000162520 001__ 162520
000162520 005__ 20251017144640.0
000162520 0247_ $$2doi$$a10.1016/j.jpowsour.2025.238098
000162520 0248_ $$2sideral$$a145092
000162520 037__ $$aART-2025-145092
000162520 041__ $$aeng
000162520 100__ $$0(orcid)0000-0002-2866-9369$$aAina, Sergio$$uUniversidad de Zaragoza
000162520 245__ $$aEnhanced stability of high energy aqueous capacitor based on redox-active nanomaterials and electrolyte
000162520 260__ $$c2025
000162520 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162520 5203_ $$aThe incorporation of redox-active species can deliver high-energy-density aqueous electrochemical capacitors by simultaneously enhancing capacitance and voltage. Building on a previously reported double-redox capacitor combining a YP50F porous carbon functionalized with Bi2S3 nanorods (NRs) as the negative electrode, a pristine YP50F positive electrode, and a 1M NaI electrolyte, in this work we investigated the effect of reducing Bi2S3 particle size and increasing its loading. Incorporating 15 % wt. Bi2S3 nanoparticles (NPs) delivered a capacitance of 235 F g−1 at 0.5 A g−1 and 193 F g−1 at 10 A g−1, outperforming the device with a 10 % wt. NPs loading and the NRs-based hybrid at high rates. The energy output of the full cell (18.3 Wh kg−1) surpassed other aqueous devices using carbon-based or other bismuth-based anodes. Despite this improvement, the device lost 20 % of its initial capacitance after only 60 charge-discharge cycles. Electrolyte buffering and pre-iodination of the YP50F in the positive electrode improved the stability, yielding 100 % capacitance retention after 1000 cycles. Post-mortem ex situ XPS analysis revealed that these treatments suppress iodate/periodate formation and prevents oxidation of Bi-S species to sulfates, mitigating corrosion and precipitation, and securing long-term stability.
000162520 536__ $$9info:eu-repo/grantAgreement/ES/AEI/CEX2023-001286-S$$9info:eu-repo/grantAgreement/ES/AEI/PID2023-150574NB-I00$$9info:eu-repo/grantAgreement/ES/UZ/UZ2023-IyA-01
000162520 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttps://creativecommons.org/licenses/by-nc/4.0/deed.es
000162520 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162520 700__ $$aSlesinski, Adam
000162520 700__ $$aCherkaoui, Abdenbi$$uUniversidad de Zaragoza
000162520 700__ $$aSlesinska, Sylwia
000162520 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M. Pilar$$uUniversidad de Zaragoza
000162520 700__ $$aFrackowiak, Elzbieta
000162520 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, María
000162520 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000162520 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000162520 773__ $$g657 (2025), 238098 [10 pp.]$$pJ. power sources$$tJOURNAL OF POWER SOURCES$$x0378-7753
000162520 8564_ $$s6771784$$uhttps://zaguan.unizar.es/record/162520/files/texto_completo.pdf$$yVersión publicada
000162520 8564_ $$s1867351$$uhttps://zaguan.unizar.es/record/162520/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162520 909CO $$ooai:zaguan.unizar.es:162520$$particulos$$pdriver
000162520 951__ $$a2025-10-17-14:31:29
000162520 980__ $$aARTICLE