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RESUMEN

El Formalismo Geométrico de la Mecdnica Cudntica resulta una herramienta muy
poderosa que, desde los anos setenta, persigue describir tanto sistemas cuanticos como
sistemas clasicos bajo un mismo marco matemaético. En la primera parte del trabajo ve-
remos como, echando mano de la geometria diferecial, traduce las estructuras tensoriales
propias de los sistemas clasicos hamiltonianos en elementos con los que describir el espa-
cio de Hilbert de un sistema cuantico, su espacio de observables, la dinamica dada por la
ecuacion de Schrodinger y la informacion espectral de cada uno de sus operadores.

De esta forma, conseguida la traduccion, se hace evidente la potencialidad del for-
malismo en aplicaciones como el tratamiento de sistemas mixtos clasico-cuanticos. En la
segunda parte del trabajo y mediante la ayuda de este formalismo geométrico conseguire-
mos una adaptacion del modelo de Ehrenfest, que es el que se encarga de esta disciplina,
para conseguir una descripcion hamiltoniana tanto de la parte clasica como de la par-
te cudntica del sistema mixto y tratar ambas como si fueran “cldsicas”. Mediante este
cambio, nos sera posible entonces ampliar el modelo para recuperar efectos que antes no
contemplaba, como es el de la evolucién de la pureza, ingrediente necesario para describir
cualquier tipo de decoherencia en el sistema.

Finalmente y con la intenciéon de comprobar la validez de esta ampliacion, estudiaremos
la evolucion de la pureza de diferentes sistemas, en concreto la influencia de la temperatura
sobre la pureza de sistemas moleculares, y su parecido con la fenomenologia observada.
La importancia del Formalismo Geométrico de la Mecanica Cudntica en la reconstruccion
del modelo de Ehrenfest habra quedado entonces probada.
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1. FORMULACION GEOMETRICA DE LA MECANI-
CA CUANTICA

1.1. Introduccién

Las herramientas matematicas de que disponemos a la hora de describir sistemas en
Mecénica Clasica y en Mecdnica Cuédntica son completamente diferentes. Mientras que
la primera suele recurrir a objetos de la Geometria Diferencial, la segunda suele estar
mas orientada al Algebra y al Analisis Funcional, haciendo que la conexion entre ambos
formalismos no sea para nada inmediata.

De esta forma, en un empeno por tratar de manera similar ambos tipos de sistemas, se
lleva desarrollando desde finales de los afios setenta! el llamado Formalismo Geométrico
de la Mecdnica Cudntica. Lo que pretende es buscar una descripcion alternativa de la
Mecéanica Cuantica, basandose en las estructuras geométricas de la Mecénica Clasica no
relativista.

Las propiedades que aparecen y la potencialidad del nuevo formalismo permiten des-
tacar algunas aplicaciones importantes como por ejemplo la

-Caracterizacion geométrica del entrelazamiento en campos como Computacion Cudnti-
ca y Control Cuantico.

Aunque la aplicacién sobre la que nos centraremos (y de la que trata la segunda parte
del trabajo) es la

-Descripcion de sistemas miztos cldsico-cudnticos (Formalismo de Ehrenfest) dentro
de los campos de Dindmica Molecular y Mecdnica Estadistica.

1.2. Formulaciéon geométrica de la Mecanica Cuantica

Veamos en primer lugar cudles son los ingredientes del marco cldsico? de los que
buscaremos su analogo en el cuantico:

= Los estados fisicos del sistema estan representados por el espacio de fases S, el cudl
es una variedad real diferenciable que contiene las posiciones y momentos de cada
uno de ellos. Ademads, sobre este espacio existen una serie de estructuras (los fibrados
tangente y cotangente, una estructura simpléctica, un corchete de Poisson...) que
permiten definir la dinamica y naturaleza del sistema.

= El espacio de observables O o magnitudes fisicas del sistema son un conjunto de
funcionales que actiian sobre los elementos del espacio de fases.

! Autores como Kibble [5], Ashtekar and Schilling [4] o Brody [6] entre otros.

2Todos los objetos del formalismo geométrico se construyen por comparacién con la Mecanica Clasica
no Relativista Hamiltoniana. Ver apéndice A para un desarrollo méas completo de la descripcién geométrica
hamiltoniana.
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= Asfi el proceso de medida puede darse mediante el “pairing” O x § — R, que asocia
un valor real para una magnitud determinada a un estado dado.

= La dindmica viene definida a partir de un conjunto de ecuaciones diferenciales,

conocidas como ecuaciones de Hamilton, que desde el punto de vista geométrico

corresponde con las curvas integrales de un campo vectorial hamiltoniano®.

Por simplicidad, la construccién la haremos sélo sobre la imagen de Schrodinger y
para estados puros, aunque la de Heisenberg y los estados mixtos admitan también una
geometrizacion.

1.2.1. Espacio de estados S

El espacio de estados de un sistema cuantico se identifica con el espacio de Hilbert .
Si tenemos una base de dimensién n*, {|ex)}, el estado |1)) podrd escribirse como

)= tles)  H~C"
k=1

De esta forma, la variedad real diferenciable Mg que buscamos la podemos construir
a partir de estas coordenadas y su realificacién ¢y, — ¥ + i].

{1, ...} EH~C" = {@f QR pl ol = {Ug, U} € Hyg ~ R™

Por comparacién con el espacio de fases, a estas coordenadas se les suele denotar como
qpf =q"y w,g = pi aunque no sean posiciones ni momentos.

Como el espacio de Hilbert H es un espacio vectorial, se puede hacer la asociacién
TH ~ H xH, en el sentido de que cada espacio tangente T, H en el punto ¢ se identifique
con el propio H.

El resto de estructuras algebraicas de H deberan traducirse en campos tensoriales
sobre M.

= La estructura compleja por ejemplo, se describe como el tensor J que actia de la
siguiente manera:

JMQ—>MQ J(\I/R,‘I/[):(—\I/],‘I/R)

Es imediato comprobar que J? = —I, por lo que se trata del andlogo a la unidad
imaginaria i del espacio de Hilbert®.

3Campo vectorial asociado al hamiltoniano del sistema y que puede escribirse como Xg = {H,-}.

4Nos centraremos en sistemas de dimensién finita, en cuanto a que los de dimensién infinita plantean
problemas a la hora de definir la variedad diferenciable correspondiente.

®Véase referencia [1]: capitulo 8.
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» Asi, y siendo una de las propiedades méas importantes del espacio de Hilbert, la
estructura lineal en Mg queda codificada mediante el campo vectorial:

A Mg — TMg v — (¥, )

A este campo se le llama campo de dilataciones, y lo veremos més adelante cuando
definamos el espacio complejo proyectivo P correspondiente a M.

Sea

Xy: Mg —>TMg ¢ — (6,7)

el campo vectorial constante que asocia a todos los puntos ¢ € Mg el mismo estado
Y e TMg.

= La estructura hermitica del espacio de Hilbert H queda también traducida por un
tensor hermitico h tal que:

<w1‘w2> =h (Xllll?Xl/a) ((b) Vo

Puesto que en las coordenadas realificadas, el producto hermitico (1;]1) con ¢y, 19 €

H es

((0F, 09) | (95, 03)) = (U, 05) + (01, 03)) + (07, 03) — (U7, 93)) ©

con (U, ¢]), (VF, ¥l) € R, entonces se puede escribir:

h (qusz) =g <X¢17X¢2> +w (Xdll?sz)

donde evidentemente g se trata de un tensor simétrico y w es un tensor antisimétrico,
ambos 2 veces covariantes. El tensor simétrico g es una forma bilineal no degenerada
que ademas es definida positiva. Por ello, podemos decir que el par (Mg, g) define
una estructura Riemanniana. Igualmente, el tensor antisimétrico w es una forma
bilineal no degenerada y que ademds es exacta, lo que permite definir el par (Mg, w)
como una variedad simpléctica exacta’.

