000162304 001__ 162304
000162304 005__ 20251017144607.0
000162304 0247_ $$2doi$$a10.1016/j.renene.2025.123891
000162304 0248_ $$2sideral$$a144903
000162304 037__ $$aART-2025-144903
000162304 041__ $$aeng
000162304 100__ $$aTruta Beserra de Lima, Alessandro$$uUniversidad de Zaragoza
000162304 245__ $$aDynamic small-scale green ammonia non-renewable and renewable exergy costs up to 2050: Short and long-term projections under IEA energy transition scenarios
000162304 260__ $$c2025
000162304 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162304 5203_ $$aAmmonia is currently indispensable for fertilizers and is projected to be a fundamental renewable energy vector. This study analyzes the non-renewable and renewable exergy costs associated with a small-scale green ammonia plant under different combinations of water electrolysis technologies (AWE, PEM, SOEC, and AEM) with electricity sources (hydro, wind, photovoltaic, and electricity grid). Our method accounts for both the exergy conversion efficiencies of primary energy sources and the required materials on the infrastructures of the renewables and electrolyzers. Our research projects current, short-term (2030) and long-term (2050) ammonia’s exergy cost based on different IEA’s energy transition scenarios. Our findings highlight the impact of non-renewable exergy consumption on the renewables and electrolyzers infrastructures on ammonia exergy costs. In 2025, these values range between 12.5 and 32.5 MWh/tNH3 whereas in 2050 they might range between 11.5 and 19.1 MWh/tNH3 for SOEC-hydro and PEM-AWE-electricity grid scenarios, respectively. A Grassmann diagram illustrates how non-renewable and renewable exergy costs are split throughout the natural resources of our plant. A discussion about the model’s main features, restrictions and future industrial symbiosis possibilities (Ar, H2, O2) is presented. Our innovative methodology emphasizes the origins of natural resources by conscientiously evaluating their non-renewable and renewable exergy costs.
000162304 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162304 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162304 700__ $$0(orcid)0000-0001-9282-1428$$aTorrubia, Jorge$$uUniversidad de Zaragoza
000162304 700__ $$0(orcid)0000-0002-6360-1159$$aTorres, César$$uUniversidad de Zaragoza
000162304 700__ $$0(orcid)0000-0003-3330-1793$$aValero, Alicia$$uUniversidad de Zaragoza
000162304 700__ $$0(orcid)0000-0003-0702-733X$$aValero, Antonio$$uUniversidad de Zaragoza
000162304 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000162304 773__ $$g256, Parte B (2025), 123891 [14 pp.]$$pRenew. energy$$tRenewable Energy$$x0960-1481
000162304 8564_ $$s2433375$$uhttps://zaguan.unizar.es/record/162304/files/texto_completo.pdf$$yVersión publicada
000162304 8564_ $$s2525087$$uhttps://zaguan.unizar.es/record/162304/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162304 909CO $$ooai:zaguan.unizar.es:162304$$particulos$$pdriver
000162304 951__ $$a2025-10-17-14:15:42
000162304 980__ $$aARTICLE