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A B S T R A C T   

Background: Cardiac functional metrics such as ejection fraction, strain, and valve excursion are important di
agnostic and prognostic measures of cardiac disease. However, they ignore a large amount of systolic shape 
change information available from modern cardiovascular magnetic resonance (CMR) examinations. 

We aimed to automatically quantify multidimensional shape and motion scores from CMR, investigate cov
ariates, and test their discrimination of disease in the UK Biobank compared against standard functional metrics. 
Methods: An automated analysis pipeline was used to obtain quality-controlled three-dimensional left and right 
ventricular shape models in 38,858 UK Biobank participants, 5149 of whom had one or more diagnoses of 
cardiovascular or cardiometabolic disease. Principal component analysis was used to obtain a statistical shape 
atlas and quantify each participant’s left and right ventricular shape at both end-diastole and end-systole si
multaneously. Systolic strain was obtained from arc length changes computed from the shape model, and mitral/ 
tricuspid annular plane systolic excursion (MAPSE/TAPSE) was computed from the displacement of the valves. 
Discrimination for prevalent disease was quantified using linear discriminant analysis area under the receiver 
operating characteristic curve. 
Results: The first 25 principal component scores captured > 90% of the total shape variance. Significantly 
stronger discrimination for atrial fibrillation, heart failure, diabetes, ischemic disease, and conduction disorders 
(p < 0.001 for each) was obtained using shape scores compared with volumes, ejection fractions, strains, 
MAPSE, and TAPSE. 
Conclusion: Automatically derived shape and motion z-scores capture more discriminative information on dis
ease effects than standard metrics, including volumes, ejection fraction, strain and valve excursions.   
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1. Introduction 

Heart function is commonly quantified by ventricular mass, volume, 
ejection fraction (EF), myocardial strain, and mitral/tricuspid annular 
plane systolic excursions (MAPSE/TAPSE) [1]. These metrics provide 
useful diagnostic and prognostic information on cardiac disease [2,3]. 
Strain is commonly computed from image feature tracking or tissue 
tagging in cardiovascular magnetic resonance (CMR) imaging [1], or 
speckle tracking in echo [2], and is a more sensitive indicator of adverse 
events than EF in hypertension [4], hypertrophic cardiomyopathy [5], 
and cardio-oncology toxicity [6]. However, MAPSE may be more pre
dictive of death and hospitalization for heart failure than strain [7] and 
may contain additional prognostic information for death in hyperten
sive patients [8]. The relationships between geometry, EF, strain and 
motion are complex [9]. Different metrics vary differently with cov
ariates such as afterload and body habitus [10,11]. It is currently un
clear what is the best metric for evaluation of heart disease, and better 
functional metrics are needed to provide more complete evaluation of 
cardiac dysfunction [12,13]. 

Statistical shape atlases enable quantification of most of the multi
dimensional heart shape information available in modern medical 
imaging methods such as CMR [14,15]. The development of these 
techniques has been facilitated by large cohort studies such as the 
Multi‐Ethnic Study of Atherosclerosis (MESA) [16] and the UK Biobank  
[17], which utilized CMR to study the effects of disease on heart 
structure and function. Previous studies have shown that atlas shape 
scores have stronger associations with risk factors such as hypertension, 
hyperlipidaemia, diabetes, smoking and obesity than standard mass and 
volume metrics in 1991 participants of MESA [18] and 4329 partici
pants of the UK Biobank [19]. Shape models in ∼1500 volunteers have 
also shown novel relationships with adiposity and titin-truncating 
variants [20,21]. In particular, atlas-based shape scores have shown 
independent prognostic information for prediction of future adverse 
events in 4618 MESA participants [22] and in 1021 patients post-acute 
myocardial infarction [23]. Fully automated analysis pipelines now 
enable computation of heart shape and scores in > 10,000 UK Biobank 
participants [24–26]. However, previous studies have not compared 
shape atlas scores with common functional metrics such as strain and 
MAPSE for ability to discriminate disease. 

The aim of this study was to investigate the sensitivity of atlas 
metrics of cardiac function to disease, and examine their covariates. We 
hypothesized that atlas-based shape scores would have stronger dis
crimination of disease than standard functional metrics of mass, vo
lume, EF, strain and MAPSE/TAPSE. We developed an automated 
analysis pipeline and generated customized shape models and a statis
tical shape atlas in 38,858 UK Biobank participants. The atlas captured 
right and left ventricular shape at both end-diastole and end-systole. 
Standard functional metrics were computed automatically from the 
shape models. This enabled direct comparison between atlas scores and 
standard metrics in linear discriminant analysis evaluation of disease 
discrimination. We show that atlas scores enable more sensitive dis
crimination of disease effects on heart shape and function than standard 
metrics, and show how they can be incorporated into the clinical 
workflow and used to increase the power of studies to detect disease or 
treatment effects. 

2. Methods 

An overview of the automated analysis pipeline is shown in Fig. 1. 
The pipeline steps are detailed below. Briefly, CMR images (Fig. 1A) of 
UK Biobank participants were automatically analyzed using a pre
viously validated [27] deep learning convolutional neural network al
gorithm (cvi42 Version 5.11 1505) (Fig. 1B). Contours of the right and 
left ventricles and valve landmarks were extracted from short and long 
axis images and merged in 3D (Fig. 1C). A biventricular shape model 
was customized (Fig. 1D) to each case using diffeomorphic registration. 