De forma muy descriptiva, la estructura riemanniana seria la que nos permite medir
distancias entre los elementos de nuestro espacio, y la estructura simpléctica, la que
permite medir areas orientadas entre vectores del espacio.

En su conjunto, la terna (g,w, J) permite definir una estructura de Kéhler y es ésta
la que convierte a su vez (Mg, (g,w, J)) en una variedad Kéhler. La relacién entre ellas
se puede deducir facilmente de las propiedades del producto hermitico:

Wﬂi%) = Z'<¢1|?/12> <W1W2> = _i<¢1|1/12>

6(.,-) denota el producto escalar euclideo.
"Ver apéndice B: B.20.
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9 (X, Xyy) = w ( Xy, JXy,) W ( Xy, X)) = g (J Xy, Xy,)

Por tiltimo, si tenemos en cuenta la coordinacién del espacio de fases 1 — (¢"(¢), pr(v)),
las estructuras tensoriales presentadas tomaran la forma

h = dy @ dipy = (dg" — idpy,) ® (dg* + idpy) =
= dq* ® dq* + dp, ® dpy, + i (dg" @ dpy, — dpx ® dq")

g=d¢" @dg" +dp. @ dpy  w = dq" Adpy
y también
0 0
J=——@dd" — — @ dp
Opr, Oq
lo que nos demuestra, viendo la forma de la forma simpléctica, que (q’“ , ]ok)8 son coorde-
nadas de Darboux.

También es interesante considerar la version contravariante de los tensores g y w ya
que nos permitiran definir los analogos del conmutador y el anticonmutador en el espacio
de observables O.

g9 o0 9 9
~9¢F T 9¢"  Opr  Opy
_9 ,9
_&Ik 3pk

Con esto ya hemos reformulado nuestro primer ingrediente:

S: (Ha <’>) — (MQ’ (gawa ‘]))

Vemos en comparacién con la Mecanica Clésica (donde el espacio de estados se define
s6lo con una variedad diferenciable y una estructura simpléctica) que aparecen dos ele-
mentos nuevos: los tensores g y J; y que ademaés la variedad queda cubierta por una sola
carta global.

1.2.2. Espacio de observables O

Los observables dentro del espacio de Hilbert son operadores lineales y hermiticos. Al
tratarse de operadores autoadjuntos, sus autovalores son siempre reales y por tanto tam-
bién su valor esperado. Asi, en analogia con el marco clasico (donde las magnitudes fisicas
son funciones reales sobre el espacio de estados), estos observables se pueden traducir
como:

End(H) = F(Mg) A fa(y) = %<¢|Aw>

8Ver Teorema de Darboux en el apéndice B: B.22-B.23.
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En el caso de que los operadores no fueran hermiticos, las funciones serian complejas y
ademads no tendrfan para nosotros ningun significado fisico. Distinguimos asf entre F (M)
y Fr(Mg) como los conjuntos de todas las funciones cuadréticas posibles y las funciones
cuadrdticas? reales asociadas a observables (Fr(Mg) C F(Mg)).

Una vez identificadas las magnitudes, lo propio seria traducir también las estructuras
algebraicas del espacio de operadores lineales como pueden ser el producto asociativo, el
conmutador o el anticonmutador. Para operadores A, B € End(H):

» Producto asociativo:

- End(H) x End(H) — End(H) (A,B) — AB

» Anticonmutador:

(-]t End(H) x End(H) — End(H) (A,B) — [A,B], = AB+ BA

Se puede comprobar que (End(?—[), [ ]+) definen una estructura de dlgebra de Jor-
dan'?.

» Conmutador:

[-,-] : End(H) x End(H) — End(H) (A,B)— [A,B] = —i(AB — BA)

Se puede comprobar que (End(H),[-,-]) definen una estructura de dlgebra de Lie''.

Notar que hemos definido estas estructuras sobre el espacio de endomorfismos End(H)
y no sobre el de operadores hermiticos porque, aunque el conmutador y el anticonmutador
sf lo sean, el producto asociativo no serfa una operacién interna'2.

De esta forma, para traducir estas estructuras sobre el espacio de funciones F (M),
podemos echar mano directamente de los tensores G y €0 ya definidos, ya que resulta
quels:

{fa, fB}+ = flap, = G (dfa,dfs) {fa. fB} == fram = Q(dfa,dfp)
donde df 4, dfp son 1-formas sobre M.

Una vez definidas estas estructuras {-, -}, {-, -}, que llamaremos corchetes de Jordan
y de Poisson respectivamente, es sencillo ver que para el producto asociativo se tiene que

9Notar que una transformacién no cuadréitica es puramente geométrica y no tiene por qué poseer
significado fisico.

0Ver apéndice B: B.18.

" Precisamente por ello se introduce la unidad imaginaria i en el conmutador. Ver apéndice B: B.17.

12E] producto de dos matrices hermiticas no es, en general, hermitico.

13Véase [7]: p.62.
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1 1 1 '
AB = (AB+ BA)+ 5 (AB— BA) = 5 [A,B]++%[A,B]
y entonces la traduccién resulta ser

fax fp:= fap = %{an [+ %{an I}

Por ultimo simplemente destacar que, al tratarse de un algebra de Lie-Jordan, los
corchetes satisfacen:

{fa S, fer+} = {{fa, 8}, fot+ + [, {fa, fe )+

HSfa fer+, fets —{fa S, fedite = [, {fo, fa}}

En resumen, nuestra geometrizacion ya cuenta con los siguientes ingredientes:

S: (H, () — (Mg, (g,w,J))

O: (End(H) hermiticos, [-,-] , [,*]) — (Fr(Mg), {-, - }+. {-»-})

1.2.3. Dinamica

14

La evolucion de un sistema hamiltoniano en Mecanica Clasica™ viene dada por las

ecuaciones de Hamilton

. OH . _OH

que se corresponden desde un punto de vista geométrico con las curvas integrales del
campo vectorial definido como

Xy = {H ) }
y que en coordenadas candnicas'® toma la forma

_OH 0 O0H 0
~ Opidq' Oq' Opi

La funcién H es lo que se conoce como hamiltoniano del sistema, y el corchete de
Poisson {-,-} es el que define la estructura de Poisson en el espacio de observables.'6

Xu

Ahora bien, en el marco cudntico, puesto que H (que esté definido sobre H) es un
operador hermitico y se le puede asociar la funcion fy(¢) = 3 (¢|Hv), podriamos tratar
de ver si el andlogo

XfH = Q(de’)

1Ver apéndice A para una descripcién geométrica de la mecanica hamiltoniana.
15Ver apéndice B: B.23.
16Ver apéndice B: B.19.
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nos define la dinamica del sistema, convirtiéndolo también asi en un sistema hamilto-
niano.

Sea H : C" — C" el hamiltoniano definido sobre H y sea
Hy Hyp -+ Hy,

H = : C T
Hnl Hn2 e Hnn

su forma matricial. Consideremos su realificacion Hg = Mg — Mg de manera que

Hq1q1 T quq" qupl T qupn

Hq2q1 T Hqun Hq2p1 T Hq?pn
Hp = . , . . .

