info:eu-repo/grantAgreement/EC/H2020/964386/EU/A key to the rational design of extracellular vesicles-mimicking nanoparticles/MIMIC-KeY$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 964386-MIMIC-KeY
000162272 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000162272 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162272 700__ $$0(orcid)0009-0005-3783-9031$$aRueda-Flores, Ana
000162272 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000162272 700__ $$0(orcid)0000-0001-9779-5820$$aUrriolabeitia, Esteban
000162272 700__ $$aDe Cola, Luisa
000162272 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000162272 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162272 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000162272 773__ $$g(2025), e01931 [9 pp.]$$pChemCatChem$$tChemCatChem$$x1867-3880
000162272 8564_ $$s1566304$$uhttps://zaguan.unizar.es/record/162272/files/texto_completo.pdf$$yVersión publicada
000162272 8564_ $$s2848012$$uhttps://zaguan.unizar.es/record/162272/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162272 909CO $$ooai:zaguan.unizar.es:162272$$particulos$$pdriver
000162272 951__ $$a2025-10-17-14:14:27
000162272 980__ $$aARTICLE