Principal component analysis (PCA) was used on the ∼5800 resulting 
model vertices (Fig. 1D) for unsupervised dimension reduction resulting 
in a set of PC shape scores for each participant. Participants with car
diovascular or cardiometabolic disease endpoints (eight types), as well 
as participants with no reported cardiovascular or cardiometabolic 
disease (reference) were used for subsequent linear discriminant ana
lysis for each disease type. 

2.1. Study population 

This post hoc cross-sectional study evaluated data from the UK 
Biobank (application 2964); a large-scale prospective cohort study with 
500,000 participants aged 40–69 at time of enrollment with detailed 
health, lifestyle, physical measures, and biological samples. The study 
design and data collection methods have been described previously  
[28,29]. At the time of analysis, 45,683 individuals had available CMR 
images (Fig. 1A) [29]. All participants gave written informed consent 
and the appropriate institutional review boards approved the study 
protocol (National Research Ethics Service North-West 11/NW/0382). 
Systolic blood pressure was averaged between manual and automated 
readings taken at the imaging visit and adjusted by adding 15 mmHg if 
the participant was taking blood pressure altering medication. 

Cardiovascular or cardiometabolic disease prevalence was de
termined for eight categories as follows: atrial fibrillation; heart failure; 
a composite of myocardial infarction and/or ischemic heart disease; 
hypertrophic cardiomyopathy; dilated cardiomyopathy; type 2 diabetes 
mellitus; conduction disease comprising significant atrioventricular 
block, bundle branch block and fascicular block; and a ventricular ar
rhythmia composite including ventricular arrhythmia, implanted car
diac defibrillator, sudden cardiac death and/or cardiac arrest. These 
were chosen to represent common disease categories of interest known 
to have pathophysiological effects on heart shape and function. Disease 
categories were determined using ICD9 & ICD10 codes from hospital 
episode statistics data from the National Health Service (NHS) through 
the UK Biobank. A reference cohort was also identified with no reported 
cardiovascular or cardiometabolic disease (the reference sub-cohort). 

2.2. CMR imaging and automated image analysis 

The UK Biobank CMR protocol has been described previously [29]. 
Briefly, all imaging was performed on a wide bore 1.5T scanner 
(MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthineers, 
Erlangen, Germany) using a phased-array cardiac coil. Retrospectively 
gated balanced steady state free precession cine images were acquired 
with three long axis orientations (horizontal long axis, vertical long 
axis, LV outflow tract) and a short axis stack covering both the RV and 
the LV (6 mm thickness for long axis, 8 mm thickness for short axis, flip 
angle 80°, TR/TE = 2.6/1.1ms, temporal resolution 32 ms interpolated 
to 50 phases per cardiac cycle, pixel size 1.8 × 1.8 mm). Each slice 
was acquired in a separate breath-hold. 

Contours and landmarks were automatically identified using cvi42 
post-processing software (Version 5.11 1505, Circle Cardiovascular 
Imaging Inc., Calgary, Canada). This software used deep learning con
volutional neural network algorithms for fully automated analysis, which 
has been previously validated [27]. Contours were identified in short and 
long axis (two-chamber, three-chamber and four-chamber) images. Tri
cuspid and aortic valve points were defined from landmarks delineated on 
the two-chamber and three-chamber long axis views respectively, and 
mitral valve points were defined on all long axis images. A LV endocardial 
apex point was defined on the four-chamber image. Since RV free wall 
myocardium was not detected by the machine learning algorithms, the RV 
free wall epicardial surface was imputed by displacing the RV endocardial 
points outwards by 3 mm. The cvi42 software provided a report containing 
ventricular volumes and LV mass computed using slice summation of the 
short axis contours. The ED and ES frames were selected as the frames 
with the highest and lowest volumes computed by cvi42. 
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2.3. Automated biventricular shape analysis and PCA 

A biventricular shape model consisting of a subdivision surface 
template mesh was automatically customized to each case as described 
previously [30]. Briefly, breath-hold misregistration was automatically 
corrected and the shape model geometry was customized using dif
feomorphic least squares minimization of the distances between the 
shape model and the contour points from all the short axis and long axis 
slices. 

A biventricular statistical shape atlas was constructed using PCA as 
previously described [19]. ED shapes were co-registered using Pro
crustes alignment (without scaling), and the aligned ED and ES shape 
model vertices were concatenated into a single shape vector. Singular 
value decomposition of the covariance matrix resulted in a relatively 
small number of PC scores that described the majority of shape varia
tion across all participants, while accounting for correlations between 
points in the shape model. The first component explained the most of 
total shape variance, and each subsequent PC successively explained 
less variance. For each participant, PC scores were calculated which 
quantified the amount of each PC present in that individual. The PCs 
which captured > 90% of the total variance were kept for functional 
analysis. 

A series of quality control checks were performed at different stages 
of the pipeline (details provided in Supplementary Material). 

2.4. Geometric shortening strain 

Geometric % shortening strain was calculated as percent change in 
arc length:  

GLS or GCS = ((EDL-ESL)/EDL) × 100%                                   (1)  

where GLS and GCS denote global longitudinal and circumferential 
strains respectively, and EDL and ESL are the corresponding en
docardial surface arc lengths at ED and ES respectively. Note % short
ening was defined to be positive for contraction. Previous studies have 
found good agreement between geometric global strain and feature 
tracking as well as tagging estimates [31,32]. 