Hpnq1 T Hpnq" Hpnm T Hpnpn

Es evidente que esta matriz Hy sera simétrica puesto que H era hermitica y entonces

Hprgo = Hyk = Hpy,p,

H

@ pr

= —Im(H) = —H,

pj;q

La funcién fy € F(Mg) asociada serd

q

Hq1q1 T quq" Hq1p1 T qupn :
1 1 " Hq2q1 S quqn Hq2p1 s qupn q”
fH—é(q " p Pn) C : o o
Hy,g -+ Hpqgn Hpp -+ Hpp, \p

Y entonces el campo vectorial Xy, tomard la forma:

Xy = Qdfu,-) ={fu,} ; (8}% oq* dq* apk)

Si calculamos las curvas integrales nos daremos cuenta en seguida que
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ql = qulql + .o+ Hpynq" + Hpypp1 + -+ Hpp, D
" = Hppq +...+ Hypoq"+ Hy ppr + ...+ Hy D
D1 —(Hpgq' + ...+ Hpgnq" + Hpppr + ...+ Hypp D)
Pn = —(Hpgq" + ...+ Hpgnq" + Hpnpop1r + ..+ Hynp D)

que se puede escribir en forma matricial como

1

“GQM in ED”

q q

5 Hy g Hypgn  Hgp, Hgp, :

i q" _ g quql Hq2qn qum Hq2pn q"
dt | p1 : : : : D1
Kp Hp, ¢ Hy,qn Hp,p, Hy,.p,, \p

donde!”

o equivalentemente

W(q,p) = —THp(, D)

expresion que se corresponde a la perfeccion con la ecuacion de Schrodinger.

) =—iH|)  (h=1)

Como conclusion podemos decir entonces que la ecuacion de Schrodinger nos define la
dindmica a través de un campo hamiltoniano Xy, sobre Mg. Ademads, se puede demos-
trar que este campo conserva tanto la estructura riemanniana'® (Lx, g = 0)' como la
simpléctica (Lx W = 0), lo que implica que se conserva también la unitariedad.

Hasta ahora llevamos:

S: (M, (-[-) — (Mg, (g, w, J))
O : (End(H) hermiticos, [-,-] , [,*]) — (Fr(Mg), {-,-}+. {-»-})
Dindmica : dfy = w (Xy,,)

"Notar que esta es la expresién matricial del tensor J que nos definfa la estructura compleja sobre
Mg. Véase [1]: pp.337,338.

18Se les da el nombre de campos de Killing.

9Ver apéndice B: B.14.

10
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1.2.4. Espacio complejo proyectivo P

Por el momento se ha hecho una construccién sobre Mg sin tener en cuenta un hecho
importante, y es que los estados fisicos que difieren tanto en médulo como en una fase
global son equivalentes. Sobre el espacio de Hilbert H corresponde a aquellos puntos
relacionados por un niimero complejo no nulo.

v e = 0 AeCo=C—{0}

De esta forma, sobre la variedad Mg se pueden considerar los siguientes campos vec-
toriales:

» Generador infinitesimal de la transformacién del cambio de mdodulo:

L0 ) )

—_— =1 —
8pk F or k
Se conoce con el nombre de Campo de dilataciones.

= Generador infinitesimal de la transformacién del cambio de fase global:

o .0 0

Nn=p— —¢"— = —
Page 1 ope — 00,
El cambio a coordinacién polar (qk ) pk) < (1), 0)) se muestra para evidenciar el signi-
ficado fisico de estos objetos. Se puede decir entonces que ambos dos son los generadores
infinitesimales correspondientes a la accion C* sobre H.

Una propiedad importante de estos campos es que conmutan [A, '] = 0. Es sencillo de
comprobar ya que, viendo las expresiones de arriba, resulta que I' = J(A). Asi, las curvas
integrales de A recorreran aquellos estados equivalentes en Mg que tengan una misma
fase global pero difieran en médulo; mientras que las de I', lo haran sobre los estados
equivalentes de igual médulo y distinta fase.

Considerando entonces en cada punto de Mg el subespacio generado por A y I', ten-
dremos lo que se conoce como una foliacion. Cada “hoja” es una clase de equivalencia®
en el espacio de estados Mg de dimension 2; y el espacio del conjunto de “hojas” es lo
que llamaremos Espacio complejo proyectivo P.

Si denotamos sus elementos como [¢] tendremos que

Pal:=mn(y) e Mg

donde 7 es el proyector definido como 7 : Mg — P.

Por ello, desde un punto de vista mas fisico, es el que mejor describe el espacio de
estados puros de un sistema cuantico.

20Orbitas de un punto de H bajo la accién de C*.

11
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Para el resto de estructuras, también es posible la proyeccion. Recordar que las fun-
ciones definidas en el espacio de observables son

faw) = 5{0140)

Para que correspondan con magnitudes fisicas reales, es necesario que sean invariantes
a lo largo de cada una de las “hojas” de Mg. Es asi como se definen las funciones e (1)*!:

(Y| AY) e ) = Tlde ) —
ea(y) = T = A(des) =T'(des) =0

Ahora si, estas funciones estdn en correspondencia 1 — 1 con las del espacio proyec-
tivo P. Cabe destacar que dejan de ser cuadraticas, aunque es perfectamente normal en
cuanto a que P ha perdido su estructura lineal pasando a ser simplemente una variedad
diferencial.

Para las estructuras riemanniana G y de Poisson 0?2, esta proyeccién a través de
7o : T Mg — TEO)P2 ge hace sin embargo imposible, ya que son derivaciones de grado
-2, y no se mantienen constantes a lo largo las “hojas” (LAG = —2G, LA = —2Q). Es

asi como se deben reescalar con un factor de grado 2, por ejemplo a través de la norma
del estado 1

{ea,ep}yp = Gp (dea,deg) = (YlY){ea,ep}+

{ea,ep}p = Qp (dea,dep) = (V[Y){ea, ep}

Cabe destacar aqui también que la estructura simpléctica en P deja de ser exacta, lo
que imposiblita definir una campo globalmente hamiltoniano que nos describa la dinami-
ca del sistema. Es por esto y por la pérdida de la estructura lineal por lo que se utiliza
preferiblemente Mg, Fr(Mg), G y € como herramientas de calculo.

Sin embargo, desde que A(des) =T'(des) =0 Vey € Fr(Mg), suponer que definimos
los tensores G'p y §2p como:

Gp=WWG-TRT —A®A

Qp=WY)Q-TRA-ART
Se puede comprobar?* que la accién de G sobre el conjunto de funciones proyectables
corresponde a
Gp (dea,dey) = eap, —ea-ep

lo que implica que si A = B, entonces

21Correspondientes al valor medio del operador A.

22No probamos con ¢ y w ya que la proyeccién a través de 7* : T(O2DP — T(O’z)MQ lleva el sentido
contrario.

23Ver apéndice B: B.10-B.11.

2Véase [7]:pp.65,66.

12
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Gp (dea,des) = eq2 — €%

Es asi como el espacio proyectivo nos ha permitido descubrir una de las muchas propie-
dades del formalismo geométrico: que Gp esta directamente relacionado con las relaciones
de indeterminacion.

Por ultimo, para la dinamica, se debe considerar el campo vectorial X.,, = Qp (degy, -).

1.2.5. La informacién espectral

La forma de recuperar la informacién espectral de los observables A sobre el espacio
de Hilbert es a través de las funciones valor esperado asociadas e4(v)).

s eqtu) = LE1AD)

(Y1)

De esta forma:

» Los autovectores son los puntos criticos de e4(1)):

dea(th,) =0 & 1), autovector deA

» Los autovalores se recuperan al evaluar la funcién e(1,).

