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RESUMEN

El Formalismo Geométrico de la Mecánica Cuántica resulta una herramienta muy
poderosa que, desde los años setenta, persigue describir tanto sistemas cuánticos como
sistemas clásicos bajo un mismo marco matemático. En la primera parte del trabajo ve-
remos cómo, echando mano de la geometŕıa diferecial, traduce las estructuras tensoriales
propias de los sistemas clásicos hamiltonianos en elementos con los que describir el espa-
cio de Hilbert de un sistema cuántico, su espacio de observables, la dinámica dada por la
ecuación de Schrödinger y la información espectral de cada uno de sus operadores.

De esta forma, conseguida la traducción, se hace evidente la potencialidad del for-
malismo en aplicaciones como el tratamiento de sistemas mixtos clásico-cuánticos. En la
segunda parte del trabajo y mediante la ayuda de este formalismo geométrico conseguire-
mos una adaptación del modelo de Ehrenfest, que es el que se encarga de esta disciplina,
para conseguir una descripción hamiltoniana tanto de la parte clásica como de la par-
te cuántica del sistema mixto y tratar ambas como si fueran “clásicas”. Mediante este
cambio, nos será posible entonces ampliar el modelo para recuperar efectos que antes no
contemplaba, como es el de la evolución de la pureza, ingrediente necesario para describir
cualquier tipo de decoherencia en el sistema.

Finalmente y con la intención de comprobar la validez de esta ampliación, estudiaremos
la evolución de la pureza de diferentes sistemas, en concreto la influencia de la temperatura
sobre la pureza de sistemas moleculares, y su parecido con la fenomenoloǵıa observada.
La importancia del Formalismo Geométrico de la Mecánica Cuántica en la reconstrucción
del modelo de Ehrenfest habrá quedado entonces probada.
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1. FORMULACIÓN GEOMÉTRICA DE LAMECÁNI-

CA CUÁNTICA

1.1. Introducción

Las herramientas matemáticas de que disponemos a la hora de describir sistemas en
Mecánica Clásica y en Mecánica Cuántica son completamente diferentes. Mientras que
la primera suele recurrir a objetos de la Geometŕıa Diferencial, la segunda suele estar
más orientada al Álgebra y al Análisis Funcional, haciendo que la conexión entre ambos
formalismos no sea para nada inmediata.

De esta forma, en un empeño por tratar de manera similar ambos tipos de sistemas, se
lleva desarrollando desde finales de los años setenta1 el llamado Formalismo Geométrico
de la Mecánica Cuántica. Lo que pretende es buscar una descripción alternativa de la
Mecánica Cuántica, basándose en las estructuras geométricas de la Mecánica Clásica no
relativista.

Las propiedades que aparecen y la potencialidad del nuevo formalismo permiten des-
tacar algunas aplicaciones importantes como por ejemplo la

-Caracterización geométrica del entrelazamiento en campos como Computación Cuánti-
ca y Control Cuántico.

Aunque la aplicación sobre la que nos centraremos (y de la que trata la segunda parte
del trabajo) es la

-Descripción de sistemas mixtos clásico-cuánticos (Formalismo de Ehrenfest) dentro
de los campos de Dinámica Molecular y Mecánica Estad́ıstica.

1.2. Formulación geométrica de la Mecánica Cuántica

Veamos en primer lugar cuáles son los ingredientes del marco clásico2 de los que
buscaremos su análogo en el cuántico:

Los estados f́ısicos del sistema están representados por el espacio de fases S, el cuál
es una variedad real diferenciable que contiene las posiciones y momentos de cada
uno de ellos. Además, sobre este espacio existen una serie de estructuras (los fibrados
tangente y cotangente, una estructura simpléctica, un corchete de Poisson. . . ) que
permiten definir la dinámica y naturaleza del sistema.

El espacio de observables O o magnitudes f́ısicas del sistema son un conjunto de
funcionales que actúan sobre los elementos del espacio de fases.

1Autores como Kibble [5], Ashtekar and Schilling [4] o Brody [6] entre otros.
2Todos los objetos del formalismo geométrico se construyen por comparación con la Mecánica Clásica

no Relativista Hamiltoniana. Ver apéndice A para un desarrollo más completo de la descripción geométrica
hamiltoniana.
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Aśı el proceso de medida puede darse mediante el “pairing” O×S → R, que asocia
un valor real para una magnitud determinada a un estado dado.

La dinámica viene definida a partir de un conjunto de ecuaciones diferenciales,
conocidas como ecuaciones de Hamilton, que desde el punto de vista geométrico
corresponde con las curvas integrales de un campo vectorial hamiltoniano3.

Por simplicidad, la construcción la haremos sólo sobre la imagen de Schrödinger y
para estados puros, aunque la de Heisenberg y los estados mixtos admitan también una
geometrización.

1.2.1. Espacio de estados S

El espacio de estados de un sistema cuántico se identifica con el espacio de Hilbert H.
Si tenemos una base de dimensión n4, {|ek⟩}, el estado |ψ⟩ podrá escribirse como

|ψ⟩ =
n∑
k=1

ψk|ek⟩ H ∼ Cn

De esta forma, la variedad real diferenciable MQ que buscamos la podemos construir
a partir de estas coordenadas y su realificación ψk → ψRk + iψIk.

{ψ1, . . . ψn} ∈ H ∼ Cn 7→ {ψR1 , . . . , ψRn , ψI1 , . . . , ψIn} ≡ {ΨR,ΨI} ∈ HR ∼ R2n

Por comparación con el espacio de fases, a estas coordenadas se les suele denotar como
ψRk ≡ qk y ψIk ≡ pk aunque no sean posiciones ni momentos.

Como el espacio de Hilbert H es un espacio vectorial, se puede hacer la asociación
TH ∼ H×H, en el sentido de que cada espacio tangente TϕH en el punto ϕ se identifique
con el propio H.

El resto de estructuras algebraicas de H deberán traducirse en campos tensoriales
sobre MQ.

La estructura compleja por ejemplo, se describe como el tensor J que actúa de la
siguiente manera:

J :MQ →MQ J(ΨR,ΨI) = (−ΨI ,ΨR)

Es imediato comprobar que J2 = −I, por lo que se trata del análogo a la unidad
imaginaria i del espacio de Hilbert5.

3Campo vectorial asociado al hamiltoniano del sistema y que puede escribirse como XH = {H, ·}.
4Nos centraremos en sistemas de dimensión finita, en cuanto a que los de dimensión infinita plantean

problemas a la hora de definir la variedad diferenciable correspondiente.
5Véase referencia [1]: caṕıtulo 8.
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Aśı, y siendo una de las propiedades más importantes del espacio de Hilbert, la
estructura lineal en MQ queda codificada mediante el campo vectorial:

∆ :MQ → TMQ ψ → (ψ, ψ)

A este campo se le llama campo de dilataciones, y lo veremos más adelante cuando
definamos el espacio complejo proyectivo P correspondiente a MQ.

Sea

Xψ :MQ → TMQ ϕ→ (ϕ, ψ)

el campo vectorial constante que asocia a todos los puntos ϕ ∈ MQ el mismo estado
ψ ∈ TMQ.

La estructura hermı́tica del espacio de Hilbert H queda también traducida por un
tensor hermı́tico h tal que:

⟨ψ1|ψ2⟩ = h (Xψ1 , Xψ2) (ϕ) ∀ϕ

Puesto que en las coordenadas realificadas, el producto hermı́tico ⟨ψ1|ψ2⟩ con ψ1, ψ2 ∈
H es

⟨
(
ΨR

1 ,Ψ
I
1

)
|
(
ΨR

2 ,Ψ
I
2

)
⟩ =

(
⟨ΨR

1 ,Ψ
R
2 ⟩+ ⟨ΨI

1,Ψ
I
2⟩
)
+ i
(
⟨ΨR

1 ,Ψ
I
2⟩ − ⟨ΨI

1,Ψ
R
2 ⟩
)
6

con
(
ΨR

1 , ψ
I
1

)
,
(
ΨR

2 ,Ψ
I
2

)
∈ R2n, entonces se puede escribir:

h (Xψ1 , Xψ2) = g (Xψ1 , Xψ2) + iω (Xψ1 , Xψ2)

donde evidentemente g se trata de un tensor simétrico y ω es un tensor antisimétrico,
ambos 2 veces covariantes. El tensor simétrico g es una forma bilineal no degenerada
que además es definida positiva. Por ello, podemos decir que el par (MQ, g) define
una estructura Riemanniana. Igualmente, el tensor antisimétrico ω es una forma
bilineal no degenerada y que además es exacta, lo que permite definir el par (MQ, ω)
como una variedad simpléctica exacta7.

De forma muy descriptiva, la estructura riemanniana seŕıa la que nos permite medir
distancias entre los elementos de nuestro espacio, y la estructura simpléctica, la que
permite medir áreas orientadas entre vectores del espacio.

En su conjunto, la terna (g, ω, J) permite definir una estructura de Kähler y es ésta
la que convierte a su vez (MQ, (g, ω, J)) en una variedad Kähler. La relación entre ellas
se puede deducir fácilmente de las propiedades del producto hermı́tico:

⟨ψ1|iψ2⟩ = i⟨ψ1|ψ2⟩ ⟨iψ1|ψ2⟩ = −i⟨ψ1|ψ2⟩
6⟨·, ·⟩ denota el producto escalar eucĺıdeo.
7Ver apéndice B: B.20.
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g (Xψ1 , Xψ2) = ω (Xψ1 , JXψ2) ω (Xψ1 , Xψ2) = g (JXψ1 , Xψ2)

Por último, si tenemos en cuenta la coordinación del espacio de fases ψ 7→
(
qk(ψ), pk(ψ)

)
,

las estructuras tensoriales presentadas tomarán la forma

h = dψ̄k ⊗ dψk =
(
dqk − idpk

)
⊗
(
dqk + idpk

)
=

= dqk ⊗ dqk + dpk ⊗ dpk + i
(
dqk ⊗ dpk − dpk ⊗ dqk

)
g = dqk ⊗ dqk + dpk ⊗ dpk ω = dqk ∧ dpk

y también

J =
∂

∂pk
⊗ dqk − ∂

∂qk
⊗ dpk

lo que nos demuestra, viendo la forma de la forma simpléctica, que
(
qk, pk

)
8 son coorde-

nadas de Darboux.