2.5. MAPSE and TAPSE calculation 

Mitral/tricuspid annular plane systolic excursion (MAPSE/TAPSE) 
was calculated as the mean 3D displacement of valve points from ED to 
ES in mm. 

2.6. Covariate analysis 

Univariate and multivariate linear regressions were performed using 
R (version 4.2.1) [33] to quantify the strengths of relationships between 

Fig. 1. Automated analysis pipeline. CMR cardiovascular magnetic resonance, PCA principal component analysis, MAPSE mitral annular plane systolic excursion, 
TAPSE tricuspid annular plane systolic excursion, PCA principal component analysis, IQR interquartile range. QC quality control. Image reproduced by kind per
mission of UK Biobank ©. 
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functional metrics and covariates, including age, sex, height, body mass 
index, and afterload, in the disease-free reference sub-cohort. Afterload, 
or myocyte stress at ES, is known to be correlated with many functional 
metrics. Here, we estimate afterload using the following Arts formula  
[34]: 

= +Afterload SBP LVESV
LVWallVolume

1 3 ( )
(2) 

where SBP represents systolic blood pressure and LV ES volume and LV 
wall volume (at ED) were estimated from the model using numerical 
integration. This formula has been shown to produce accurate estimates 
of myocyte stress at ES in a variety of geometries [34], validated using a 
biomechanical model. 

2.7. Relationships with disease 

Differences in functional metrics between the reference group and 
each disease category were tested using the Wilcoxon rank sum test. To 
examine the discriminative ability of the PC scores compared with 
standard functional metrics, linear discriminant analysis models were 
constructed for each prevalent disease category. In each model, positive 
cases were those with the disease and negative cases were those in the 
disease-free reference cohort. For each disease category, two linear 
discriminant analysis model were compared, one in which the dis
criminatory variables were PC scores and the other in which the dis
criminatory variables comprised LV and RV end-diastolic and end-sys
tolic volumes, ejection fractions, global circumferential and 
longitudinal strains, and MAPSE and TAPSE. The area under the curve 
(AUC) was compared between the two models using the DeLong test. 
For this comparison, the AUCs were constructed using the test cases 
from a five-fold cross validation analysis using the R caret package 

(version 6.0–93) [35]. An additional comparison was performed with 
covariates age, sex, body mass index, height, and afterload added to the 
discriminatory variables of both linear discriminant analysis models. 

Although the PC scores are uncorrelated by definition, multi
collinearity may exist between the standard measures (volume and 
strains). Multicollinearity can have a large effect on the regression 
parameters (betas), but may not change the overall AUC greatly. This 
was tested by successively excluding variables with variance inflation 
factor (VIF) greater than 5, until all variables had VIF < 5 [50]. If both 
LV and RV measures of volume had VIF > 5, the RV measure was re
moved first. 

To test the benefit of adding standard variables to PC scores, we also 
compared PCs plus standard variables plus covariates against standard 
variables plus covariates, removing variables with VIF > 5. 

2.8. Manual volume and tagging analysis 

Volumes and strain results from the automated analyses were 
compared with manual analyses previously performed in the first 5000 
CMR imaging participants [36,37]. The manual volume analysis was 
performed by drawing short axis ventricular contours and valve land
marks, using cvi42. Calculation of volumes and mass was performed 
using slice summation in cvi42 [36]. Manual strain analysis of the three 
short axis slices acquired with spatial modulation of magnetization 
(SPAMM) tissue tagging was performed using CIMTag2D v8.1.5 soft
ware, (Auckland MRI Research Group, New Zealand), which has been 
validated previously in phantoms and patients [38]. As previously de
scribed [37], a tag grid was aligned automatically to the myocardial 
tagging planes at end-diastole. End-systole was determined visually, 
and tag tracking was performed using nonrigid image registration, with 
manual adjustments at key phases during the cardiac cycle including 
the end-systolic and late diastolic frames. Circumferential myocardial 
strain was calculated by the software from the motion of the tag lines, 
averaged over the whole slice. 

3. Results 

3.1. Study population, quality control and automated analysis 

Of 45,683 CMR examinations available for analysis at the time of 
study, 3D shape models could be customized at ED and ES in 43,159 
cases (Fig. 1A, B, C). PCA was performed on 41,659 cases (Fig. 1C). 
Model quality control (QC) resulted in 1500 cases rejected before the 
PCA. After PCA, 1261 cases were excluded for high Mahalanobis dis
tance, 463 cases for high PC projection error, and 1832 cases for vo
lume differences from cvi42 (the total 2801 in Fig. 1E is due to many 
cases being rejected for multiple criteria). After QC, there was a total of 
38,858 cases, 5149 with prevalent cardiovascular or cardiometabolic 
disease and 33,709 without. 

Table 1 shows participant demographics, comparing the reference 
sub-cohort with the disease sub-cohorts. In general, those with disease 
were older, more likely male, with higher blood pressure and body mass 
index. Table 1 also shows ventricular volumes and LV mass computed 
from the shape models by numerical integration. Those with disease 
had significantly higher left and right ED and ES volumes, higher LV 
mass, and lower right and left EF. The reference group volumes and 
mass were within the reference range for normal cardiac structural and 
functional measures detailed previously [36]. 