Los posibles resultados de una medida se convierten asi en los posibles valores extre-
mos de las funciones e 4.

Hasta aqui se han presentado los principales ingredientes del formalismo geométrico
de la Mecénica Cuéntica. Para la imagen de Heisenberg, donde basicamente el espacio de
estados S lo forman las funciones F (M), habria que hacer un nuevo traslado de estruc-

turas?®.

En conclusion, acabamos de encontrar una manera de describir sistemas cuanticos
como simples sistemas hamiltonianos, con una estructura similar a la del marco clésico.
Las ventajas y facilidades obtenidas con el nuevo formalismo son varias, entre otras, la
que se presentara a continuacién:

= Tratamiento de sistemas mixtos cldsico-cudnticos: modelo de Ehrenfest.

25Véase referencia [8] para una descripcién mas completa.
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2. EL FORMALISMO DE EHRENFEST

En el mundo cuantico, la principal herramienta que nos pemite describir el comporta-
miento de cualquier sistema asi como sus propiedades es la ecuacién de Schrodinger?. Sin
embargo, utilizarla de manera directa se hace en la mayoria de las situaciones imposible,
siendo necesario recurrir a aproximaciones o simplificaciones del sistema.

Fijémonos por ejemplo en el &tomo de hidrégeno. La resolucion de su funcién de onda
mediante la ecuacion de Schrodinger para un potencial central es exacta. No obstante,
para obtener su estructura fina, se nos hace necesario recurrir a la teoria perturbativa y
a una serie de aproximaciones. De la misma forma, el dtomo de helio y el resto de ato-
mos multielectronicos tampoco pueden resolverse analiticamente mediante la ecuacién de
Schrodinger.

Asi, una de las aproximaciones més utilizadas para reducir el problema es llevar parte
del sistema cuéntico de estudio?” a su limite cldsico. Es lo que se conoce como Mized
quantum-classical dynamical models MQCD. En un sistema cuantico molecular, seria por
ejemplo considerar los ntcleos atomicos y los electrones més internos como particulas
clasicas y dejar la capa de electrones mas externa como un subsistema cuantico, dando
lugar a un sistema completo mixto.

El modelo de Ehrenfest es de esta forma el formalismo por excelencia de los siste-
mas mixtos clasico-cuanticos. Es mas, muchos de los modelos utilizados para dinamica
molecular derivan directamente del de Ehrenfest (i.e. modelo de Born-Oppenheimer)?.

2.1. El modelo de Ehrenfest

Veamos por ejemplo el sistema cuantico molecular mencionado anteriormente, formado
por nucleos y electrones internos (N), y electrones externos (e). El hamiltoniano (sobre el
espacio de funciones de onda Hy ® H.) del sistema cudntico completo se podria escribir
de la forma:

& S 2 1 72 2 1v72 1 Z;Z 1 z
H = —h ZJ MVJ — NI Zj §Vj + Armeg <Zi<K |§J‘I_R§'{K| - Zj<k 7i—7n ZJ,j |I§J;]Fj|>
= WY, 5 Vi WY 5Vi + Vi (P R)
10?3 V5 + He(7, R)
donde M; y Z; son la masa y la carga del nicleo J en unidades de los del electron y

donde se ha definido un potencial de interaccién Viy_.(7, ﬁ) y un hamiltoniano electrénico
H.(7, R).

Para comenzar la aproximacion, en primer lugar se debe separar la funcién de ondas del
sistema completo en otras dos acopladas U = U x®V¥,.?; y a continuacién llevar la nuclear

26Evidentemente en lo que a estados puros se refiere.

2"La que tenga una evolucién en sus grados de libertad mucho més lenta.
28V éase referencia [10)].

29Conocido como Time-dependent self-consistent model.
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a su limite cldsico®, lo que conlleva ademds a la pérdida del posible entrelazamiento entre
las dos. Tendremos asi un sistema descrito por las posiciones R ; de los nicleos y por
la funcién de ondas |[¢)) € H de la nube electrénica. Las ecuaciones de Ehrenfest surgen
directamente3!:

Mjéj - _<,¢)|VJH€(F7 é)|¢>

i) = He(7, B)ly)

O si se le quiere dar una descripcién mas “hamiltoniana”, se puede definir la funcién

que deja el sistema como

ﬁj = —<1/1‘VJH6(F> E)’w>

i 1) = He(F, B)ly)

Notar que la linealidad de la parte cuantica desaparece. Este seria el primer
paso a la hora de crear un modelo MQCD. Sin embargo, aunque aparentemente estas
ecuaciones tomen la forma de las ecuaciones de Hamilton®?, todavia no se puede hablar
de sistema hamiltoniano pues faltan los ingredientes principales, a saber:

= Variedad diferencial que haga las veces de espacio de fases S.
» Estructura simpléctica que nos defina un corchete de Poisson {-,-} sobre S.
» Una funcién fy € C*(S) que haga las veces de funcién hamiltoniana.

= Dar una estructura hamiltoniana a la ecuacion de Schrédinger electronica.

Enfrentaremos ese problema en la seccién siguiente.

2.2. Descripcién de la dinamica de Ehrenfest como un sistema
hamiltoniano
Gracias al Formalismo geométrico de la Mecanica Cudntica, hemos conseguido dar

una descripcién andloga tanto a sistemas cldsicos®® como cudnticos. De esta forma, la
posibilidad de juntar ambos y describir un sistema mixto se hace inmediata.

30Conocido también como Short-wave asymptotics method.

31Para un desarrollo completo de esta aproximacién ver la referencia [11].

32Como parece que ocurre con las dos primeras ecuaciones, que describen la dindmica de la parte
clasica.

33Ver apéndice A.
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2.2.1. Espacio de estados §

s El subsistema clasico se puede describir mediante una variedad diferenciable Mg
asociada al espacio de fases. Es evidente que la dimensién de My serda un nimero
par y dependera del nimero de “particulas” clasicas presentes. Ademés dispone de
una estructura simpléctica que permite definir un corchete de Poisson en el espacio
de funciones sobre M¢.

Si el subsistema tuviera N particulas en un espacio tridimensional, vendria identi-
ficado por:

(éla'--aéNcaﬁla"-;ﬁNc)EMC = dlm(Mc):3N0+3NC

= Para el subsistema cuédntico, y siguiendo en la linea del trabajo, se puede considerar
la realificacion del espacio de Hilbert correspondiente M. Igualmente, hay defini-
da una estructura simpléctica y una 2-forma €2 sobre el espacio de funciones F(Mg).

Asi, si por ejemplo se tienen N electrones, cada uno de ellos sobre un espacio de
Hilbert de dimensién M, tendremos que la dimensién del espacio de Hilbert H del

subsistema serd Ng = ( N ) y vendra identificado por:

(ql,...,qNQ,pl,...,pNQ)EMQ = dim(Mg) = Ng + Ng

Como consecuencia, se puede definir el espacio de estados S del sistema total como el
producto cartesiano de ambas variedades:

S = MC X MQ
Cabe destacar que mediante esta definicion ambos subsistemas se tratan de manera
separada y resulta imposible describir ningtin tipo de entrelazamiento. No obstante, en la
aproximacién del modelo de Ehrenfest ya se habia perdido esta informacién, por lo que no
supone ningin problema. A pesar de ello, en el siguiente apartado, veremos una posible
forma de recuperarla a partir de herramientas estadisticas.

