000162307 001__ 162307
000162307 005__ 20251017144607.0
000162307 0247_ $$2doi$$a10.36922/IJB025120094
000162307 0248_ $$2sideral$$a144915
000162307 037__ $$aART-2025-144915
000162307 041__ $$aeng
000162307 100__ $$aMartín Compaired, Pablo$$uUniversidad de Zaragoza
000162307 245__ $$aAn experimental workflow for bioprinting optimization: Application to a custom-made biomaterial ink
000162307 260__ $$c2025
000162307 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162307 5203_ $$aBioprinting is an emerging technology with significant potential in biomedical fields, enabling the creation of highly customized, cell-laden constructs. Despite the promise, achieving high-quality, reproducible prints remains challenging due to the lack of standardized protocols, which has hindered widespread adoption of the technique. In this study, we present a systematic bioprinting protocol designed to optimize the performance of an in-house photo-curable biomaterial ink composed of gelatin methacryloyl (GelMA) and egg white protein. Printing quality was evaluated through three key assessments: extrusion, deposition, and printability. To facilitate accurate image analysis, we developed a custom 3D-printed lens support specifically designed for a USB-microscope. Additionally, we implemented a Python script to quantitatively assess bioprinting quality. Our results indicate that a pressure range of 70-80 KPa, combined with speeds between 300 and 900 mm/min, yields reliable extrusion flow, with 75 KPa and 600 mm/min emerging as optimal parameters for bioprinting 3D constructs. These findings underscore the importance of carefully tuning parameters – including pressure and speed – to achieve stable, high-resolution extrusions. Such optimization mitigates common printing issues, including tip clogging, filament dragging, and unintended merging of adjacent filaments, thereby enhancing structural accuracy. This work provides a comprehensive framework for evaluating and optimizing bioprinting parameters, offering a reproducible methodology to enhance print quality. Contributing to the ongoing efforts to standardize bioprinting processes and advance their applications in tissue engineering and regenerative medicine.
000162307 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2023-146072OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-033490-I
000162307 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162307 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162307 700__ $$0(orcid)0000-0001-7062-9099$$aGarcía-Gareta, Elena$$uUniversidad de Zaragoza
000162307 700__ $$0(orcid)0000-0002-2901-4188$$aPérez, María Ángeles$$uUniversidad de Zaragoza
000162307 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000162307 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000162307 773__ $$g11, 3 (2025), 397-415$$tInternational Journal of Bioprinting$$x2424-7723
000162307 8564_ $$s4201175$$uhttps://zaguan.unizar.es/record/162307/files/texto_completo.pdf$$yVersión publicada
000162307 8564_ $$s2214776$$uhttps://zaguan.unizar.es/record/162307/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162307 909CO $$ooai:zaguan.unizar.es:162307$$particulos$$pdriver
000162307 951__ $$a2025-10-17-14:15:49
000162307 980__ $$aARTICLE