3.2. Strain, MAPSE and TAPSE 

Table 2 shows global geometric longitudinal and circumferential 
strain computed from model arc lengths, and MAPSE and TAPSE 
computed from the displacement of model valve points, in reference 
and disease groups. Compared to the reference group, most strain 
measures were significantly (p < 0.05) reduced in all disease groups, 

Table 1 
Participant characteristics for sub-cohorts with and without disease.     

Characteristic Disease  
(n = 5149) 

Reference  
(n = 33,709)[1]  

Age (years) 67 (7) 63 (8)* 
Sex (male) 3,453 (67%) 14,974 (44%)* 
Weight (kg) 83 (15) 75 (14)* 
Height (cm) 171 (9) 169 (9)* 
BMI (kg/m2) 28.2 (4.6) 26.3 (4.0)* 
SBP (adjusted) 147 (21) 138 (20)* 
DBP (adjusted) 86 (12) 82 (11)* 
LV EDV (mL) 155 (36) 146 (32)* 
LV ESV (mL) 74 (22) 67 (18)* 
RV EDV (mL) 153 (35) 147 (35)* 
RV ESV (mL) 70 (20) 65 (20)* 
LV Mass (g) 131 (27) 123 (26)* 
LVEF (%) 52.4 (6.4) 54.2 (4.8)* 
RVEF (%) 54.7 (6.7) 56.1 (5.8)* 
Heart failure 341 (6.6%) . 
Atrial fibrillation 1,088 (21%) . 
Myocardial infarction, ischemic 

heart disease 
2,389 (46%) . 

Hypertrophic cardiomyopathy 26 (0.5%) . 
Dilated cardiomyopathy 32 (0.6%) . 
Diabetes mellitus 1,656 (32%) . 
Ventricular arrhythmia 

composite 
151 (2.9%) . 

Conduction disease 635 (12%) . 

Values are mean (standard deviation) for continuous variables and count (%) 
for categorical variables. Conduction disease: bundle branch block, fascicular 
block or atrioventricular block. Ventricular arrhythmia composite: ventricular 
arrhythmia, cardiac arrest, sudden cardiac death, defibrillator implantation). 
All variables were significantly different between Reference and Disease 
groups. LV left ventricle, EDV end-diastolic volume, BMI body mass 
index, SBP systolic blood pressure, DBP diastolic blood pressure, ESV end-sys
tolic volume, EF ejection fraction  

* p < 0.001 Disease vs Reference, Wilcoxon rank sum test  
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except for hypertrophic cardiomyopathy in both LV GCS (mid) and RV 
GCS (mid), ventricular arrhythmia composite in RV GCS (mid) and RV 
GLS, and diabetes in RV GLS. MAPSE and TAPSE were also reduced in 
all disease groups compared to the reference (p < 0.05). 

Fig. 2 shows univariate correlations between standard functional 
metrics and covariates within the reference group. Strain was decreased 
in males, and also with increased height, body surface area, ventricular 
volume, LV mass, and LV afterload. Strain was not as strongly corre
lated with age, body mass index, or blood pressure. In contrast, MAPSE 
and TAPSE increased with height, body surface area, larger ventricular 
volume and LV mass, and was not as strongly correlated with sex, body 
mass index, and afterload. Multivariate regression results are presented 
in Supplementary Table S1. 

3.3. Principal components 

We selected the first 25 PCs of shape variation, which represent the 
largest modes of variation of biventricular shape within the cohort, and 
together accounted for over 90% of the total shape variance. Fig. 3 
shows the amount of shape variance explained by each PC. Animations 
of these can be found in Supplemental Movies. Since these modes result 
from unsupervised dimension reduction, anatomical interpretation is 
typically not possible; however, clear interpretations can be made for 
some modes. In particular, PC1 (34% of shape variance) was associated 
with overall size at both ED and ES with positive scores associated with 
larger hearts. PC2 (11%) was associated with systolic motion, with 
positive scores associated with larger displacement, in particular basal 
descent of the valves during systole (TAPSE and MAPSE). PC3 (8%) was 
associated with sphericity of both ventricles at ED and ES, with positive 
scores related to less spherical shapes. PC9 (2.1%) was associated with 
systolic basal excursion, PC10 (2%) was associated with sphericity of 
the right ventricle, and PC13 (1.1%) was associated with ejection 
fraction. 

Fig. 3 shows univariate correlations between PCs and demographics, 
volumes, and strain. PC1 (overall size) was positively correlated with 
ventricular volumes and mass, male sex, height and body surface area, 
afterload, and MAPSE and TAPSE. PC1 was negatively correlated with 
strain and EF. PC2 (longitudinal motion of the valves) was positively 
correlated with MAPSE and TAPSE, and to a lesser extent strain and EF. 
PC3 (sphericity) was correlated with RV GCS and MAPSE/TAPSE. PC 9 
was correlated with MAPSE/TAPSE and to a lesser extent strain. PC10 
was correlated with RV strain and EF, as well as TAPSE. PC13 was 
correlated with LV and RV strain and EF, and to a lesser extent MAPSE 
and TAPSE. 