2.2.2. Espacio de observables O

Por simple extension de los casos clasico y cuantico, los observables del sistema mixto
son funciones definidas sobre el espacio de estados S = M¢ x Mg,.

Recordemos que para un sistema cuantico, como las funciones que tenian significado
fisico eran

fa(¥) = %<¢|A1/)> A operador hermitico € Fgr(Mg),

para el sistema mixto se podria pensar en

{f € C™=(Mc x M)|f = ((7,9), A(R, P)y(q,p))}
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con A un operador lineal del espacio de Hilbert del sistema, dependiente de las coorde-
nadas cldsicas. Sin embargo, este conjunto no es cerrado con respecto al corchete de
Poisson que definiremos en el siguiente apartado; y ademas, tampoco se preserva debido
a la no linealidad de la dindmica de Ehrenfest®®. Es necesario agrandarlo.

Recurriendo asi a otra de las propiedades de un sistema cuantico, se puede definir el
espacio de observables O del sistema mixto como

O = {f € C*(Mo x Mo)|Tqf == (I& T)f =0}

debido a la invariancia del conjunto F(Mg) bajo un cambio de fase global. Notar que
este conjunto es mas grande y engloba al anterior, por lo que no se pierde ninguin opera-
dor, y ademas soluciona los problemas mencionados. Notar también que tendra elementos

adicionales, sin ningtn significado fisico y que sélo sirven para la definicién del conjunto

como un algebra de Poisson?S.

A continuacién se muestran algunas de las subdlgebras presentes:

= Funciones clasicas: sélo dependen de las coordenadas clasicas.

Oc = {f € O3fc € C*(Mc) 3 f(R, P,§,p) = fo(R, P)}

= Funciones cuanticas “generalizadas”: sélo dependen de los grados de libertad cuanti-
cos y ademas son invariantes bajo cambios de fase global.

Oq = {f € O3fg € C¥(Mg) > f(R, P,q,p) = fo(d,P) AT(fo) = 0}

Se puede considerar el subconjunto mas pequeno 0‘5, correspondiente a las fun-
ciones fo definidas sobre F(Mg), que es el que verdaderamente representa a los
observables.

» Combinacién lineal: son combinaciones lineales de las anteriores.

—

Ociq = 1{f € O[3(fc € C*(Mc)Afq € C=(Myg)) 3 f(R, P,q,p) = fo(R, P)+ fo(d.5)}

2.2.3. Estructura de Poisson {-,-}
En vista de que ya hay definidas dos estructuras simplécticas sobre cada uno de los
subsistemas (llamémoslas we y wg), de forma natural se define
w = we + hwg

como la estructura simpléctica del sistema total®”. De esta manera, el corchete de Poisson
correspondiente tendra la forma

341No permite definir el dlgebra de Poisson correspondiente.

35El operador evolucién no pertenece al conjunto.

36Ver apéndice B: B.17-B.19.

37Es antisimétrica y cumple tanto las identidades tanto de Jacobi como de Leibniz.
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-1
{'7 } = {'7 '}C +h {'7 '}Q
que definird una estructura de Poisson sobre C*°(M¢ x Mg).
Bajo este corchete de Poisson, tal y como se ha indicado antes, los conjuntos O¢, Og,

(’)5 vy Oc+q, asi como el propio O, son cerrados; es mas, cada uno de ellos define una
sub-algebra de Poisson del propio O.

Ademds, la condicién que nos define el espacio de observables O, f € O < T'g(f) =0,
es entonces equivalente a decir que f € O < {fi, f} =0, donde f; = (¢*)? + pi:

8qk Opy, Opy, 3qk Opy, P aqk

sTf=0sTof =0

lo que nos permite demostrar por ejemplo, que O sea efectivamente cerrado para el algebra
de Poisson definido:

{f{f.att="~Ag{f 1} —{f Ao it} =0 {f gt €O VfgeO

2.2.4. Dinamica
Ya tenemos las siguientes estructuras:
» Espacio de estados M¢ x Mg.
= Espacio de observables O.

» Estructura simpléctica w y correspondiente corchete de Poisson {-,-}.

Para terminar de describir el sistema completo como un sistema hamiltoniano,
nos queda la definicién de una funcién fg € C*°(M¢ x Mg) que llamaremos funcién
hamiltoniana:

fu(R,P.G.7) = ZQMJ U@ ) (R (d@, )

donde H, es la expresion ya vista del hamiltoniano electrénico, M; las masas de los
nicleos como componentes del subsistema clésico, y ¥(q,p) la funcién de ondas de la
nube electronica como subsistema cuantico.

La dindamica vendra por lo tanto dada por

Ofu
oP

R {fH,R}— - M'P

38Por la identidad de Jacobi.
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9fu

P = {f. P} = =" = ~grad(0(3.)| H( Ry (d.7)
qk:{fH,qk}:h_l% k=1,...,Ng
pk:{fH,pk}:—hl% kE=1,...,Ng

que se corresponde con la dindmica de Ehrenfest vista al comienzo del capitulo.

En general la evolucién de cualquier operador f vendra dada por f = {fy, f}. Como
consecuencia, una magnitud serd una constante del movimiento si conmuta con la funcion
hamiltoniana.

Es evidente también que la dinamica preserva el espacio de observables O.

fH7f€O:>{fH7f}EO

Como consecuencia, hemos conseguido describir la dinamica de Ehrenfest como un
sistema hamiltoniano sobre una variedad de Poisson. La situacion sera similar a la
de un sistema standard clasico; y precisamente gracias a ello, nos serd posible definir el
sistema estadistico de a continuacién.

2.3. Un poquito de Mecanica Estadistica

El modelo de Ehrenfest, junto con el desarrollo del formalismo geométrico de la mecani-
ca cuantica, resulta una herramienta muy cémoda y sencilla para describir sistemas mix-
tos. Sin embargo hay que recordar que no deja de ser una aproximacion, por lo que su
poder predictivo es limitado. Existen asi fenémenos que escapan a su alcance y que son
de vital importancia en cualquier modelo que pretenda ser realista, como por ejemplo el
de decoherencia. En general, cualquier propiedad del sistema que esté relacionada con el

entrelazamiento se pierde debido a la separacién que hemos hecho entre los subsistemas.

De esta forma, se pueden implementar al formalismo herramientas adicionales que per-
mitan recuperar parte de esta informacion perdida. Me estoy refiriendo a elementos de la
Mecanica Estadistica. Los objetos que definiremos tienen su origen sobre la mecanica
estadistica “clasica”, y de ahi la importancia de haber definido nuestro sistema mixto
como un sistema hamiltoniano.

Para nuestro trabajo, ya que el fenémeno de decoherencia es suficientemente complejo
como para necesitar una ampliacion importante del modelo, trataremos de recuperar lo
referente a la evolucion de la pureza de un sistema. Se trata de algo mucho més

39Deja de haber un producto tensorial H = Hy ® H. para convertirse en un producto cartesiano
S= MC X MQ.
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sencillo de estudiar pero que esta fuertemente unido. Asi, mientras que la dinamica de
Ehrenfest hasta ahora descrita preserva siempre la pureza de la parte cuantica, la amplia-
cién nos permitird ver (en concordancia con lo esperado) que esto no tiene por qué ser
asi.

Cabe destacar que los resultados obtenidos no tendran una fiabilidad absoluta, pero
se acercaran bastante més a la fenomenologia observada.