También es interesante considerar la versión contravariante de los tensores g y ω ya
que nos permitirán definir los análogos del conmutador y el anticonmutador en el espacio
de observables O.

G =
∂

∂qk
⊗ ∂

∂qk
+

∂

∂pk
⊗ ∂

∂pk

Ω =
∂

∂qk
∧ ∂

∂pk

Con esto ya hemos reformulado nuestro primer ingrediente:

S : (H, ⟨·|·⟩) 7−→ (MQ, (g, ω, J))

Vemos en comparación con la Mecánica Clásica (donde el espacio de estados se define
sólo con una variedad diferenciable y una estructura simpléctica) que aparecen dos ele-
mentos nuevos: los tensores g y J ; y que además la variedad queda cubierta por una sola
carta global.

1.2.2. Espacio de observables O

Los observables dentro del espacio de Hilbert son operadores lineales y hermı́ticos. Al
tratarse de operadores autoadjuntos, sus autovalores son siempre reales y por tanto tam-
bién su valor esperado. Aśı, en analoǵıa con el marco clásico (donde las magnitudes f́ısicas
son funciones reales sobre el espacio de estados), estos observables se pueden traducir
como:

End(H) → F(MQ) A 7→ fA(ψ) =
1

2
⟨ψ|Aψ⟩

8Ver Teorema de Darboux en el apéndice B: B.22-B.23.
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En el caso de que los operadores no fueran hermı́ticos, las funciones seŕıan complejas y
además no tendŕıan para nosotros ningún significado f́ısico. Distinguimos aśı entre F(MQ)
y FR(MQ) como los conjuntos de todas las funciones cuadráticas posibles y las funciones
cuadráticas9 reales asociadas a observables (FR(MQ) ⊂ F(MQ)).

Una vez identificadas las magnitudes, lo propio seŕıa traducir también las estructuras
algebraicas del espacio de operadores lineales como pueden ser el producto asociativo, el
conmutador o el anticonmutador. Para operadores A,B ∈ End(H):

Producto asociativo:

· : End(H)× End(H) → End(H) (A,B) 7→ AB

Anticonmutador:

[·, ·]+ : End(H)× End(H) → End(H) (A,B) 7→ [A,B]+ = AB +BA

Se puede comprobar que
(
End(H), [·, ·]+

)
definen una estructura de álgebra de Jor-

dan10.

Conmutador:

[·, ·] : End(H)× End(H) → End(H) (A,B) 7→ [A,B] = −i (AB −BA)

Se puede comprobar que (End(H), [·, ·]) definen una estructura de álgebra de Lie11.

Notar que hemos definido estas estructuras sobre el espacio de endomorfismos End(H)
y no sobre el de operadores hermı́ticos porque, aunque el conmutador y el anticonmutador
śı lo sean, el producto asociativo no seŕıa una operación interna12.

De esta forma, para traducir estas estructuras sobre el espacio de funciones F(MQ),
podemos echar mano directamente de los tensores G y Ω ya definidos, ya que resulta
que13:

{fA, fB}+ := f[A,B]+
= G (dfA, dfB) {fA, fB} := f[A,B] = Ω(dfA, dfB)

donde dfA, dfB son 1-formas sobre MQ.

Una vez definidas estas estructuras {·, ·}+, {·, ·}, que llamaremos corchetes de Jordan
y de Poisson respectivamente, es sencillo ver que para el producto asociativo se tiene que

9Notar que una transformación no cuadrática es puramente geométrica y no tiene por qué poseer
significado f́ısico.

10Ver apéndice B: B.18.
11Precisamente por ello se introduce la unidad imaginaria i en el conmutador. Ver apéndice B: B.17.
12El producto de dos matrices hermı́ticas no es, en general, hermı́tico.
13Véase [7]: p.62.
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AB =
1

2
(AB +BA) +

1

2
(AB −BA) =

1

2
[A,B]+ +

i

2
[A,B]

y entonces la traducción resulta ser

fA ∗ fB := fAB =
1

2
{fA, fB}+ +

i

2
{fA, fB}

Por último simplemente destacar que, al tratarse de un álgebra de Lie-Jordan, los
corchetes satisfacen:

{fA, {fB, fC}+} = {{fA, fB}, fC}+ + {fB, {fA, fC}}+

{{fA, fB}+, fC}+ − {fA, {fB, fC}+}+ = {fB, {fC , fA}}

En resumen, nuestra geometrización ya cuenta con los siguientes ingredientes:

S : (H, ⟨·|·⟩) 7−→ (MQ, (g, ω, J))

O :
(
End(H) hermı́ticos, [·, ·]+ , [·, ·]

)
7−→ (FR(MQ), {·, ·}+, {·, ·})

1.2.3. Dinámica

La evolución de un sistema hamiltoniano en Mecánica Clásica14 viene dada por las
ecuaciones de Hamilton

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk

que se corresponden desde un punto de vista geométrico con las curvas integrales del
campo vectorial definido como

XH = {H, }

y que en coordenadas canónicas15 toma la forma

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

La función H es lo que se conoce como hamiltoniano del sistema, y el corchete de
Poisson {·, ·} es el que define la estructura de Poisson en el espacio de observables.16

Ahora bien, en el marco cuántico, puesto que H (que está definido sobre H) es un
operador hermı́tico y se le puede asociar la función fH(ψ) =

1
2
⟨ψ|Hψ⟩, podŕıamos tratar

de ver si el análogo

XfH = Ω(dfH , ·)
14Ver apéndice A para una descripción geométrica de la mecánica hamiltoniana.
15Ver apéndice B: B.23.
16Ver apéndice B: B.19.
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nos define la dinámica del sistema, convirtiéndolo también aśı en un sistema hamilto-
niano.

Sea H : Cn → Cn el hamiltoniano definido sobre H y sea

H =

H11 H12 · · · H1n
...

...
. . .

...
Hn1 Hn2 · · · Hnn


su forma matricial. Consideremos su realificación HR =MQ →MQ de manera que

HR =


Hq1q1 · · · Hq1qn Hq1p1 · · · Hq1pn

Hq2q1 · · · Hq2qn Hq2p1 · · · Hq2pn
...

. . .
...

...
. . .

...
Hpnq1 · · · Hpnqn Hpnp1 · · · Hpnpn


Es evidente que esta matriz HR será simétrica puesto que H era hermı́tica y entonces

Hqkqk = Hkk = Hpkpk

Hqkpk = 0 = Hpkqk

Hqjqk = Re(Hjk) = Hpjpk

Hqjpk = −Im(Hjk) = −Hpjqk

La función fH ∈ F(MQ) asociada será

fH =
1

2

(
q1 · · · qn p1 · · · pn

)

Hq1q1 · · · Hq1qn Hq1p1 · · · Hq1pn

Hq2q1 · · · Hq2qn Hq2p1 · · · Hq2pn
...

. . .
...

...
. . .

...
Hpnq1 · · · Hpnqn Hpnp1 · · · Hpnpn





q1

...
qn

p1
...
pn


Y entonces el campo vectorial XfH tomará la forma:

XfH = Ω(dfH , ·) = {fH , ·} =
n∑
k=1

(
∂fH
∂pk

∂

∂qk
− ∂fH
∂qk

∂

∂pk

)
Si calculamos las curvas integrales nos daremos cuenta en seguida que

9
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q̇1 = Hp1q1q
1 + . . .+Hp1qnq

n +Hp1p1p1 + . . .+Hp1pnpn
...

q̇n = Hpnq1q
1 + . . .+Hpnqnq

n +Hpnp1p1 + . . .+Hpnpnpn

ṗ1 = −(Hq1q1q
1 + . . .+Hq1qnq

n +Hq1p1p1 + . . .+Hq1pnpn)
...

ṗn = −(Hqnq1q
1 + . . .+Hqnqnq

n +Hqnp1p1 + . . .+Hqnpnpn)

que se puede escribir en forma matricial como

d

dt



q1

...
qn

p1
...
pn


= −J


Hq1q1 · · · Hq1qn Hq1p1 · · · Hq1pn

Hq2q1 · · · Hq2qn Hq2p1 · · · Hq2pn
...

. . .
...

...
. . .

...
Hpnq1 · · · Hpnqn Hpnp1 · · · Hpnpn





q1

...
qn

p1
...
pn


donde17

J =

(
0 −In
In 0

)
o equivalentemente

ψ̇(q⃗, p⃗) = −JHRψ(q⃗, p⃗)

expresión que se corresponde a la perfección con la ecuación de Schrödinger.

|ψ̇⟩ = −iH|ψ⟩ (~ = 1)

Como conclusión podemos decir entonces que la ecuación de Schrödinger nos define la
dinámica a través de un campo hamiltoniano XfH sobre MQ. Además, se puede demos-
trar que este campo conserva tanto la estructura riemanniana18 (LXfH g = 0)19 como la
simpléctica (LXfHω = 0), lo que implica que se conserva también la unitariedad.

Hasta ahora llevamos:

S : (H, ⟨·|·⟩) 7−→ (MQ, (g, ω, J))

O :
(
End(H) hermı́ticos, [·, ·]+ , [·, ·]

)
7−→ (FR(MQ), {·, ·}+, {·, ·})

Dinámica : dfH = ω (XfH , ·)

17Notar que esta es la expresión matricial del tensor J que nos defińıa la estructura compleja sobre
MQ. Véase [1]: pp.337,338.

18Se les da el nombre de campos de Killing.
19Ver apéndice B: B.14.
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1.2.4. Espacio complejo proyectivo P

Por el momento se ha hecho una construcción sobre MQ sin tener en cuenta un hecho
importante, y es que los estados f́ısicos que difieren tanto en módulo como en una fase
global son equivalentes. Sobre el espacio de Hilbert H corresponde a aquellos puntos
relacionados por un número complejo no nulo.

ψ ∼ ψ′ ⇔ ψ′ = λψ λ ∈ C0 = C− {0}

De esta forma, sobre la variedad MQ se pueden considerar los siguientes campos vec-
toriales:

Generador infinitesimal de la transformación del cambio de módulo:

∆ = qk
∂

∂qk
+ pk

∂

∂pk
= rk

∂

∂rk

Se conoce con el nombre de Campo de dilataciones.

