000162338 001__ 162338
000162338 005__ 20251017144620.0
000162338 0247_ $$2doi$$a10.1007/s00170-025-16013-9
000162338 0248_ $$2sideral$$a144886
000162338 037__ $$aART-2025-144886
000162338 041__ $$aeng
000162338 100__ $$aZekalmi, Yasser$$uUniversidad de Zaragoza
000162338 245__ $$aEfficient topography simulation for freeform surfaces in 5-axis CNC milling
000162338 260__ $$c2025
000162338 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162338 5203_ $$aAccurate prediction of surface micro-topography in 5-axis CNC milling is essential for achieving high-quality finishes in aerospace, biomedical, and precision engineering components. Traditional simulation methods like the Classical Z-Map often suffer from high computational cost and limited applicability to freeform surfaces. This paper presents RMAP, a fast and vectorized algorithm that enhances the Classical Z-Map by projecting cutter edge points in a locally transformed coordinate system aligned with the surface normal. The method supports arbitrary machining strategies exported from CAM software and is compatible with both ideal and realistic cutter edge geometries. Simulations were performed on a hyperbolic paraboloid surface using tool paths generated in NX CAM and validated experimentally on aluminum. RMAP achieved speedups up to 100x compared to Classical Z-Map, with relative errors below 6\% for key areal experimental parameters Sa and Sq. Notably, simulations incorporating realistic cutter edge imperfections, modeled with a stochastic distribution, accurately reproduced short-wavelength directional features observed in experimental measurements. The algorithm proved robust across multiple strategies, including 3-axis and 5-axis configurations with variable feed rates. By maintaining accuracy on complex freeform geometries and significantly reducing computation times, RMAP enables reliable and scalable topography simulation.
000162338 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T56-23R$$9info:eu-repo/grantAgreement/ES/NextGenerationEU/INVESTIGO-094-77$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ2023-IA-01
000162338 540__ $$9info:eu-repo/semantics/embargoedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000162338 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000162338 700__ $$0(orcid)0000-0003-4839-0610$$aAlbajez, José Antonio$$uUniversidad de Zaragoza
000162338 700__ $$0(orcid)0000-0001-8055-9362$$aOliveros, María José$$uUniversidad de Zaragoza
000162338 700__ $$0(orcid)0000-0001-8689-6482$$aAguado, Sergio$$uUniversidad de Zaragoza
000162338 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000162338 773__ $$g(2025), [18 pp.]$$pInt. j. adv. manuf. technol.$$tINTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY$$x0268-3768
000162338 8564_ $$s3546394$$uhttps://zaguan.unizar.es/record/162338/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-07-04
000162338 8564_ $$s973238$$uhttps://zaguan.unizar.es/record/162338/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-07-04
000162338 909CO $$ooai:zaguan.unizar.es:162338$$particulos$$pdriver
000162338 951__ $$a2025-10-17-14:21:29
000162338 980__ $$aARTICLE