2.3.1. Densidad de probabilidad y valores promedio

El primer ingrediente necesario para construir una teoria estadistica es definir una
densidad de probabilidad. Esta funcién es la que nos permitird calcular probabilidades,
valores medios de operadores y en general mucha otra informacién sobre cada uno de
los estados de nuestro sistema. De esta forma, puesto que nuestro espacio de estados es
S = Me x Mg, lo légico serfa definirla como Fye € C*°(Me x Mg); mas concretamente,
como Fe € O.

Por otro lado, se necesita también un elemento infinitesimal de volumen definido so-
bre el espacio de estados & y que denotaremos como duge = ducdpg. En esta tltima
expresion, duc y dug corresponden a los elementos infinitesimales de volumen sobre Mg
y Mg respectivamente.

Asi entre otras cosas, siendo A un observable de nuestro sistema completo y e4 =
ﬁ € O su funcién asociada®, podremos definir su valor promedio como

(A) = /M dpigeFac(é v)ealé. )

donde por simplificar la notacién hemos llamado £ = (ﬁl, e ,ENC, 151, cee ﬁNc) e Me
a las coordenadas del subsistema cldsico y v = (¢',...,¢"?,py,. .. ,PNo) € Mg a las del
cuantico.

Si queremos considerar dindmica y queremos que esta definicién nos sirva para cual-
quier tiempo t, es evidente que el elemento de volumen djuge ha de ser invariante an-
te cualquier evolucion del sistema. Sin embargo, precisamente por haber convertido la
dindmica del sistema en hamiltoniana, el teorema de Liouville*' nos asegura que cual-
quier elemento de volumen definido sobre el espacio de fases conservara su volumen a lo
largo del flujo. De esta forma, el elemento construido como duge = ducdpg = wgcng =

(we A Neveees A we) (u)Q A Ne veces p wQ) serd invariante y estara bien definido*?. Precisa-

mente, este punto es una de las justificaciones del uso del formalismo geométrico de la
mecanica cuantica.

Con respecto a la densidad de probabilidad, puesto que tenemos dos subsistemas, se
podria pensar en que Fye fuera factorizable como producto de una distribucién clésica

40£4(&,9) ha de ser una funcién cuadratica en 1) para poder hacer la definicién.
41véase referencia [3]: pp.187,188.
42Ver apéndice B: B.21.
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y una distribucion cuantica. No obstante, hay que recordar que los subsistemas no son
independientes y por tanto tendran una probabilidad combinada. De hecho, éste era el
punto objetivo de nuestra construcciéon estadistica.

Segin la definicién del valor medio de un observable (A), las condiciones que debe
cumplir la funcién Fye para que esté bien definida son:

= El valor medio de un observable constante deberia ser la propia constante. Asi,
utilizando el operador identidad I(§, ), se puede ver que:

/M » dMQCFQC(faw)—fgfj;;? :/]\/[ » dNQCFQC(fvw)—w(%i);M =

- / djigeFoc(€,0) = 1
Mo xMg

Esta expresion seria equivalente a la condiciéon de normalizacién de la funcién
Foco(€,v). La densidad de probabilidad estd normalizada.

= De la misma forma, el promedio de una funcién f4 asociada a un operador hermitico
definido positivo A, tendra que ser también positivo. Esta condiciéon implica que la
densidad de probabilidad sea también una funcién definida positiva.

Ademas, al pertenecer al espacio de observables, Foc € O, se puede calcular de manera
muy sencilla su evolucién, ya que cumple la ecuacién de Liouville

Foc(&,9) = {fu(&.9), Foc(&,¢)}

donde fy es la funcién hamiltoniana del sistema de Ehrenfest vista en el apartado ante-
rior. Diremos entonces que el sistema ha alcanzado su equilibrio estadistico cuando Fye
conmute con fg.

Foc=0 = {fu,Foc}=0

Por tltimo simplemente destacar que, ademés del promedio (A) definido arriba, en el
caso de que f4(£,1) fuera una funcién puramente cudntica f4(£,v) = fa(y) € 0, se
podria calcular el promedio del observable sobre el subsistema cuantico como:

<A>@’::/L dhigFoc (€, 6) eaw)

Notar que se ha obtenido integrando “out” sobre Mg y que depende por lo tanto de
las grados de libertad clasicos £ del sistema. Este promedio se convierte asi a su vez en
una especie de densidad de probabilidad sobre My con la que recuperar el valor medio
del operador sobre el total del sistema:

(4) = /M Ay (A (€) = /M dpgeFac(€, ) eald)
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2.3.2. Distribuciones marginales

Al igual que en cualquier sistema estadistico, dada la densidad de probabilidad Fge
definida sobre M¢s x Mg, se pueden considerar las correspondientes distribuciones margi-
nales.

FQ(WZ/M ducFoco(§,v)

Fol€) = /M dyigFoc(é, )

Ambas dos se obtienen integrando “out” sobre cada uno de los subsistemas.

2.4. Evolucion de la pureza en sistemas mixtos

Con todo el formalismo de Ehrenfest ya desarrollado, podemos proceder a comprobar
su alcance. Nuestro objetivo serd estudiar la evolucién de la pureza de un sistema
mixto de una forma que, sin ayuda del Formalismo de Ehrenfest (y yendo més atras, del
Formlismo Geométrico de la Mecénica Cuéntica) nos hubiera sido muy complicado hacer.

2.4.1. Concepto de pureza en un sistema cuantico

El operador densidad p en un espacio de Hilbert se puede definir como la combinacién
lineal de proyectores p; de rango 1 de tal forma que

pP= Zpipi

donde Y .p; = 1y p; > 0, y donde p; representa cada uno a un estado fisico “puro”,
cumpliendo:

pi=pi  pl=p  Trpi=1
Se dice que un sistema cudntico es puro si este operador p es también un proyector de
rango 1. En caso contrario se dice que es mizto. Seria analogo a decir que el sistema es
puro si la combinacién lineal de arriba tiene solamente un elemento y mixto en el resto
de los casos. Desde el punto de vista fisico, tiene su sentido ya que un sistema cuantico
puro es el que viene dado por un estado puro (p;) y un sistema cudntico mixto es el que
viene dado por una mezcla estadistica de estados puros.

De esta forma, para un sistema puro tendremos que p? = p, Trp = 1 y como
consecuencia que

Trp? =1

La pureza de un sistema puede medirse entonces en funcién del pardmetro Trp?, siendo
Trp? = 1 para sistemas puros y 0 < Trp? < 1 para sistemas mixtos.
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2.4.2. Matriz densidad

Vista la importancia de la matriz densidad en la determinacion de la pureza de un
sistema, vamos a tratar de hacer las definiciones pertinentes para adaptarla a nuestro
sistema estadistico.

Si tuviéramos un sistema puramente cuantico, la matriz densidad se podria escribir de
una manera sencilla simplemente como p = |¢)(¢], con [¢)) € H. Sin embargo tenemos un
sistema mixto clasico-cuantico. Asi, mediante la estadistica presentada, podriamos tratar
de definir el operador densidad del sistema completo como

p = /MCXMQ dNQCFQC(ga@D)%

que evidentemente tendria una funcién asociada f,(n) € O igual a

(nl) (¥1n)
(Y1)

De la misma manera a como se ha hecho anteriormente, al ser [¢) ()| un objeto pura-
mente cuantico, se podria considerar también el operador

fo(n) 3:/M N dpgcFoo(&, 1)
cXMq

[) (Y]

o= [ dnaFacte ! e o [ dugract MO0

DY) (Y1)

de tal forma que pudiéramos recuperar el original como

) /M duep®)  fo(n) = /M dyic 1 (€.1)

Notar también que, echando mano de las distribuciones marginales, el operador den-
sidad del sistema completo se podria escribir también como

pi= [ dngcFacte ¢>’gfj|if>‘ | duar w)'gfjﬁ’

b= [ daoRucte @I _ [ e

Sin embargo cabe preguntarse, ;json buenas estas definiciones?, jencajan bien con
nuestra construccion estadistica?, jposeen el significado que deben tener? Veremos que la
respuesta es que si.