Generador infinitesimal de la transformación del cambio de fase global:

Γ = pk
∂

∂qk
− qk

∂

∂pk
=

∂

∂θk

El cambio a coordinación polar
(
qk, pk

)
↔ (rk, θk) se muestra para evidenciar el signi-

ficado f́ısico de estos objetos. Se puede decir entonces que ambos dos son los generadores
infinitesimales correspondientes a la acción C∗ sobre H.

Una propiedad importante de estos campos es que conmutan [∆,Γ] = 0. Es sencillo de
comprobar ya que, viendo las expresiones de arriba, resulta que Γ = J(∆). Aśı, las curvas
integrales de ∆ recorrerán aquellos estados equivalentes en MQ que tengan una misma
fase global pero difieran en módulo; mientras que las de Γ, lo harán sobre los estados
equivalentes de igual módulo y distinta fase.

Considerando entonces en cada punto de MQ el subespacio generado por ∆ y Γ, ten-
dremos lo que se conoce como una foliación. Cada “hoja” es una clase de equivalencia20

en el espacio de estados MQ de dimensión 2; y el espacio del conjunto de “hojas” es lo
que llamaremos Espacio complejo proyectivo P .

Si denotamos sus elementos como [ψ] tendremos que

P ∋ [ψ] := π(ψ) ψ ∈MQ

donde π es el proyector definido como π :MQ → P .

Por ello, desde un punto de vista más f́ısico, es el que mejor describe el espacio de
estados puros de un sistema cuántico.

20Órbitas de un punto de H bajo la acción de C∗.
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Para el resto de estructuras, también es posible la proyección. Recordar que las fun-
ciones definidas en el espacio de observables son

fA(ψ) =
1

2
⟨ψ|Aψ⟩

Para que correspondan con magnitudes f́ısicas reales, es necesario que sean invariantes
a lo largo de cada una de las “hojas” deMQ. Es aśı como se definen las funciones eA(ψ)

21:

eA(ψ) =
⟨ψ|Aψ⟩
⟨ψ|ψ⟩

⇒ ∆(deA) = Γ(deA) = 0

Ahora śı, estas funciones están en correspondencia 1 − 1 con las del espacio proyec-
tivo P . Cabe destacar que dejan de ser cuadráticas, aunque es perfectamente normal en
cuanto a que P ha perdido su estructura lineal pasando a ser simplemente una variedad
diferencial.

Para las estructuras riemanniana G y de Poisson Ω22, esta proyección a través de
π∗ : T

(2,0)MQ → T (2,0)P23 se hace sin embargo imposible, ya que son derivaciones de grado
-2, y no se mantienen constantes a lo largo las “hojas” (L∆G = −2G,L∆Ω = −2Ω). Es
aśı como se deben reescalar con un factor de grado 2, por ejemplo a través de la norma
del estado ψ:

{eA, eB}+P := GP (deA, deB) = ⟨ψ|ψ⟩{eA, eB}+

{eA, eB}P := ΩP (deA, deB) = ⟨ψ|ψ⟩{eA, eB}

Cabe destacar aqúı también que la estructura simpléctica en P deja de ser exacta, lo
que imposiblita definir una campo globalmente hamiltoniano que nos describa la dinámi-
ca del sistema. Es por esto y por la pérdida de la estructura lineal por lo que se utiliza
preferiblemente MQ, FR(MQ), G y Ω como herramientas de cálculo.

Sin embargo, desde que ∆(deA) = Γ(deA) = 0 ∀eA ∈ FR(MQ), suponer que definimos
los tensores GP y ΩP como:

GP = ⟨ψ|ψ⟩G− Γ⊗ Γ−∆⊗∆

ΩP = ⟨ψ|ψ⟩Ω− Γ⊗∆−∆⊗ Γ

Se puede comprobar24 que la acción de GP sobre el conjunto de funciones proyectables
corresponde a

GP (deA, deb) = e[A,B]+
− eA · eB

lo que implica que si A = B, entonces

21Correspondientes al valor medio del operador A.
22No probamos con g y ω ya que la proyección a través de π∗ : T (0,2)P → T (0,2)MQ lleva el sentido

contrario.
23Ver apéndice B: B.10-B.11.
24Véase [7]:pp.65,66.
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GP (deA, deA) = eA2 − e2A

Es aśı como el espacio proyectivo nos ha permitido descubrir una de las muchas propie-
dades del formalismo geométrico: que GP está directamente relacionado con las relaciones
de indeterminación.

Por último, para la dinámica, se debe considerar el campo vectorial XeH = ΩP (deH , ·).

1.2.5. La información espectral

La forma de recuperar la información espectral de los observables A sobre el espacio
de Hilbert es a través de las funciones valor esperado asociadas eA(ψ).

A 7→ eA(ψ) =
⟨ψ|Aψ⟩
⟨ψ|ψ⟩

De esta forma:

Los autovectores son los puntos cŕıticos de eA(ψ):

deA(ψa) = 0 ⇔ ψa autovector deA

Los autovalores se recuperan al evaluar la función eA(ψa).

Los posibles resultados de una medida se convierten aśı en los posibles valores extre-
mos de las funciones eA.

Hasta aqúı se han presentado los principales ingredientes del formalismo geométrico
de la Mecánica Cuántica. Para la imagen de Heisenberg, donde básicamente el espacio de
estados S lo forman las funciones F(MQ), habŕıa que hacer un nuevo traslado de estruc-
turas25.

En conclusión, acabamos de encontrar una manera de describir sistemas cuánticos
como simples sistemas hamiltonianos, con una estructura similar a la del marco clásico.
Las ventajas y facilidades obtenidas con el nuevo formalismo son varias, entre otras, la
que se presentará a continuación:

Tratamiento de sistemas mixtos clásico-cuánticos: modelo de Ehrenfest.

25Véase referencia [8] para una descripción más completa.
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2. EL FORMALISMO DE EHRENFEST

En el mundo cuántico, la principal herramienta que nos pemite describir el comporta-
miento de cualquier sistema aśı como sus propiedades es la ecuación de Schrödinger26. Sin
embargo, utilizarla de manera directa se hace en la mayoŕıa de las situaciones imposible,
siendo necesario recurrir a aproximaciones o simplificaciones del sistema.

Fijémonos por ejemplo en el átomo de hidrógeno. La resolución de su función de onda
mediante la ecuación de Schrödinger para un potencial central es exacta. No obstante,
para obtener su estructura fina, se nos hace necesario recurrir a la teoŕıa perturbativa y
a una serie de aproximaciones. De la misma forma, el átomo de helio y el resto de áto-
mos multielectrónicos tampoco pueden resolverse anaĺıticamente mediante la ecuación de
Schrödinger.

Aśı, una de las aproximaciones más utilizadas para reducir el problema es llevar parte
del sistema cuántico de estudio27 a su ĺımite clásico. Es lo que se conoce como Mixed
quantum-classical dynamical models MQCD. En un sistema cuántico molecular, seŕıa por
ejemplo considerar los núcleos átomicos y los electrones más internos como part́ıculas
clásicas y dejar la capa de electrones más externa como un subsistema cuántico, dando
lugar a un sistema completo mixto.

El modelo de Ehrenfest es de esta forma el formalismo por excelencia de los siste-
mas mixtos clásico-cuánticos. Es más, muchos de los modelos utilizados para dinámica
molecular derivan directamente del de Ehrenfest (i.e. modelo de Born-Oppenheimer)28.

2.1. El modelo de Ehrenfest

Veamos por ejemplo el sistema cuántico molecular mencionado anteriormente, formado
por núcleos y electrones internos (N), y electrones externos (e). El hamiltoniano (sobre el
espacio de funciones de onda HN ⊗He) del sistema cuántico completo se podŕıa escribir
de la forma:

Ĥ := −~2
∑

J
1

2MJ
∇2
J − ~2

∑
j
1
2
∇2
j +

1
4πϵ0

(∑
J<K

ZJZK
|R⃗J−R⃗K |

−
∑

j<k
1

|r⃗j−r⃗k|
−
∑

J,j
ZJ

|R⃗J−r⃗j |

)
=: −~2

∑
J

1
2MJ

∇2
J − ~2

∑
j
1
2
∇2
j + Vn−e(r⃗, R⃗)

=: −~2
∑

J
1

2MJ
∇2
J +He(r⃗, R⃗)

donde MJ y ZJ son la masa y la carga del núcleo J en unidades de los del electrón y
donde se ha definido un potencial de interacción VN−e(r⃗, R⃗) y un hamiltoniano electrónico

He(r⃗, R⃗).

Para comenzar la aproximación, en primer lugar se debe separar la función de ondas del
sistema completo en otras dos acopladas Ψ = ΨN⊗Ψe

29; y a continuación llevar la nuclear

26Evidentemente en lo que a estados puros se refiere.
27La que tenga una evolución en sus grados de libertad mucho más lenta.
28Véase referencia [10].
29Conocido como Time-dependent self-consistent model.
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a su ĺımite clásico30, lo que conlleva además a la pérdida del posible entrelazamiento entre
las dos. Tendremos aśı un sistema descrito por las posiciones R⃗J de los núcleos y por
la función de ondas |ψ⟩ ∈ H de la nube electrónica. Las ecuaciones de Ehrenfest surgen
directamente31:

MJ
¨⃗
RJ = −⟨ψ|∇JHe(r⃗, R⃗)|ψ⟩

i~
d

dt
|ψ⟩ = He(r⃗, R⃗)|ψ⟩

O si se le quiere dar una descripción más “hamiltoniana”, se puede definir la función

H(R⃗, P⃗ ) =
∑
J

P⃗ 2
J

2MJ

+ ⟨ψ|He(r⃗, R⃗)|ψ⟩

que deja el sistema como

˙⃗
RJ =

P⃗J
MJ

˙⃗
PJ = −⟨ψ|∇JHe(r⃗, R⃗)|ψ⟩

i~
d

dt
|ψ⟩ = He(r⃗, R⃗)|ψ⟩

Notar que la linealidad de la parte cuántica desaparece. Este seŕıa el primer
paso a la hora de crear un modelo MQCD. Sin embargo, aunque aparentemente estas
ecuaciones tomen la forma de las ecuaciones de Hamilton32, todav́ıa no se puede hablar
de sistema hamiltoniano pues faltan los ingredientes principales, a saber:

Variedad diferencial que haga las veces de espacio de fases S.

Estructura simpléctica que nos defina un corchete de Poisson {·, ·} sobre S.

Una función fH ∈ C∞(S) que haga las veces de función hamiltoniana.