4. Relationships with disease 

Strengths of relationships with cardiovascular or cardiometabolic 
diseases are shown in Table 3. Receiver operating characteristic curves 

are shown in Supplementary Fig. S1. Comparing linear discriminant 
analysis models using the first 25 shape PC scores as discriminatory 
variables against a “standard” model with volumes, mass, ejection 
fraction, strain, MAPSE and TAPSE as discriminatory variables, the 
shape scores had significantly stronger relationships with prevalent 
atrial fibrillation, heart failure, myocardial infarction or ischemic heart 
disease, diabetes and conduction disease. Relationships with hyper
trophic and dilated cardiomyopathies and ventricular arrhythmia were 
similar between metrics, however the disease cohorts for these groups 
were relatively small (n=26, 32 and 152, respectively). When covari
ates age, sex, body mass index, height, and afterload were added to the 
discriminatory variables of both models, AUC improved and differences 
between models were reduced, as expected since the covariates are 
strongly related to disease and mask the differences between shape 
scores and strain/volume measures (Table 4). However, relationships 
with shape were still significantly stronger than those with volumes and 
strain (DeLong p < 0.05) in atrial fibrillation, heart failure, diabetes 
and conduction disease (Table 4). 

To assess the effects of multicollinearity, variance inflation factors 
(VIF) were computed for the discriminator variables in all models. 
Those with VIF > 5 were successively removed. For the PC models, no 
discriminator variables needed to be removed. For the standard model 
without covariates, RV end-diastolic and end-systolic volume, LV end- 
systolic volume, and LV ejection fraction were removed. Results are 
shown in Table S2, and were very similar to Table 3. For the standard 
model with covariates, RV end-diastolic and end-systolic volume, LV 
end-diastolic volume and end-systolic volume, and LV ejection fraction 
were removed (none of the age, sex, height, weight, body mass index 
(BMI) and afterload covariates had VIF > 5). Results are shown in  
Table S3, and were very similar to Table 4. 

We also evaluated the effect of adding standard variables to the PC 
scores and covariates, compared with the standard variables and cov
ariates. Since standard volume and strain measures are correlated with 
PCs, those with VIF > 5 were removed. For the PC model, all PCs, LV 
and RV global circumferential and longitudinal strains, and all covari
ates age, sex, height, weight, BMI and afterload, remained after removal 
of variables with VIF > 5. Results are shown in Table S4, and were very 
similar to Table 4, and Table S3. This indicates that adding standard 
functional measures to the PCs has little effect on discriminatory power 
of the PC scores. 

4.1. Manual volumes and tagging strain 

Within the 5000 participants who had manual volume analysis, 
4257 had both manual and automatic shape model estimates of mass 
and volume (669 disease and 3588 reference). Comparisons between 
manual and shape model estimates for disease and reference cases 
within this sub-cohort are shown in Table 5. In general, the LV volumes 
and mass computed from the shape models using numerical integration 

Table 2 
Geometric strain (% shortening) and MAPSE/TAPSE in different disease categories.         

Group LV GCS (mid) LV GLS RV GCS (mid) RV GLS MAPSE TAPSE  

Reference  27.0 (3.6)  20.6 (2.6)  23.8 (5.6)  32.1 (5.3)  12.2 (2.2)  17.6 (3.3) 
Atrial fibrillation  25.3 (5.2)†  18.6 (3.9)†  22.5 (6.1)†  29.4 (6.8)†  10.9 (2.8)†  15.4 (4.5)† 

Dilated cardiomyopathy  19.6 (4.9)†  15.8 (3.6)†  17.7 (6.3)†  25.5 (6.7)†  9.7 (2.4)†  14.1 (3.8)† 

Diabetes mellitus  26.3 (4.4)†  19.9 (3.0)†  22.7 (6.0)†  31.9 (5.9)  11.1 (2.3)†  16.0 (3.8)† 

Hypertrophic cardiomyopathy  26.1 (6.0)  17.8 (3.5)†  23.6 (6.8)  28.1 (6.2)*  10.6 (3.3)*  14.9 (4.4)† 

Heart failure  23.4 (5.3)†  17.8 (3.7)†  22.2 (6.2)†  30.0 (6.6)†  10.4 (2.6)†  15.2 (4.1)† 

Myocardial infarction, ischemic heart disease  25.9 (4.6)†  19.5 (3.1)†  23.1 (5.9)†  31.3 (5.9)†  11.4 (2.3)†  16.1 (4.0)† 

Conduction disease  24.8 (4.6)†  19.0 (3.1)†  22.7 (6.1)†  30.3 (6.2)†  11.4 (2.4)†  16.0 (3.8)† 

Ventricular arrhythmia composite  25.0 (5.2)†  18.7 (3.7)†  22.9 (5.0)  30.9 (6.2)  11.2 (2.4)†  16.4 (4.0)† 

Mean (standard deviation). GCS global circumferential strain, GLS global longitudinal strain, MAPSE mitral annular plane systolic excursion, TAPSE tricuspid valve 
plane annular excursion, LV left ventricle, RV right ventricle. Wilcoxon rank sum test disease vs Reference  

† P < 0.001  
* P < 0.05  
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were larger than the manual estimates. This is likely due to differences 
in computation methods, with the model volume and mass including 
structures up to the valves and at the apex tip whereas manual esti
mates were performed with short axis slices only using slice summation. 
LV mass was also larger in the model estimates, partly due to allocation 
of mass to the LV at the junction of the RV free wall and the septum in 
the model, which is excluded in standard LV contours [39]. The dif
ferences in volume and mass were consistent between disease and re
ference cases for both methods (Table 5). Bland-Altman plots of dif
ferences between methods are shown in Supplemental Material. 