Consideremos un unico estado &, para el subsistema clasico y un estado puro v, para
el cuantico. La densidad de probabilidad del sistema mixto tomard la forma Foe (€, 1) =

§(€ — &)0(Y — 1p)* y asf tendremos que

[¢) (Y| [0l [%0) (¢ol
(W1 W) (Yo[tho)

43La funcién Fgc esté bien definida y cumple las condiciones de normalizacién y positividad.

p(€) = /M dyigFoc(e, )22 /M A3 (€ — )5 — o) 5(& — &) L0l ol
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p= /M ducp(§) = /M dpcd(§ — &o) |Zf;0>’<;/;0>‘ = lgf;j‘i;/:;'

De manera analoga, si en vez de tener un estado puro en la parte cudntica, hu-
biéramos tenido un estado mixto, la densidad de probabilidad habria sido Fge (€, ) =
(€ — &) > . ped(¢ — 1) v el operador densidad habria resultado ser

%) (|
(il r)

_ [hx) (x|
a ;pk (ke |hw)

Parece que el significado del operador es el correcto en cuanto a que mediante la de-
finiciéon hecha, podemos recuperar su forma original. Cabe destacar, a la vista de esto,
que la informacién contenida tanto en Fiye como en p sobre el sistema, es basicamente la
misma’**

p(&) = 6(¢ — &) Zp

Calculemos ahora el valor medio del operador A. Segun la definiciéon del operador
densidad p tendremos que

($l4) _

W= [ dacFectev)ens ) = [ dnacFacte v T

=Tr<( | duacraclew 'jfﬁﬁ;‘;') A) Tr(pA)

de manera que se recupera la propiedad de un sistema puramente cuantico, en el que el
valor esperado de un observable A en H se puede calcular a partir de la matriz densidad
del sistema como (A) = Tr(pA).

2.4.3. Conservacion de la pureza en sistemas de Ehrenfest no estadisticos

Como ya se ha indicado antes, la dindmica de Ehrenfest, en ausencia de la parte es-
tadistica, preserva la pureza de la parte cuantica sea cual sea la evolucién del sistema.

Recordemos las ecuaciones de Ehrenfest:

i) = He(7, B)ly)

44De hecho, la densidad de probabilidad Fgc de un sistema sobre la parte cuantica se puede escribir
siempre como una combinacién de deltas de dirac Foo = >, Aid(y) — ¢) donde 1y, son los autoestados
y A, los autovalores de la matriz densidad p del sistema. Véase referencia [13].
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La ultima de ellas es la que marca la evolucion del subsistema cuantico que, en términos
de la matriz densidad correspondiente p = |¢) (1|, se puede escribir mediante la ecuacién
de von Neumann como

ihp = [He, p)

Si la dindmica fuera unitaria, seria trivial probar la conservaciéon de la pureza. No
obstante, puesto que la dinamica es no lineal, tendremos que serd también no unitaria y
la conservacién de la pureza se podra probar de la siguiente forma:

;itTrp = 2Tr(pp) = 2Tx([H,, p] p) = 2 (Tr(Hepp) — Tr(pHep)) = 0

Con ello, si se parte de un estado puro (Trp? = 1), se mantendra puro.

2.4.4. Pérdida de pureza en sistemas mixtos

A partir de aqui, junto con la construccion estadistica realizada sobre el formalismo de
Ehrenfest, veremos que aunque la dindamica parta de un estado puro para el subsistema
cuantico, si las condiciones iniciales de la parte clasica son indeterminadas, se conver-
tird en un estado mixto perdiendo asi su pureza.

Con las definiciones hechas sobre la matriz densidad p, resulta evidente que Trp? =
Tr(pp) = (p). De esta forma diremos que un sistema mixto clasico-cudntico es cudntico
puro si y solo si

T = (o) = | dnoFo(v)e,(v) = 1
Mq
En caso contrario diremos que es cuantico mixto. Veamoslo con un ejemplo practico.
= Ejemplo: distribucién equiprobable

Suponer un sistema con la siguiente distribucién inicial

Fac(&, 4t = 0) = (% Sl - fé)) 50— o)

Representa un estado puro para la parte cudntica y una distribucion de estados equi-
probables para la parte clasica. Podemos ver, si utilizamos las distribuciones marginales,
que:

Q

1 N

k=1
1
N
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N
Fo(t e Foo(§.t =0) = 5 3800 —v0) | ducdts &)

I
=
I
2|~ g\
Q

> 6(4 = tho) = 6(v — o)

k=1

Y la funcién asociada a la matriz densidad f,(n) tendrd la forma:

Pt =0) = [ dugFotunt =0y _ [ g5 — gy WD
_ lolo)P
(4olo)

De esta forma, la pureza del sistema en el instante inicial sera:

- e gy Ll
(ot =0)) — /M iRt = 0) (1.t = 0) = /MQdﬂQ‘W YO 110 ol o)
|<¢0|¢0>|2 -1
| (¥oltho)|?

Como era de esperar, en el instante inicial el sistema completo resulta ser un sistema
cuantico puro.

Veamos lo que ocurre a un tiempo ¢. Si denotamos como (®; (€8 vo; t), @;;,(55, o 1))1

a la trayectoria seguida por la condicién inicial (€5, ) segtin las ecuaciones de Ehrenfest,
la distribucién del sistema completo tendrd una forma tal que asi

N
Foo(&,1,1) = Z (€ — D¢(&p, w0 1))o (v — (&5, o3 1))
k

y en concreto la distribuciéon marginal Fg (1, t) correspondiente a la parte cudntica, mien-
tras que inicialmente era Fg(1,t = 0) = §(¢p — 1), ahora sera:

N
Fat) = Z (= B (65,0 ) [ di(€ — B(efvui )

2 |

2|

N
= Z (¥ — ©5(E5, i 1))
k=1

Observamos aqui el primer indicio, y es que parece que la incertidumbre en las condi-
ciones iniciales del subsistema clédsico se ha transferido al cuantico.

45Esta notacién hace referencia a la funcién flujo ® del campo vectorial hamiltoniano del sistema, que
es el que marca las trayectorias de la dindmica. Ver apéndice.
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La funcién asociada a la matriz densidad f,(n,t) tendra la forma

(nl) (¢[n)

L) = —Z /M g = 36, i) L

[{n @, (&5, Yo; 1))
Z 197,(&6 Yo )12

y por tanto, la pureza a un tiempo t sera:

1 & 1o (1@ (&, vo; )]
= dug | =) 0( — @ (&h ~
(p(t)) /MQ HQ (N; (¥ (I)w(foﬂbOa ) (Nzl ) H(I)* <€07¢07 DIE
1 al \(‘I)Z@&%;t)’q’l(fg,%;t»P
N2 G k=1 ||(D:b(€(j)7¢07t)||2||q)jp(€(’)€7¢07t>||2

Como vemos, aunque inicialmente la pureza era igual a 1, con el tiempo parece evolu-

cionar?.

La evolucion estadistica de Ehrenfest no conserva la pureza
en sistemas hamiltonianos miztos cldsico-cudnticos.