Dar una estructura hamiltoniana a la ecuación de Schrödinger electrónica.

Enfrentaremos ese problema en la sección siguiente.

2.2. Descripción de la dinámica de Ehrenfest como un sistema
hamiltoniano

Gracias al Formalismo geométrico de la Mecánica Cuántica, hemos conseguido dar
una descripción análoga tanto a sistemas clásicos33 como cuánticos. De esta forma, la
posibilidad de juntar ambos y describir un sistema mixto se hace inmediata.

30Conocido también como Short-wave asymptotics method.
31Para un desarrollo completo de esta aproximación ver la referencia [11].
32Como parece que ocurre con las dos primeras ecuaciones, que describen la dinámica de la parte

clásica.
33Ver apéndice A.
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2.2.1. Espacio de estados S

El subsistema clásico se puede describir mediante una variedad diferenciable MC

asociada al espacio de fases. Es evidente que la dimensión de MC será un número
par y dependerá del número de “part́ıculas” clásicas presentes. Además dispone de
una estructura simpléctica que permite definir un corchete de Poisson en el espacio
de funciones sobre MC .

Si el subsistema tuviera NC part́ıculas en un espacio tridimensional, vendŕıa identi-
ficado por:

(R⃗1, . . . , R⃗NC , P⃗1, . . . , P⃗NC ) ∈MC ⇒ dim(MC) = 3NC + 3NC

Para el subsistema cuántico, y siguiendo en la ĺınea del trabajo, se puede considerar
la realificación del espacio de Hilbert correspondiente MQ. Igualmente, hay defini-
da una estructura simpléctica y una 2-forma Ω sobre el espacio de funciones F(MQ).

Aśı, si por ejemplo se tienen N electrones, cada uno de ellos sobre un espacio de
Hilbert de dimensión M , tendremos que la dimensión del espacio de Hilbert H del

subsistema será NQ =

(
M
N

)
y vendrá identificado por:

(q1, . . . , qNQ , p1, . . . , pNQ) ∈MQ ⇒ dim(MQ) = NQ +NQ

Como consecuencia, se puede definir el espacio de estados S del sistema total como el
producto cartesiano de ambas variedades:

S :=MC ×MQ

Cabe destacar que mediante esta definición ambos subsistemas se tratan de manera
separada y resulta imposible describir ningún tipo de entrelazamiento. No obstante, en la
aproximación del modelo de Ehrenfest ya se hab́ıa perdido esta información, por lo que no
supone ningún problema. A pesar de ello, en el siguiente apartado, veremos una posible
forma de recuperarla a partir de herramientas estad́ısticas.

2.2.2. Espacio de observables O

Por simple extensión de los casos clásico y cuántico, los observables del sistema mixto
son funciones definidas sobre el espacio de estados S =MC ×MQ.

Recordemos que para un sistema cuántico, como las funciones que teńıan significado
f́ısico eran

fA(ψ) =
1

2
⟨ψ|Aψ⟩ A operador hermı́tico ∈ FR(MQ),

para el sistema mixto se podŕıa pensar en

{f ∈ C∞(MC ×MQ)|f = ⟨ψ(q⃗, p⃗), A(R⃗, P⃗ )ψ(q⃗, p⃗)⟩}
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con A un operador lineal del espacio de Hilbert del sistema, dependiente de las coorde-
nadas clásicas. Sin embargo, este conjunto no es cerrado34 con respecto al corchete de
Poisson que definiremos en el siguiente apartado; y además, tampoco se preserva debido
a la no linealidad de la dinámica de Ehrenfest35. Es necesario agrandarlo.

Recurriendo aśı a otra de las propiedades de un sistema cuántico, se puede definir el
espacio de observables O del sistema mixto como

O := {f ∈ C∞(MC ×MQ)|ΓQf := (I⊗ Γ)f = 0}

debido a la invariancia del conjunto F(MQ) bajo un cambio de fase global. Notar que
este conjunto es más grande y engloba al anterior, por lo que no se pierde ningún opera-
dor, y además soluciona los problemas mencionados. Notar también que tendrá elementos
adicionales, sin ningún significado f́ısico y que sólo sirven para la definición del conjunto
como un álgebra de Poisson36.

A continuación se muestran algunas de las subálgebras presentes:

Funciones clásicas: sólo dependen de las coordenadas clásicas.

OC := {f ∈ O|∃fC ∈ C∞(MC) ∋ f(R⃗, P⃗ , q⃗, p⃗) = fC(R⃗, P⃗ )}

Funciones cuánticas “generalizadas”: sólo dependen de los grados de libertad cuánti-
cos y además son invariantes bajo cambios de fase global.

OQ := {f ∈ O|∃fQ ∈ C∞(MQ) ∋ f(R⃗, P⃗ , q⃗, p⃗) = fQ(q⃗, p⃗) ∧ Γ(fQ) = 0}

Se puede considerar el subconjunto más pequeño OS
Q, correspondiente a las fun-

ciones fQ definidas sobre F(MQ), que es el que verdaderamente representa a los
observables.

Combinación lineal: son combinaciones lineales de las anteriores.

OC+Q := {f ∈ O|∃(fC ∈ C∞(MC)∧fQ ∈ C∞(MQ)) ∋ f(R⃗, P⃗ , q⃗, p⃗) = fC(R⃗, P⃗ )+fQ(q⃗, p⃗)}

2.2.3. Estructura de Poisson {·, ·}

En vista de que ya hay definidas dos estructuras simplécticas sobre cada uno de los
subsistemas (llamémoslas ωC y ωQ), de forma natural se define

ω = ωC + ~ωQ
como la estructura simpléctica del sistema total37. De esta manera, el corchete de Poisson
correspondiente tendrá la forma

34No permite definir el álgebra de Poisson correspondiente.
35El operador evolución no pertenece al conjunto.
36Ver apéndice B: B.17-B.19.
37Es antisimétrica y cumple tanto las identidades tanto de Jacobi como de Leibniz.
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{·, ·} = {·, ·}C + ~−1{·, ·}Q
que definirá una estructura de Poisson sobre C∞(MC ×MQ).

Bajo este corchete de Poisson, tal y como se ha indicado antes, los conjuntos OC , OQ,
OS
Q y OC+Q, aśı como el propio O, son cerrados; es más, cada uno de ellos define una

sub-álgebra de Poisson del propio O.

Además, la condición que nos define el espacio de observables O, f ∈ O ⇔ ΓQ(f) = 0,
es entonces equivalente a decir que f ∈ O ⇔ {fI, f} = 0, donde fI = (qk)2 + p2k:

{fI, f} = 0 ⇔ {fI, f}Q = 0 ⇔ ∂fI
∂qk

∂f

∂pk
− ∂fI
∂pk

∂f

∂qk
= 0 ⇔ 2

(
qk
∂f

∂pk
− pk

∂f

∂qk

)
= 0 ⇔

⇔ Γf = 0 ⇔ ΓQf = 0

lo que nos permite demostrar por ejemplo, que O sea efectivamente cerrado para el álgebra
de Poisson definido:

{fI, {f, g}} = 38 − {g, {fI, f}} − {f, {g, fI}} = 0 ⇔ {f, g} ∈ O ∀f, g ∈ O

2.2.4. Dinámica

Ya tenemos las siguientes estructuras:

Espacio de estados MC ×MQ.

Espacio de observables O.

Estructura simpléctica ω y correspondiente corchete de Poisson {·, ·}.

Para terminar de describir el sistema completo como un sistema hamiltoniano,
nos queda la definición de una función fH ∈ C∞(MC × MQ) que llamaremos función
hamiltoniana:

fH(R⃗, P⃗ , q⃗, p⃗) :=
∑
J

P⃗ 2
J

2MJ

+ ⟨ψ(q⃗, p⃗)|He(R⃗)ψ(q⃗, p⃗)⟩

donde He es la expresión ya vista del hamiltoniano electrónico, MJ las masas de los
núcleos como componentes del subsistema clásico, y ψ(q⃗, p⃗) la función de ondas de la
nube electrónica como subsistema cuántico.

La dinámica vendrá por lo tanto dada por

˙⃗
R = {fH , R⃗} =

∂fH

∂P⃗
=M−1P⃗

38Por la identidad de Jacobi.
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˙⃗
P = {fH , P⃗} = −∂fH

∂R⃗
= −grad(⟨ψ(q⃗, p⃗)|He(R⃗)ψ(q⃗, p⃗)⟩)

q̇k = {fH , qk} = ~−1∂fH
∂pk

k = 1, . . . , NQ

ṗk = {fH , pk} = −~−1∂fH
∂qk

k = 1, . . . , NQ

que se corresponde con la dinámica de Ehrenfest vista al comienzo del caṕıtulo.

En general la evolución de cualquier operador f vendrá dada por ḟ = {fH , f}. Como
consecuencia, una magnitud será una constante del movimiento si conmuta con la función
hamiltoniana.

ḟ = 0 ⇔ {fH , f} = 0

Es evidente también que la dinámica preserva el espacio de observables O.

fH , f ∈ O ⇒ {fH , f} ∈ O

Como consecuencia, hemos conseguido describir la dinámica de Ehrenfest como un
sistema hamiltoniano sobre una variedad de Poisson. La situación será similar a la
de un sistema standard clásico; y precisamente gracias a ello, nos será posible definir el
sistema estad́ıstico de a continuación.

2.3. Un poquito de Mecánica Estad́ıstica

El modelo de Ehrenfest, junto con el desarrollo del formalismo geométrico de la mecáni-
ca cuántica, resulta una herramienta muy cómoda y sencilla para describir sistemas mix-
tos. Sin embargo hay que recordar que no deja de ser una aproximación, por lo que su
poder predictivo es limitado. Existen aśı fenómenos que escapan a su alcance y que son
de vital importancia en cualquier modelo que pretenda ser realista, como por ejemplo el
de decoherencia. En general, cualquier propiedad del sistema que esté relacionada con el
entrelazamiento se pierde debido a la separación que hemos hecho entre los subsistemas39.

De esta forma, se pueden implementar al formalismo herramientas adicionales que per-
mitan recuperar parte de esta información perdida. Me estoy refiriendo a elementos de la
Mecánica Estad́ıstica. Los objetos que definiremos tienen su origen sobre la mecánica
estad́ıstica “clásica”, y de ah́ı la importancia de haber definido nuestro sistema mixto
como un sistema hamiltoniano.