Within the first 5000 participants who had manual tagging strain 
analysis, 3845 had both manual and automatic shape model strain es
timations. Geometric circumferential mid-ventricle strains and tagging 
strains are shown in Table 5 for each sub-cohort. Bland-Altman plots 

are shown in the Supplemental Materials. LV global circumferential 
midventricular strain was higher than tagging circumferential strain, 
which was expected since endocardial circumferential strain is typically 
higher than mid-wall and epicardial strain (the tagging estimate being 
an average over the whole wall) [40]. Differences between disease and 
reference cohorts were consistent between shape model and tagging 
strain estimates. Correlations between tagging GCS and covariates (sex, 
height, afterload, LV volume etc) followed similar patterns to geometric 
model GCS (Fig. 2). Correlations between tagging GCS and PCs (Fig. 3) 
also followed similar patterns to geometric model GCS. 

5. Sensitivity of combined metrics 

Disease-specific combined PC scores can be used to quantify func
tional impairment and track changes with disease development or 
treatment effects. For example, the standardized combined z-score ob
tained from the linear discriminant analysis models is the linear com
bination of PC scores which best discriminate the presence of disease.  
Table 6 shows the disease-specific combined z-scores for each disease 
category. These disease-specific z-scores are intuitive, in that reference 
(healthy) cases have a mean around zero and a standard deviation 
around one, and disease cases have a higher score in units of standard 
deviations. The differences in z-scores between reference and disease 
cases are more highly significant for shape scores than standard metrics 
in all disease categories. Studies designed to detect a change in heart 
function with disease progression or treatment would therefore have 
more power to detect an effect. For example, in diabetes the z-scores 
were 0.00 ± 0.97 (reference) vs 0.99 ± 1.00 (diabetes) for PCs and 
−0.03 ± 0.98 vs 0.68 ± 1.15 for standard metrics. A power calcula
tion of the number of participants needed for a study of heart function 
in diabetes would require 32 participants (16 in each group) to detect a 
difference between patients and controls using PC scores, and 68 par
ticipants (34 in each group) for standard metrics, assuming an alpha of 
0.05, power of 0.8. 

6. Discussion 

Evaluation of cardiac disease typically includes functional assess
ment including ejection fraction, strain, and valve plane motion, com
monly assessed with echocardiography or CMR [1,41]. However, these 
metrics do not capture all the shape change information present in 
modern medical imaging examinations. Here, we showed that shape 
scores derived from a statistical shape atlas, including both ED and ES 
shape information, are more strongly discriminative of disease than 
standard volumetric, strain and valve motion metrics (Table 3). The PC 
scores can be automatically calculated at the time of imaging (Fig. 1), 
by segmenting the images, customizing a shape model, and computing 
the PC scores. Combined PC scores (such as linear discriminant analysis 
z-scores in Table 6) can be used to quantify patient status relative to a 
reference cohort, such as that provided in the UK Biobank. This pro
vides a potentially more powerful set of functional metrics than is 
currently available, enables more sensitive quantification of disease 
effects, and can reduce the number of subjects required for studies of 
disease status and treatment effects. 

In particular, PC scores performed well for discrimination of dia
betes mellitus, myocardial infarction, conduction disease, atrial fi
brillation and heart failure, suggesting PC scores contain more in
formation on shape and shape changes during systole in these disease 
categories. No significant differences were found for hypertrophic and 
dilated cardiomyopathies, with relatively high AUC for both sets of 
discriminatory variables, indicating that traditional measures are very 
discriminative for these diseases. However, the number of hypertrophic 
and dilated cardiomyopathies cases was low in this cohort and the 
method should be tested in larger disease cohorts. Ventricular ar
rhythmia discrimination was also similar between shape scores and 
traditional metrics, with moderate AUC, which may indicate that 

Fig. 2. Univariate correlations between strain and covariates in the reference 
cohort. LV left ventricular, RV right ventricular, GCS global circumferential 
strain, GLS global longitudinal strain, MAPSE mitral annular plane systolic 
excursion, TAPSE tricuspid annular plane systolic excursion, BMI body mass 
index, SBP systolic blood pressure adjusted for presence of 
medication, DBP diastolic blood pressure adjusted for presence of medica
tion, body surface area, body surface area, EDV end-diastolic volume, ESV end- 
systolic volume, M mass, EF ejection fraction. Model strains and MAPSE/TAPSE 
from n=33709 cases; tagging strain from n=3280 cases 
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systolic shape changes are not as informative in these pathologies. 
Our pipeline for atlas shape quantification was fully automated, 

with some similar characteristics to previously published automated 
analysis pipelines for quantification of cardiac shape and function  
[23–26,42–44]. However, to our knowledge the current study is the 

first to compare PC shape scores with EF, strain and MAPSE/TAPSE 
functional indices for the discrimination of disease. 

