000162278 001__ 162278
000162278 005__ 20251017144603.0
000162278 0247_ $$2doi$$a10.1002/cnm.70062
000162278 0248_ $$2sideral$$a144845
000162278 037__ $$aART-2025-144845
000162278 041__ $$aeng
000162278 100__ $$aRedaelli, Elena
000162278 245__ $$aMinimally Invasive Glaucoma Surgery Procedure in the Human Eye. A Fluid Structure Interaction Study
000162278 260__ $$c2025
000162278 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162278 5203_ $$aAqueous humor is a clear fluid pressurized at an intraocular pressure (IOP) within a range of 8–20 mmHg in healthy conditions that fills and shapes the anterior and posterior chambers of the eye. It is typically drained through the trabecular meshwork, but reduced permeability of this structure can lead to impaired drainage, elevated IOP, and the development of glaucoma. Minimally invasive glaucoma surgeries (MIGS) offer a treatment option by implanting micro stents to create alternative pathways for aqueous humor drainage. Despite their potential, limited research has explored the biomechanical changes in ocular tissues and the hydrodynamic interactions following MIGS implantation. This paper aims to study the aqueous humor flow after the surgery by means of computational simulations. For the first time, the implantation process has been simulated to assess residual stresses on ocular structures post‐implantation. Then, this study introduces a Fluid–Structure Interaction (FSI) simulation to model the aqueous humor dynamics after MIGS implantation. The results demonstrate the necessity of FSI simulations, as they reveal the interplay between the eye's biomechanical properties and the aqueous humor dynamics. The advantage of using an FSI simulation is its ability to capture the aqueous humor dynamics, providing a more realistic representation compared to the Computational Fluid Dynamic (CFD) simulations found in the literature. Using only CFD, the outflow velocity of the aqueous humor through the stent is approximately 1e−4 m/s, whereas with an FSI approach, the velocity reaches up to 0.8 m/s as the deformation of the ocular tissues has a substantial impact on the flow dynamics and cannot be neglected. This novel methodology can be potentially used for visualizing and quantifying the aqueous humor flow as a function of implant design, position and dimensions in order to design next‐generation MIGS devices and optimize implantation strategies, offering significant advancements in glaucoma treatment.
000162278 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T24-23R$$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON$$9info:eu-repo/grantAgreement/ES/UZ/ICTS NANBIOSIS-U27 Unit-CIBER-BBN
000162278 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
000162278 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162278 700__ $$aPerri, Letizia Maria
000162278 700__ $$0(orcid)0000-0001-9713-1813$$aCalvo, Begoña$$uUniversidad de Zaragoza
000162278 700__ $$0(orcid)0000-0002-6870-0594$$aGrasa, Jorge$$uUniversidad de Zaragoza
000162278 700__ $$aLuraghi, Giulia
000162278 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000162278 773__ $$g41, 7 (2025), e70062 [12 pp.]$$tInternational Journal for Numerical Methods in Biomedical Engineering$$x2040-7939
000162278 8564_ $$s1905048$$uhttps://zaguan.unizar.es/record/162278/files/texto_completo.pdf$$yVersión publicada
000162278 8564_ $$s2600417$$uhttps://zaguan.unizar.es/record/162278/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162278 909CO $$ooai:zaguan.unizar.es:162278$$particulos$$pdriver
000162278 951__ $$a2025-10-17-14:14:42
000162278 980__ $$aARTICLE