Para nuestro trabajo, ya que el fenómeno de decoherencia es suficientemente complejo
como para necesitar una ampliación importante del modelo, trataremos de recuperar lo
referente a la evolución de la pureza de un sistema. Se trata de algo mucho más

39Deja de haber un producto tensorial H = HN ⊗ He para convertirse en un producto cartesiano
S =MC ×MQ.
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sencillo de estudiar pero que está fuertemente unido. Aśı, mientras que la dinámica de
Ehrenfest hasta ahora descrita preserva siempre la pureza de la parte cuántica, la amplia-
ción nos permitirá ver (en concordancia con lo esperado) que esto no tiene por qué ser
aśı.

Cabe destacar que los resultados obtenidos no tendrán una fiabilidad absoluta, pero
se acercarán bastante más a la fenomenoloǵıa observada.

2.3.1. Densidad de probabilidad y valores promedio

El primer ingrediente necesario para construir una teoŕıa estad́ıstica es definir una
densidad de probabilidad. Esta función es la que nos permitirá calcular probabilidades,
valores medios de operadores y en general mucha otra información sobre cada uno de
los estados de nuestro sistema. De esta forma, puesto que nuestro espacio de estados es
S =MC ×MQ, lo lógico seŕıa definirla como FQC ∈ C∞(MC ×MQ); más concretamente,
como FQC ∈ O.

Por otro lado, se necesita también un elemento infinitesimal de volumen definido so-
bre el espacio de estados S y que denotaremos como dµQC = dµCdµQ. En esta última
expresión, dµC y dµQ corresponden a los elementos infinitesimales de volumen sobre MC

y MQ respectivamente.

Aśı entre otras cosas, siendo A un observable de nuestro sistema completo y eA =
fA

⟨ψ|ψ⟩ ∈ O su función asociada40, podremos definir su valor promedio como

⟨A⟩ :=
∫
MC×MQ

dµQCFQC(ξ, ψ) eA(ξ, ψ)

donde por simplificar la notación hemos llamado ξ = (R⃗1, . . . , R⃗NC , P⃗1, . . . , P⃗NC ) ∈ MC

a las coordenadas del subsistema clásico y ψ = (q1, . . . , qNQ , p1, . . . , pNQ) ∈ MQ a las del
cuántico.

Si queremos considerar dinámica y queremos que esta definición nos sirva para cual-
quier tiempo t, es evidente que el elemento de volumen dµQC ha de ser invariante an-
te cualquier evolución del sistema. Sin embargo, precisamente por haber convertido la
dinámica del sistema en hamiltoniana, el teorema de Liouville41 nos asegura que cual-
quier elemento de volumen definido sobre el espacio de fases conservará su volumen a lo
largo del flujo. De esta forma, el elemento construido como dµQC := dµCdµQ = ωNCC ω

NQ
Q =(

ωC ∧ NC veces. . . ∧ ωC
) (
ωQ ∧ NQ veces. . . ∧ ωQ

)
será invariante y estará bien definido42. Precisa-

mente, este punto es una de las justificaciones del uso del formalismo geométrico de la
mecánica cuántica.

Con respecto a la densidad de probabilidad, puesto que tenemos dos subsistemas, se
podŕıa pensar en que FQC fuera factorizable como producto de una distribución clásica

40fA(ξ, ψ) ha de ser una función cuadrática en ψ para poder hacer la definición.
41Véase referencia [3]: pp.187,188.
42Ver apéndice B: B.21.
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y una distribución cuántica. No obstante, hay que recordar que los subsistemas no son
independientes y por tanto tendrán una probabilidad combinada. De hecho, éste era el
punto objetivo de nuestra construcción estad́ıstica.

Según la definición del valor medio de un observable ⟨A⟩, las condiciones que debe
cumplir la función FQC para que esté bien definida son:

El valor medio de un observable constante debeŕıa ser la propia constante. Aśı,
utilizando el operador identidad I(ξ, ψ), se puede ver que:∫

MC×MQ

dµQCFQC(ξ, ψ)
fI(ξ, ψ)

⟨ψ|ψ⟩
=

∫
MC×MQ

dµQCFQC(ξ, ψ)
⟨ψ|I(ξ)ψ⟩
⟨ψ|ψ⟩

=

=

∫
MC×MQ

dµQCFQC(ξ, ψ) = 1

Esta expresión seŕıa equivalente a la condición de normalización de la función
FQC(ξ, ψ). La densidad de probabilidad está normalizada.

De la misma forma, el promedio de una función fA asociada a un operador hermı́tico
definido positivo A, tendrá que ser también positivo. Esta condición implica que la
densidad de probabilidad sea también una función definida positiva.

Además, al pertenecer al espacio de observables, FQC ∈ O, se puede calcular de manera
muy sencilla su evolución, ya que cumple la ecuación de Liouville

ḞQC(ξ, ψ) = {fH(ξ, ψ), FQC(ξ, ψ)}

donde fH es la función hamiltoniana del sistema de Ehrenfest vista en el apartado ante-
rior. Diremos entonces que el sistema ha alcanzado su equilibrio estad́ıstico cuando FQC
conmute con fH .

ḞQC = 0 ⇒ {fH , FQC} = 0

Por último simplemente destacar que, además del promedio ⟨A⟩ definido arriba, en el
caso de que fA(ξ, ψ) fuera una función puramente cuántica fA(ξ, ψ) = fA(ψ) ∈ Os

Q, se
podŕıa calcular el promedio del observable sobre el subsistema cuántico como:

⟨A⟩(ξ) =
∫
MQ

dµQFQC(ξ, ψ) eA(ψ)

Notar que se ha obtenido integrando “out” sobre MQ y que depende por lo tanto de
las grados de libertad clásicos ξ del sistema. Este promedio se convierte aśı a su vez en
una especie de densidad de probabilidad sobre MC con la que recuperar el valor medio
del operador sobre el total del sistema:

⟨A⟩ =
∫
MC

dµC⟨A⟩(ξ) =
∫
MC×MQ

dµQCFQC(ξ, ψ) eA(ψ)
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2.3.2. Distribuciones marginales

Al igual que en cualquier sistema estad́ıstico, dada la densidad de probabilidad FQC
definida sobre MC ×MQ, se pueden considerar las correspondientes distribuciones margi-
nales.

FQ(ψ) =

∫
MC

dµCFQC(ξ, ψ)

FC(ξ) =

∫
MQ

dµQFQC(ξ, ψ)

Ambas dos se obtienen integrando “out” sobre cada uno de los subsistemas.

2.4. Evolución de la pureza en sistemas mixtos

Con todo el formalismo de Ehrenfest ya desarrollado, podemos proceder a comprobar
su alcance. Nuestro objetivo será estudiar la evolución de la pureza de un sistema
mixto de una forma que, sin ayuda del Formalismo de Ehrenfest (y yendo más atrás, del
Formlismo Geométrico de la Mecánica Cuántica) nos hubiera sido muy complicado hacer.

2.4.1. Concepto de pureza en un sistema cuántico

El operador densidad ρ en un espacio de Hilbert se puede definir como la combinación
lineal de proyectores ρi de rango 1 de tal forma que

ρ =
∑
i

piρi

donde
∑

i pi = 1 y pi ≥ 0, y donde ρi representa cada uno a un estado f́ısico “puro”,
cumpliendo:

ρ2i = ρi ρ†i = ρi Trρi = 1

Se dice que un sistema cuántico es puro si este operador ρ es también un proyector de
rango 1. En caso contrario se dice que es mixto. Seŕıa análogo a decir que el sistema es
puro si la combinación lineal de arriba tiene solamente un elemento y mixto en el resto
de los casos. Desde el punto de vista f́ısico, tiene su sentido ya que un sistema cuántico
puro es el que viene dado por un estado puro (ρi) y un sistema cuántico mixto es el que
viene dado por una mezcla estad́ıstica de estados puros.

De esta forma, para un sistema puro tendremos que ρ2 = ρ, Trρ = 1 y como
consecuencia que

Trρ2 = 1

La pureza de un sistema puede medirse entonces en función del parámetro Trρ2, siendo
Trρ2 = 1 para sistemas puros y 0 < Trρ2 < 1 para sistemas mixtos.
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2.4.2. Matriz densidad

Vista la importancia de la matriz densidad en la determinación de la pureza de un
sistema, vamos a tratar de hacer las definiciones pertinentes para adaptarla a nuestro
sistema estad́ıstico.

Si tuviéramos un sistema puramente cuántico, la matriz densidad se podŕıa escribir de
una manera sencilla simplemente como ρ = |ψ⟩⟨ψ|, con |ψ⟩ ∈ H. Sin embargo tenemos un
sistema mixto clásico-cuántico. Aśı, mediante la estad́ıstica presentada, podŕıamos tratar
de definir el operador densidad del sistema completo como

ρ :=

∫
MC×MQ

dµQCFQC(ξ, ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

que evidentemente tendŕıa una función asociada fρ(η) ∈ O igual a

fρ(η) :=

∫
MC×MQ

dµQCFQC(ξ, ψ)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩

De la misma manera a como se ha hecho anteriormente, al ser |ψ⟩⟨ψ| un objeto pura-
mente cuántico, se podŕıa considerar también el operador

ρ(ξ) =

∫
MQ

dµQFQC(ξ, ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

fρ(ξ, η) :=

∫
MQ

dµQFQC(ξ, ψ)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩

de tal forma que pudiéramos recuperar el original como

ρ =

∫
MC

dµCρ(ξ) fρ(η) =

∫
MC

dµCfρ(ξ, η)

Notar también que, echando mano de las distribuciones marginales, el operador den-
sidad del sistema completo se podŕıa escribir también como

ρ :=

∫
MC×MQ

dµQCFQC(ξ, ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

=

∫
MQ

dµQFQ(ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

fρ(η) :=

∫
MC×MQ

dµQCFQC(ξ, ψ)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩
=

∫
MQ

dµQFQ(ψ)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩
Sin embargo cabe preguntarse, ¿son buenas estas definiciones?, ¿encajan bien con

nuestra construcción estad́ıstica?, ¿poseen el significado que deben tener? Veremos que la
respuesta es que śı.