Geometric strain computed from arc lengths had good agreement 
with tagging strain, as found in previous studies [31,32]. As expected, 
endocardial strain was higher than tagging mid-wall strain. Strain was 

Fig. 3. Univariate correlations between PCs and demographics, volumes, and strain. The amount of shape variance explained by each PC is shown on the left. LV left 
ventricular, RV right ventricular, GCS global circumferential strain, GLS global longitudinal strain, GCSt global circumferential strain (tagging), MAPSE mitral an
nular plane systolic excursion, TAPSE tricuspid annular plane systolic excursion, BMI body mass index, SBP, systolic blood pressure adjusted for presence of 
medication, DBP diastolic blood pressure adjusted for presence of medication, BSA body surface area, EDV end-diastolic volume, ESV end-systolic 
volume, M mass, EF ejection fraction. All correlations N=33,709 cases except tagging N=3,280. 
Supplemental Fig. S1 ROC curves for linear discriminant analyses (Table 3). Blue: PC model; Green: standard model. 
Supplemental Fig. S2 Bland-Altman Plots: Manual vs Shape Model 

Table 3 
Comparison of linear discriminant analysis AUC of disease prevalence: PC scores vs standard metrics.      

Disease AUC DeLong test P-value 

PCs (1-25) Standard  

Atrial fibrillation (n=1,088)  0.76  0.71 8.9E−13 
Heart failure (n=341)  0.82  0.78 2.4E−05 
Hypertrophic cardiomyopathy (n=26)  0.79  0.83 0.14 
Dilated cardiomyopathy (n=32)  0.92  0.91 0.70 
Ventricular arrhythmia composite (n=151)  0.73  0.68 0.04 
Myocardial infarction or ischemic heart disease (n=2389)  0.73  0.69 1.0E−20 
Diabetes mellitus (n=1,656)  0.77  0.68 2.1E−56 
Conduction disease (n=635)  0.78  0.74 6.4E−08 

Disease: cardiovascular or cardiometabolic disease; AUC area under the curve, PCs principal components. LV and RV end-diastolic and end-systolic volumes, ejection 
fractions, global circumferential and longitudinal strains, LV mass, and MAPSE and TAPSE are all included in the Standard model  
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significantly decreased with most examined diseases (Table 2), con
sistent with previous studies [1]. In particular, a previous study of 3984 
UK biobank participants showed reduced tagging strain in 143 diabetes 
mellitus participants [45]. The current study corroborates this finding, 
with the diabetes mellitus group (n=1656) having reduced geometric 
strain for both LV and RV GCS and GCS, as well as MAPSE and TAPSE. 

There was a significant dependence of strain on afterload, in 
agreement with previous studies [10,46]. Also, strain was reduced with 
male sex and increased body size (body surface area and height), in 
agreement with previous studies [24,41,43,47]. Some previous studies 
have shown that MAPSE may have different prognostic information to 
strain [7,8] and has different relationships with body size than strain  

[11]. Here, MAPSE had different relationships with age, body size and 
afterload to strain, with reduced dependence on afterload and body 
size, but stronger dependence on age. Moreover, some PC scores were 
highly correlated with MAPSE and TAPSE (PC2 and PC9 in Fig. 3) 
whereas others were more correlated with strain (PC10 for RV strain 
and PC13 for LV strain), consistent with strain and MAPSE information 
being captured in the PC scores. Correlations between PC scores and 
sex, height and afterload were also found, particularly with PC1 which 
was associated with overall heart size. Other PCs had greatly reduced 
correlations with body habitus and afterload, including PC2 (MAPSE) 
and PC10 and PC13 (RV and LV strain). 

7. Limitations 

Limitations of this study include use of UK Biobank data, which 
comprised mainly low-risk participants with selection bias arising from 
volunteering for the study. Subsequently there is a lack of cases with 
disease in cardiomyopathy and arrhythmia categories. Although an 
automated quality control procedure was used to remove outliers, it is 
likely that additional QC of the automated pipeline including analysis 
of all frames in the cine sequence such as in Ruijsink et al., 2020 [42] 
would benefit results. Mistakes in automatic segmentation will lead to 
errors in the PC scores, although the first 25 scores used in this study 
are relatively robust to small errors in segmentations. Disease was 
classified by self-reported incidence or hospital electronic health re
cords and may not fully capture the diseases present in individuals in 
early asymptomatic stages of disease. Co-morbidities between diseases 
were not considered since the nature of the relationships between shape 
score and disease require a detailed analysis of how shape varies with 
height, sex, age, and co-morbidities, which will require a larger disease 
cohort (UK Biobank will shortly have 100,000 imaging participants, 
enabling some disentanglement of these effects). Table 4 shows only 
modest AUC improvements when covariates age, sex, body mass index, 
height, and afterload are included in the discrimination of atrial fi
brillation, heart failure, diabetes and conduction disease. This is due to 

Table 4 
Comparison of linear discriminant analysis AUC of CMD prevalence, including 
covariates in both models.      