Consideremos un único estado ξ0 para el subsistema clásico y un estado puro ψ0 para
el cuántico. La densidad de probabilidad del sistema mixto tomará la forma FQC(ξ, ψ) =
δ(ξ − ξ0)δ(ψ − ψ0)

43 y aśı tendremos que

ρ(ξ) =

∫
MQ

dµQFQC(ξ, ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

=

∫
MQ

dµQδ(ξ− ξ0)δ(ψ−ψ0)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

= δ(ξ− ξ0)
|ψ0⟩⟨ψ0|
⟨ψ0|ψ0⟩

43La función FQC está bien definida y cumple las condiciones de normalización y positividad.
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ρ =

∫
MC

dµCρ(ξ) =

∫
MC

dµCδ(ξ − ξ0)
|ψ0⟩⟨ψ0|
⟨ψ0|ψ0⟩

=
|ψ0⟩⟨ψ0|
⟨ψ0|ψ0⟩

De manera análoga, si en vez de tener un estado puro en la parte cuántica, hu-
biéramos tenido un estado mixto, la densidad de probabilidad habŕıa sido FQC(ξ, ψ) =
δ(ξ − ξ0)

∑
k pkδ(ψ − ψk) y el operador densidad habŕıa resultado ser

ρ(ξ) = δ(ξ − ξ0)
∑
k

pk
|ψk⟩⟨ψk|
⟨ψk|ψk⟩

ρ =
∑
k

pk
|ψk⟩⟨ψk|
⟨ψk|ψk⟩

Parece que el significado del operador es el correcto en cuanto a que mediante la de-
finición hecha, podemos recuperar su forma original. Cabe destacar, a la vista de esto,
que la información contenida tanto en FQC como en ρ sobre el sistema, es básicamente la
misma44.

Calculemos ahora el valor medio del operador A. Según la definición del operador
densidad ρ tendremos que

⟨A⟩ =
∫
MC×MQ

dµQCFQC(ξ, ψ) eA(ξ, ψ) =

∫
MC×MQ

dµQCFQC(ξ, ψ)
⟨ψ|Aψ⟩
⟨ψ|ψ⟩

=

= Tr

((∫
MC×MQ

dµQCFQC(ξ, ψ)
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

)
A

)
= Tr(ρA)

de manera que se recupera la propiedad de un sistema puramente cuántico, en el que el
valor esperado de un observable A en H se puede calcular a partir de la matriz densidad
del sistema como ⟨A⟩ = Tr(ρA).

2.4.3. Conservación de la pureza en sistemas de Ehrenfest no estad́ısticos

Como ya se ha indicado antes, la dinámica de Ehrenfest, en ausencia de la parte es-
tad́ıstica, preserva la pureza de la parte cuántica sea cual sea la evolución del sistema.

Recordemos las ecuaciones de Ehrenfest:

˙⃗
RJ =

P⃗J
MJ

˙⃗
PJ = −⟨ψ|∇JHe(r⃗, R⃗)|ψ⟩

i~
d

dt
|ψ⟩ = He(r⃗, R⃗)|ψ⟩

44De hecho, la densidad de probabilidad FQC de un sistema sobre la parte cuántica se puede escribir
siempre como una combinación de deltas de dirac FQC =

∑
k λkδ(ψ − ψk) donde ψk son los autoestados

y λk los autovalores de la matriz densidad ρ del sistema. Véase referencia [13].
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La última de ellas es la que marca la evolución del subsistema cuántico que, en términos
de la matriz densidad correspondiente ρ = |ψ⟩⟨ψ|, se puede escribir mediante la ecuación
de von Neumann como

i~ρ̇ = [He, ρ]

Si la dinámica fuera unitaria, seŕıa trivial probar la conservación de la pureza. No
obstante, puesto que la dinámica es no lineal, tendremos que será también no unitaria y
la conservación de la pureza se podrá probar de la siguiente forma:

d

dt
Trρ2 = 2Tr(ρ̇ρ) = 2Tr([He, ρ] ρ) = 2 (Tr(Heρρ)− Tr(ρHeρ)) = 0

Con ello, si se parte de un estado puro (Trρ2 = 1), se mantendrá puro.

2.4.4. Pérdida de pureza en sistemas mixtos

A partir de aqúı, junto con la construcción estad́ıstica realizada sobre el formalismo de
Ehrenfest, veremos que aunque la dinámica parta de un estado puro para el subsistema
cuántico, si las condiciones iniciales de la parte clásica son indeterminadas, se conver-
tirá en un estado mixto perdiendo aśı su pureza.

Con las definiciones hechas sobre la matriz densidad ρ, resulta evidente que Trρ2 =
Tr(ρρ) = ⟨ρ⟩. De esta forma diremos que un sistema mixto clásico-cuántico es cuántico
puro si y solo si

Trρ2 = ⟨ρ⟩ =
∫
MQ

dµQFQ(ψ) eρ(ψ) = 1

En caso contrario diremos que es cuántico mixto. Veámoslo con un ejemplo práctico.

Ejemplo: distribución equiprobable

Suponer un sistema con la siguiente distribución inicial

FQC(ξ, ψ, t = 0) =

(
1

N

N∑
k=1

δ(ξ − ξk0 )

)
δ(ψ − ψ0)

Representa un estado puro para la parte cuántica y una distribución de estados equi-
probables para la parte clásica. Podemos ver, si utilizamos las distribuciones marginales,
que:

FC(ξ, t = 0) =

∫
MQ

dµQFQC(ξ, ψ, t = 0) =
1

N

N∑
k=1

δ(ξ − ξk0 )

∫
MQ

dµQδ(ψ − ψ0)

=
1

N

N∑
k=1

δ(ξ − ξk0 )
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FQ(ψ, t = 0) =

∫
MC

dµCFQC(ξ, ψ, t = 0) =
1

N

N∑
k=1

δ(ψ − ψ0)

∫
MC

dµCδ(ξ − ξk0 )

=
1

N

N∑
k=1

δ(ψ − ψ0) = δ(ψ − ψ0)

Y la función asociada a la matriz densidad fρ(η) tendrá la forma:

fρ(η, t = 0) =

∫
MQ

dµQFQ(ψ, t = 0)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩
=

∫
MQ

dµQδ(ψ − ψ0)
⟨η|ψ⟩⟨ψ|η⟩

⟨ψ|ψ⟩

=
|⟨η|ψ0⟩|2

⟨ψ0|ψ0⟩

De esta forma, la pureza del sistema en el instante inicial será:

⟨ρ(t = 0)⟩ =

∫
MQ

dµQFQ(ψ, t = 0) eρ(ψ, t = 0) =

∫
MQ

dµQδ(ψ − ψ0)
|⟨ψ|ψ0⟩|2

⟨ψ|ψ⟩⟨ψ0|ψ0⟩

=
|⟨ψ0|ψ0⟩|2

|⟨ψ0|ψ0⟩|2
= 1

Como era de esperar, en el instante inicial el sistema completo resulta ser un sistema
cuántico puro.

Veamos lo que ocurre a un tiempo t. Si denotamos como (Φ∗
ξ(ξ

k
0 , ψ0; t),Φ

∗
ψ(ξ

k
0 , ψ0; t))

45

a la trayectoria seguida por la condición inicial (ξk0 , ψ0) según las ecuaciones de Ehrenfest,
la distribución del sistema completo tendrá una forma tal que aśı

FQC(ξ, ψ, t) =
1

N

N∑
k=1

δ(ξ − Φ∗
ξ(ξ

k
0 , ψ0; t))δ(ψ − Φ∗

ψ(ξ
k
0 , ψ0; t))

y en concreto la distribución marginal FQ(ψ, t) correspondiente a la parte cuántica, mien-
tras que inicialmente era FQ(ψ, t = 0) = δ(ψ − ψ0), ahora será:

FQ(ψ, t) =
1

N

N∑
k=1

δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

∫
MC

dµCδ(ξ − Φ∗
ξ(ξ

k
0 , ψ0; t))

=
1

N

N∑
k=1

δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

Observamos aqúı el primer indicio, y es que parece que la incertidumbre en las condi-
ciones iniciales del subsistema clásico se ha transferido al cuántico.

45Esta notación hace referencia a la función flujo Φ del campo vectorial hamiltoniano del sistema, que
es el que marca las trayectorias de la dinámica. Ver apéndice.
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La función asociada a la matriz densidad fρ(η, t) tendrá la forma

fρ(η, t) =
1

N

N∑
k=1

∫
MQ

dµQδ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

⟨η|ψ⟩⟨ψ|η⟩
⟨ψ|ψ⟩

=
1

N

N∑
k=1

|⟨η|Φ∗
ψ(ξ

k
0 , ψ0; t)⟩|2

∥Φ∗
ψ(ξ

k
0 , ψ0; t)∥2

y por tanto, la pureza a un tiempo t será:

⟨ρ(t)⟩ =

∫
MQ

dµQ

(
1

N

N∑
k=1

δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

)(
1

N

N∑
k=1

|⟨ψ|Φ∗
ψ(ξ

k
0 , ψ0; t)⟩|2

⟨ψ|ψ⟩∥Φ∗
ψ(ξ

k
0 , ψ0; t)∥2

)

=
1

N2

N∑
j,k=1

|⟨Φ∗
ψ(ξ

j
0, ψ0; t)|Φ∗

ψ(ξ
k
0 , ψ0; t)⟩|2

∥Φ∗
ψ(ξ

j
0, ψ0; t)∥2∥Φ∗

ψ(ξ
k
0 , ψ0; t)∥2

Como vemos, aunque inicialmente la pureza era igual a 1, con el tiempo parece evolu-
cionar46.

La evolución estad́ıstica de Ehrenfest no conserva la pureza
en sistemas hamiltonianos mixtos clásico-cuánticos.

Para visualizar esto numericamente, pongamos un sistema por ejemplo compuesto por
una part́ıcula clásica en un espacio unidimensional47 (bien podŕıa ser un núcleo atómico)
acoplada a un sistema cuántico con 2 posibles estados (su última capa electrónica en
estado fundamental o excitado). Vendrá descrito por las coordenadas:

(ξ, ψ) = (R,P, q1, q2, p1, p2)

Sea fH(ξ, ψ) su función hamiltoniana de la forma:

fH(R,P, q
1, q2, p1, p2) = P 2 +

1

2
⟨ψ|He(R)|ψ⟩ = P 2 +

1

2
⟨ψ|σz + ϵ cos(R)σx|ψ⟩48

donde σz y σx son las matrices de Pauli que permiten la construcción del hamiltoniano
electrónico He sobre C2, que también debe ser hermı́tico.

σz =

(
1 0
0 −1

)
σx =

(
0 1
1 0

)

He(R) =

(
1 ϵ cosR

ϵ cosR −1

)
46Se pueden calcular las derivadas temporales de ⟨ρ(t)⟩ y probar que efectivamente la pureza disminuye

con el tiempo. Para un desarrollo completo, véase referencia [13].
47Por simplificar los cálculos.
48Es el tipo de función que se suele utilizar en estos casos de estudio.
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Notar que hemos incluido un parámetro ϵ que es el que nos va a permitir controlar
el grado de acoplo entre los subsistemas. Cuando ϵ = 0, ambos estarán desacoplados (ya
que He ̸= He(R)) y conforme ϵ sea mayor, el acoplo será más fuerte.

Pongamos, tal y como se ha visto, una distribución inicial equiprobable (por ejemplo
con N = 20) para la parte clásica y un estado puro para la parte cuántica:

Para la part́ıcula clásica se han elegido (de forma completamente aleatoria) las
siguientes 20 condiciones iniciales:

(ξ10 , ξ
2
0 , . . . , ξ

20
0 ) = (R1

0 = 0, P 1
0 = 0, R2

0 = 2, P 2
0 = 0,2, R3

0 = 4, P 3
0 = 0,4, . . .)

Los resultados que se podŕıan obtener con otras condiciones iniciales seŕıan análogos.

Para la parte cuántica se ha tomado ψ0 = (1, 0, 0, 0).

La evolución del sistema nos dará 20 trayectorias (Φ∗
ξ(ξ

k
0 , ψ0; t),Φ

∗
ψ(ξ

k
0 , ψ0; t)) equipro-

bables que se pueden determinar resolviendo las ecuaciones de Ehrenfest (vistas en el
apartado (2.2.4)) para la función hamiltoniana fH(R,P, q

1, q2, p1, p2) anterior.

Con todo esto, la evolución de la pureza según la expresión obtenida será:

0 10 20 30 40 50
Tiempo

0.2

0.4

0.6

0.8

1.0
Pureza

Figura 1. Evolución de la pureza para acoplos ϵ = 0,1 (ĺınea roja), ϵ = 1 (ĺınea naranja) y
ϵ = 10 (ĺınea azul).

En la gráfica se presenta la evolución de la pureza del sistema para tres acoplos di-
ferentes49: ϵ = 0,1, ϵ = 1 y ϵ = 10. Como era de esperar, cuando el acoplo entre ambos
subsistemas es muy pequeño (ϵ = 0,1 ∼ 0), la pureza de la parte cuántica prácticamen-
te se mantiene; mientras que conforme aumenta (ϵ = 1, ϵ = 10), mayor es la influencia
de la incertidumbre de las condiciones iniciales clásicas sobre el decrecimiento de la pureza.

49La elección se ha hecho con la intención de cubrir un rango amplio con diferentes órdenes de magnitud.
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Cabe destacar también que el acoplo simplemente tiene su efecto sobre la velocidad
de decrecimiento de la pureza, dejando su valor asintótico en todos los casos invariante.
Como la evolución del sistema depende fuertemente de las condiciones iniciales, llegada la
situación de equilibrio se tiene que las N trayectorias se reparten entre los NQ niveles del
subsistema cuántico. Por ello no es de extrañar que la pureza en el equilibrio no dependa
de ϵ, sino simplemente del número de trayectorias y de la dimensión del espacio de Hilbert
correspondiente50.

2.4.5. Aplicación: influencia de la temperatura en la pureza de sistemas mo-
leculares

Habiendo recuperado aśı la evolución de la pureza en un sistema hamiltoniano mixto
clásico-cuántico, ha llegado la hora de comprobar si los resultados de verdad reproducen,
al menos cualitativamente, el comportamiento observado en la naturaleza.

Suponer que tenemos un átomo como el del ejemplo numérico anterior51 y en un espacio
unidimensional52. El hecho de que se encuentre a una temperatura T se puede traducir
en que tendrá un estado de vibración y una velocidad adicional determinados. De esta
manera, tanto su posición R como su momento P tendrán una pequeña incertidumbre,
provocando la pérdida de pureza en la parte cuántica a lo largo de su evolución en el
tiempo. Como hipótesis, cabŕıa formular entonces:

A mayor temperatura, más rápida será la pérdida de pureza de nuestro átomo.

La presencia de una temperatura para el subsistema cuántico puede conseguirse con-
siderando el subsistema clásico como un reservorio térmico. Si el acoplo con el reservorio
es suficientemente débil53, entonces podremos considerar una temperatura de equilibrio T
constante. De esta forma, una posible manera de introducir la temperatura en la dinámica
del sistema es eligiendo la densidad de probabilidad del subsistema clásico de acuerdo a
una distribución térmica del tipo

FC ∝ exp

(
− ER
kBT

)
donde ER correspondeŕıa a la enerǵıa interna del reservorio54.

En nuestro formalismo, esta dependencia con la temperatura nos lleva a pensar en una
distribución de probabilidad inicial (t = 0) para nuestro sistema de la forma

FQC(ξ, ψ, t = 0) =
1

σ
√
2π

exp

(
−(ξ − ξ0)

2

2σ2

)
δ(ψ − ψ0)

50Para comprobar esta dependencia ver referencia [13].
51Un solo átomo que se puede encontrar en estado fundamental o excitado.
52Para simplificar el planteamiento del problema.
53Lo es. De hecho este ha sido el punto clave para realizar la aproximación de Ehrenfest y separar el

sistema completo en dos subsistemas.
54Véase la referencia [14]: pp.171-173 para una mejor justificación de este proceso.
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donde el parámetro σ haŕıa los papeles de temperatura.

El hecho de utilizar la desviación de la gaussiana σ como nuestra temperatura es evi-
dente: una mayor anchura en la distribución significa una mayor temperatura.

Sin embargo, para poder hacer los cálculos a partir de un número finito de trayecto-
rias de manera análoga a como se ha hecho hasta ahora, nos es necesario discretizarla.
Tendremos aśı:

FQC(ξ, ψ, t = 0) = A
N∑
k=1

[
exp

(
−(ξ − ξ̄0)

2

2σ2

)
δ(ξ − ξk0 )

]
δ(ψ − ψ0)

donde hay un total de N condiciones iniciales ξk0 (que distribuiremos equiespaciadamente
con mayor o menor separación entre ellas en función de σ), “pesadas” con la distribución
térmica correspondiente, y siendo ξ̄0 su valor medio.

La constante A puede determinarse a partir de la condición de normalización impuesta
sobre FQC . ∫

MC×MQ

dµQCFQC(ξ, ψ, t = 0) = 1

A
N∑
k=1

∫
MC×MQ

dµQC exp

(
−(ξ − ξ̄0)

2

2σ2

)
δ(ξ − ξk0 )δ(ψ − ψ0) = 1

A

N∑
k=1

exp

(
−(ξk0 − ξ̄0)

2

2σ2

)
= 1

A =

(
N∑
k=1

exp

(
−(ξk0 − ξ̄0)

2

2σ2

))−1

De tal forma que la distribución inicial será

FQC(ξ, ψ, t = 0) =

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−1 N∑
k=1

[
e−

(ξ−ξ̄0)
2

2σ2 δ(ξ − ξk0 )

]
δ(ψ − ψ0)

Pasado un tiempo, cada una de las condiciones iniciales evolucionará con una trayec-
toria. Aśı la densidad de probabilidad a tiempo t tendrá la forma

FQC(ξ, ψ, t) =

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−1 N∑
k=1

[
e−

(ξk0−ξ̄0)
2

2σ2 δ(ξ − Φ∗
ξ(ξ

k
0 , ψ0; t))δ(ψ − Φ∗

ψ(ξ
k
0 , ψ0; t))

]
donde hay que notar que cada una de las trayectorias queda “pesada” con su probabilidad
inicial (que es lo más natural desde el momento en que hemos supuesto la temperatura
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del reservorio constante55).

A partir de aqúı, para calcular la evolución de la pureza del sistema a lo largo del
tiempo, se puede proceder de foma similar al caso equiprobable. La distribución marginal
FQ(ψ, t) tomará la forma

FQ(ψ, t) =

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−1 N∑
k=1

[
e−

(ξk0−ξ̄0)
2

2σ2 δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

]
La función asociada a la matriz densidad fρ(η, t) será

fρ(η, t) =

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−1 N∑
k=1

[
e−

(ξk0−ξ̄0)
2

2σ2

∫
MQ

dµQδ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

⟨η|ψ⟩⟨ψ|η⟩
⟨ψ|ψ⟩

]

=

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−1 N∑
k=1

[
e−

(ξk0−ξ̄0)
2

2σ2
|⟨η|Φ∗

ψ(ξ
k
0 , ψ0; t)⟩|2

∥Φ∗
ψ(ξ

k
0 , ψ0; t)∥2

]

y como consecuencia, la pureza a un tiempo t resultará como

⟨ρ(t)⟩ =

∫
MQ

dµQFQ(ψ, t) eρ(ψ, t)

=

(
N∑
j=1

e−
(ξ
j
0−ξ̄0)

2

2σ2

)−2 N∑
k,l=1

[
e−

(ξk0−ξ̄0)
2

2σ2 e−
(ξl0−ξ̄0)

2

2σ2
|⟨Φ∗

ψ(ξ
k
0 , ψ0; t)|Φ∗

ψ(ξ
l
0, ψ0; t)⟩|2

∥Φ∗
ψ(ξ

k
0 , ψ0; t)∥2∥Φ∗

ψ(ξ
l
0, ψ0; t)∥2

]

Hay que destacar que, al igual que en el caso equiprobable, la pureza evoluciona de
acuerdo a las trayectorias del sistema (que es donde se encuentra la dependencia temporal).
Sin embargo aqúı tenemos un parámetro más, σ que es el que representa la temperatura
del sistema.

Utilicemos de esta forma, para nuestra representación, una función hamiltoniana si-
milar a la vista

fH(R,P, q
1, q2, p1, p2) = P 2 +

1

2
⟨ψ|He(R)|ψ⟩ = P 2 +

1

2
⟨ψ|σz + ϵ cos(R)σx|ψ⟩

y un total de N = 21 condiciones iniciales para nuestro sistema clásico.