CMD AUC DeLong test 
P-value 

PCs Standard  

Atrial fibrillation (n=1,088)  0.77  0.76 1.8E−03 
Heart failure (n=341)  0.85  0.82 4.9E−04 
Hypertrophic cardiomyopathy  

(n=26)  
0.82  0.83 0.55 

Dilated cardiomyopathy (n=32)  0.94  0.89 0.10 
Ventricular arrhythmia 

(composite) (n=151)  
0.74  0.72 0.19 

Myocardial infarction or 
ischemic heart disease  
(n=2,389)  

0.77  0.77 0.18 

Diabetes mellitus (n=1,656)  0.82  0.81 2.2E−04 
Conduction disease (n=635)  0.81  0.79 4.9E−04 

CMD cardiometabolic disease, AUC area under the curve, PCs principal 
components. Standard: LV and RV end-diastolic and end-systolic volumes, 
ejection fractions, global circumferential and longitudinal strains, LV mass, and 
MAPSE and TAPSE. Covariates were age at imaging, sex, height, weight, BMI 
and afterload  

Table 5 
Model and manual analyses of volume and strain.        

Shape Model Manual 

Characteristic Disease (n=669) Reference (n=3,588) Disease (n=669) Reference (n=3,588)  

LVEDV (mL) 157 (37)* 148 (32) 151 (37)* 142 (32) 
LVESV (mL) 75 (23)* 68 (18) 63 (23)* 58 (17) 
LVM (g) 132 (28)* 123 (26) 99 (26)* 87 (23) 
RVEDV (mL) 154 (36)* 148 (35) 158 (37)* 151 (37) 
RVESV (mL) 69 (21)* 65 (20) 70 (23)* 67 (22) 
LV GCS (mid, %)1 26.2 (4.1)* 27.2 (3.3) 21.5 (3.3)* 22.5 (2.9) 

Mean (standard deviation); Disease vs Reference, Wilcoxon rank sum test; 1Strain for n=565 for disease and 3280 for reference cases with both manual tagging (midventricular) 
and model strain. LV left ventricle, RV right ventricle, EDV end-diastolic volume, ESV end-systolic volume, LVM left ventricular mass, GCS global circumferential strain  

* p < 0.001  

Table 6 
Linear discriminant scores for each disease category (z-scores).          

PCs (1−25) Standard 

Disease Reference Disease P-value Reference Disease P-value  

Atrial fibrillation (n=1088) −0.04 ± 0.95 1.32 ± 1.59 9.8E−132 −0.03 ± 0.97 0.99 ± 1.43 1.2E−98 
Heart failure (n=341) −0.02 ± 0.98 1.79 ± 1.58 7.2E−64 −0.02 ± 0.95 1.94 ± 2.69 1.8E−33 
Hypertrophic cardiomyopathy (n=26) −0.00 ± 1.00 2.25 ± 1.63 2.1E−07 −0.00 ± 1.00 2.08 ± 1.46 1.2E−07 
Dilated cardiomyopathy (n=32) −0.00 ± 0.99 3.05 ± 1.56 2.6E−12 −0.00 ± 0.99 3.97 ± 3.59 6.1E−07 
Ventricular arrhythmia composite (n=151) −0.01 ± 0.99 1.27 ± 1.57 2.4E−18 −0.01 ± 0.98 1.56 ± 3.06 4.2E−09 
Myocardial infarction or ischemic heart disease (n=2,389) −0.07 ± 0.94 0.93 ± 1.26 2.9E−251 −0.05 ± 0.93 0.79 ± 1.47 3.9E−148 
Diabetes mellitus (n=1,656) −0.05 ± 0.97 0.99 ± 1.00 3.3E−264 −0.03 ± 0.98 0.68 ± 1.15 4.3E−117 
Conduction disease (n=635) −0.02 ± 0.98 1.30 ± 1.36 1.2E−93 −0.02 ± 0.96 1.22 ± 1.84 1.7E−53 

Data are means +/- standard deviation. Disease: cardiovascular or cardiometabolic disease; PCs principal components, Standard: LV and RV end-diastolic and end- 
systolic volumes, ejection fractions, global circumferential and longitudinal strains, LV mass, and MAPSE and TAPSE  
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these covariates being highly discriminative, masking differences be
tween PC and standard heart function measures. However, the main 
utility lies in improved sensitivity of z-scores derived from PCs 
(Table 6), e.g. enabling 50% fewer diabetic patients to detect differ
ences from a reference group, thereby facilitating studies of mechanistic 
effects of disease and treatment. LV volume and mass were significantly 
higher in the models compared to standard slice summation (Table 5). 
This is likely due to systematic differences in calculation methods, with 
numerical integration of model mass including muscle up to the RV free 
wall, and up to the valve locations. Finally, a recent study of 45,700 UK 
Biobank participants showed feature tracking strain was independently 
predictive of incident heart failure, myocardial infarction and stroke  
[48]. Having established improved sensitivity with prevalent disease, 
future work should study the utility of atlas scores in predicting future 
adverse events, and assess their utility combined with other data from 
applicable examinations, e.g. LGE and mapping information, stress 
perfusion data, calcium scores, aortic distensibility, etc. Such predictive 
models will need to examine the multicollinearity between predictors 
seen in Fig. 2 and Fig. 3. Two previous methods used for incident dis
ease prediction include partial least squares [22] and linear dis
criminant analysis with careful feature selection [49]. The examination 
of changes in disease-specific scores (such as in Table 6) should also be 
extended to longitudinal studies. 

8. Conclusions 

Atlas-based shape and motion scores capture more of the available 
shape change information present in modern imaging examinations 
than standard measures of cardiac function. An automated analysis 
pipeline enables routine evaluation of disease-specific z-scores at the 
time of imaging. Atlas scores provide more sensitive metrics for the 
evaluation of disease effects. 
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