55Para una segunda aproximación, en la que se incorporaran efectos de correlación entre reservorio y
subsistema cuántico, habŕıa que hacer depender la densidad de probabilidad FQ(ψ, t) de las posiciones
de los núcleos en cada instante de tiempo, redefiniendo de la misma forma la normalización a cada paso
de integración.
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Ξ0-3 Σ Ξ0-2 Σ Ξ0-Σ Ξ0+Σ Ξ0+2 Σ Ξ0+3Σ
Ξ

0.15

FCHΞ,t=0L

Figura 2. Densidad de probabilidad inicial para el subsistema clásico a una temperatura
T = σ.

A partir de un valor concreto de ξ̄0 = (R,P ), que serán la posición y momento
teórico de nuestro átomo a la temperatura dada, se han tomado 10 condiciones más
a cada lado de la gaussiana, de manera equiespaciada, y hasta un valor de 3σ.

Para la parte cuántica se sigue tomando ψ0 = (1, 0, 0, 0).

La evolución de la pureza a lo largo del tiempo, y teniendo en cuenta al parámetro σ
como la temperatura del sistema, será

Figura 3. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en función
de la temperatura. Acoplo débil ϵ = 0,1.
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Figura 4. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en función
de la temperatura. Acoplo medio ϵ = 1.

Figura 5. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en función
de la temperatura. Acoplo fuerte ϵ = 10.

De la misma forma que para la distribución equiprobable, se muestra la pureza para
un acoplo débil ϵ = 0,1, un acoplo medio ϵ = 1 y un acoplo fuerte ϵ = 10. Tal y como cab́ıa
esperar, para ϵ = 0,1 el sistema prácticamente no pierde su pureza, haciéndolo muy len-
tamente. Para un acoplo un poco mayor ϵ = 1 ya resulta evidente esta pérdida; mientras
que para un acoplo fuerte ϵ = 10, el sistema alcanza la pureza de equilibrio casi al instante.
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No obstante, el hecho que cabe destacar de estas representaciones es la dependencia
con la temperatura. Nuestra hipótesis de trabajo dećıa que a una mayor temperatura,
cabŕıa esperar una pérdida más rápida de la pureza. Y efectivamente, en cualquiera de los
acoplos se puede observar que, cuanto mayor es el parámetro σ, más rápidamente decae
la pureza del sistema.

A modo de comprobación, ahora que ya hemos cogido la idea intuitiva de cómo abor-
dar el problema, podŕıamos complicarlo un poco más considerando un átomo similar al
estudiado pero en un espacio bidimensional56. Los cálculos de la matriz densidad y de
la pureza son exactamente los mismos. Sin embargo, habrá ligeros cambios tanto en la
función hamiltoniana

fH(Rx, Ry, Px, Py, q
1, q2, p1, p2) = |P |2 + 1

2
⟨ψ|σz + ϵ cos(|R|)σx|ψ⟩

como en las condiciones iniciales del subsistema clásico57:

Ξ0
x-3 Σ Ξ0

x-2Σ Ξ0
x-Σ Ξ0

x+Σ Ξ0
x+2 Σ Ξ0

x+3 Σ
Ξx

Ξy

Figura 6. Densidad de probabilidad inicial para el subsistema clásico bidimensional a una
temperatura T = σ. Planta.

56Pasaŕıamos directamente al caso tridimensional, pero los tiempos de computación son extremada-
mente largos.

57Ahora con N = 26.
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FCHΞ,t=0L

Ξ0-3Σ Ξ0-2Σ Ξ0-Σ Ξ0 Ξ0+Σ Ξ0+2 Σ Ξ0+3 Σ

0.12

Figura 7. Densidad de probabilidad inicial para el subsistema clásico bidimensional a una
temperatura T = σ. Perspectiva.

De esta forma, los resultados son:

Figura 8. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en función
de la temperatura. Acoplo débil ϵ = 0,1.
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Figura 9. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en función
de la temperatura. Acoplo medio ϵ = 1.

Figura 10. Evolución de la pureza de nuestro sistema molecular a lo largo del tiempo en
función de la temperatura. Acoplo fuerte ϵ = 10.

Dado que reflejan exactamente la misma información que en el caso unidimensional,
podŕıamos dar por validada nuestra hipótesis:

A mayor temperatura, más rápida es la pérdida de pureza de sistemas moleculares.

Conviene recordar que los resultados en cualquier caso son fiables solamente de un
modo cualitativo y que por lo tanto, no permiten ir mucho más allá. En cualquier ca-
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so, está claro que las herramientas desarrolladas a lo largo de todo el trabajo nos han
permitido hacer predicciones correctas sobre el comportamiento de nuestro sistema.
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3. CONCLUSIÓN

En el trabajo se ha comenzado presentando el Formalismo Geométrico de la Mecánica
Cuántica como una herramienta poderosa con la que poder describir sistemas puramente
cuánticos. En concreto, lo que ha permitido ha sido convertir un sistema lineal sobre un
espacio de Hilbert y descrito por la ecuación de Schrödinger, en un sistema no lineal so-
bre una variedad simpléctica con un corchete de Poisson definido y descrito mediante las
ecuaciones de Hamilton. El cambio no parece muy sorprendente en cuanto a que los dos
formalismos parecen describir la misma dinámica; es más, parece incluso antiproducente
si pensamos en la pérdida de la estructura lineal del espacio de estados. Sin embargo, en
seguida ha salido a la luz su potencialidad.

Como hemos visto, el modelo de Ehrenfest resulta una de las mejores opciones a la
hora de describir sistemas mixtos clásico-cuánticos. Sin embargo, a pesar de resultar mu-
cho más cómodo por las simplificaciones que hace sobre el sistema de estudio, también
nos hemos dado cuenta de las limitaciones que supone. En nuestro caso, nos interesaba
recuperar la información perdida sobre la evolución de la pureza, y eso sólo nos ha sido
posible mediante conceptos estad́ısticos aplicados al modelo.

Aqúı es donde entra en juego el Formalismo Geométrico de la Mecánica Cuántica,
puesto que sin una descripción hamiltoniana de nuestro sistema completo58, nos hubie-
ra resultado imposible hacer la ampliación del modelo y aplicar los objetos estad́ısticos
definidos59 sobre la forma tradicional de la dinámica de Ehrenfest. La razón es sencilla.
Para la construcción de la mecánica estad́ıstica sobre sistemas mixtos, hay que encontrar
una forma de traspasar la dinámica desde el espacio de observables (función hamiltoniana
fH

60) hacia una densidad de probabilidad (FQC(t)
61) bien definida sobre un espacio de

fases. Sin embargo, para la correcta definición de esta función, es necesario contar con un
elemento de volumen que sea invariante temporal que permita integrar las probabilida-
des sobre ese espacio. Es aśı como, al haber descrito la dinámica del sistema como una
dinámica hamiltoniana (tratando los dos subsistemas “como si fueran clásicos”), hemos
conseguido que se respete el volumen simpléctico (por el teorema de Liouville) consiguien-
do de esta manera la correcta construcción de FQC . Bajo este hecho entre otros podemos
entonces afirmar la potencialidad del formalismo geométrico.

Sin embargo, ¿por qué nos hemos visto en la necesidad de ampliar el formalismo de
Ehrenfest para poder estudiar la evolución de la pureza?

Generalmente, cuando se quiere crear un modelo de dinámica mixta clásico-cuántica
(MQCD), se comienza con una “destrucción” del sistema completo (separación en subsis-
temas) seguida de una “reconstrucción” que trata de recuperar las propiedades del sistema
cuántico completo. La decoherencia de estados es una de esas propiedades que tratan de
recuperar la mayoŕıa de modelos, pues es sumamente significativa para un modelo que
pretenda ser realista: es la que permite describir estados entrelazados dentro del sistema

58No sólo de la parte clásica, sino también de la parte cuántica.
59Objetos puramente dentro del marco de la Mecánica Estad́ıstica Clásica.
60Capaz de describir los microestados del sistema en cualquier instante de tiempo.
61Capaz de describir el macroestado del sistema en cualquier instante de tiempo.

39



Trabajo de Fin de Grado 2013/14 “GQM in ED”

completo. Como consecuencia de ello, mientras que la forma tradicional del modelo de
Ehrenfest sólo contempla la existencia de estados separables, una buena “reconstrucción”
debeŕıa contemplar también una mezcla estad́ıstica de los mismos, llevándonos aśı a una
pérdida de pureza del sistema. Es por ello que en nuestro estudio hemos querido comenzar
con este pequeño paso, contemplando en el modelo la evolución de la pureza, un ingre-
diente necesario para la decoherencia. La solución al problema último podŕıa encontrarse
también en nuestro formalismo geométrico, es cuestión de “seguir descubriéndolo”.

Como posible mejora de los cálculos realizados sobre la influencia de la temperatu-
ra, cabŕıa mejorar la aproximación hecha a la distribución gaussiana, pensando en incluir
efectos de correlación entre el reservorio (subsistema clásico) y la nube electrónica (subsis-
tema cuántico). En ese caso, la influencia de la parte cuántica sobre la clásica ya no seŕıa
despreciable, y esta última no podŕıa mantener la temperatura del sistema constante. En
cada instante de tiempo, habŕıa que considerar también la evolución del reservorio debida
al acoplo de tal forma que

FQ(ψ, t) =

(
N∑
j=1

e−
(Φ∗
ξ (ξ

j
0,ψ0;t)−Φ∗

ξ (ξ̄0,ψ0;t))
2

2σ2

)−1 N∑
k=1

[
e−

(Φ∗
ξ (ξ

k
0 ,ψ0;t)−Φ∗

ξ (ξ̄0,ψ0;t))
2

2σ2 δ(ψ − Φ∗
ψ(ξ

k
0 , ψ0; t))

]
Notar que en esta expresión, el “peso” de cada una de las trayectorias ya no se mantiene
constante en el tiempo. Esto implicaŕıa tener que renormalizar a cada paso de integración
la función completa.

Otra posible mejora en el trabajo seŕıa considerar un modelo más realista para la inter-
acción entre electrones y núcleos, ya que sólamente he considerado para las simulaciones
un sistema cuántico de dos niveles y éste no refleja el comportamiento de la ecuación
“real”.
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ceto. Statistics and Nosé formalism for Ehrenfest dynamics. Journal of Physics A:
Math. Theor. 44, 395004, 2011.

[11] F.A. Bornemann, P. Nettesheim and C. Schütte. Quantum-classical molecular dyna-
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