Para visualizar esto numericamente, pongamos un sistema por ejemplo compuesto por
una particula cldsica en un espacio unidimensional?” (bien podrfa ser un nicleo atémico)
acoplada a un sistema cudntico con 2 posibles estados (su ultima capa electrénica en
estado fundamental o excitado). Vendrd descrito por las coordenadas:

(fﬂﬂ) = (Ra P7 qlaq2aplap2)

Sea fy(&,1) su funcién hamiltoniana de la forma:

Fr(R, P! @ oy p2) = PP S (OHAR)) = PP 4 3 (0o + ecos(R)on )™

donde o0, y 0, son las matrices de Pauli que permiten la construccion del hamiltoniano
electrénico H, sobre C?, que también debe ser hermitico.

(10 (01
%= \o -1 %= \1 0
1 ecos R

He(R) = (ecosR -1 >

46Se pueden calcular las derivadas temporales de (p(t)) y probar que efectivamente la pureza disminuye
con el tiempo. Para un desarrollo completo, véase referencia [13].

47Por simplificar los célculos.

48Es el tipo de funcién que se suele utilizar en estos casos de estudio.
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Notar que hemos incluido un parametro € que es el que nos va a permitir controlar
el grado de acoplo entre los subsistemas. Cuando € = 0, ambos estaran desacoplados (ya
que H, # H.(R)) y conforme € sea mayor, el acoplo serd més fuerte.

Pongamos, tal y como se ha visto, una distribucién inicial equiprobable (por ejemplo
con N = 20) para la parte clasica y un estado puro para la parte cuédntica:

» Para la particula clésica se han elegido (de forma completamente aleatoria) las
siguientes 20 condiciones iniciales:

(&5,65, -, &) = (Ry=0,Py =0, Ro =2,P? =02, RS =4,P =04,...)
Los resultados que se podrian obtener con otras condiciones iniciales serian analogos.
» Para la parte cudntica se ha tomado ¢y = (1,0,0,0).

La evolucion del sistema nos dara 20 trayectorias (df (Ek abost), @Z(&’f, 1o;t)) equipro-
bables que se pueden determinar resolviendo las ecuaciones de Ehrenfest (vistas en el
apartado (2.2.4)) para la funcién hamiltoniana fy (R, P, ¢, ¢%, p1, p2) anterior.

Con todo esto, la evolucién de la pureza segin la expresion obtenida sera:

Pureza
1.0 \\*M—\\\_,_,_

0.8

0.6

04

b b e b b e o 1 Tiempo
0 10 20 30 40 50

Figura 1. Evolucién de la pureza para acoplos € = 0,1 (linea roja), e = 1 (linea naranja) y
¢ = 10 (linea azul).

En la grafica se presenta la evolucion de la pureza del sistema para tres acoplos di-
ferentes®: € = 0,1, = 1 y € = 10. Como era de esperar, cuando el acoplo entre ambos
subsistemas es muy pequeno (¢ = 0,1 ~ 0), la pureza de la parte cudntica practicamen-
te se mantiene; mientras que conforme aumenta (¢ = 1, = 10), mayor es la influencia
de la incertidumbre de las condiciones iniciales clasicas sobre el decrecimiento de la pureza.

49La eleccién se ha hecho con la intencién de cubrir un rango amplio con diferentes 6rdenes de magnitud.

29



Trabajo de Fin de Grado 2013/1} “GQM in ED”

Cabe destacar también que el acoplo simplemente tiene su efecto sobre la velocidad
de decrecimiento de la pureza, dejando su valor asintético en todos los casos invariante.
Como la evolucion del sistema depende fuertemente de las condiciones iniciales, llegada la
situacién de equilibrio se tiene que las IV trayectorias se reparten entre los Ng niveles del
subsistema cudntico. Por ello no es de extranar que la pureza en el equilibrio no dependa
de €, sino simplemente del nimero de trayectorias y de la dimension del espacio de Hilbert
correspondiente®.

2.4.5. Aplicacidn: influencia de la temperatura en la pureza de sistemas mo-
leculares

Habiendo recuperado asi la evolucién de la pureza en un sistema hamiltoniano mixto
clasico-cuantico, ha llegado la hora de comprobar si los resultados de verdad reproducen,
al menos cualitativamente, el comportamiento observado en la naturaleza.

Suponer que tenemos un 4tomo como el del ejemplo numérico anterior® y en un espacio
unidimensional®?. El hecho de que se encuentre a una temperatura 7' se puede traducir
en que tendrda un estado de vibracion y una velocidad adicional determinados. De esta
manera, tanto su posicién R como su momento P tendran una pequena incertidumbre,
provocando la pérdida de pureza en la parte cuantica a lo largo de su evolucién en el
tiempo. Como hipétesis, cabria formular entonces:

] A mayor temperatura, mds rapida serd la pérdida de pureza de nuestro dtomo. ‘

La presencia de una temperatura para el subsistema cudntico puede conseguirse con-
siderando el subsistema cldsico como un reservorio térmico. Si el acoplo con el reservorio
es suficientemente débil®®, entonces podremos considerar una temperatura de equilibrio T
constante. De esta forma, una posible manera de introducir la temperatura en la dinamica
del sistema es eligiendo la densidad de probabilidad del subsistema clasico de acuerdo a
una distribucion térmica del tipo

Eg
Fo o exp (— )

kT

donde Eg corresponderfa a la energia interna del reservorio®.

En nuestro formalismo, esta dependencia con la temperatura nos lleva a pensar en una
distribucién de probabilidad inicial (¢ = 0) para nuestro sistema de la forma

FQC’(gvdjvt:O) =

50Para comprobar esta dependencia ver referencia [13].

51Un solo 4tomo que se puede encontrar en estado fundamental o excitado.

52Para simplificar el planteamiento del problema.

53Lo es. De hecho este ha sido el punto clave para realizar la aproximacién de Ehrenfest y separar el
sistema completo en dos subsistemas.

54Véase la referencia [14]: pp.171-173 para una mejor justificacién de este proceso.
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donde el parametro o haria los papeles de temperatura.

El hecho de utilizar la desviacién de la gaussiana ¢ como nuestra temperatura es evi-
dente: una mayor anchura en la distribucion significa una mayor temperatura.

Sin embargo, para poder hacer los cédlculos a partir de un nimero finito de trayecto-
rias de manera andloga a como se ha hecho hasta ahora, nos es necesario discretizarla.
Tendremos asi:

Fool&,,t = 0) = AZ[exp( € 50)) (6 — @)}w—wo)

donde hay un total de N condiciones iniciales ¥ (que distribuiremos equiespaciadamente
con mayor o menor separacién entre ellas en funcién de o), “pesadas” con la distribucién
térmica correspondiente, y siendo &, su valor medio.

La constante A puede determinarse a partir de la condicion de normalizacién impuesta
sobre Fye.

/ djigeFoo(€, st = 0) = 1
McXMQ
N

Ay [ dgeesn (<520 ate - ot - -

k=1

AZexp( 20§“> ) =1

(Z exp ( &b ))

De tal forma que la distribucién inicial sera

(56*50)2

N T (5 50)
FQC(57 wvt = O) = (Z e 2P ) |:€ (5 50 ):| 5(¢ - %)
j=1 k=1

Pasado un tiempo, cada una de las condiciones iniciales evolucionard con una trayec-
toria. Asi la densidad de probabilidad a tiempo t tendra la forma

1-¢9)? 1N k_g)2
Foc(&,,1) (Ze o ) 3 [e—“ 2 0(€ — DL(EE, o; 1))0( — O (5, o 1)

k=1

donde hay que notar que cada una de las trayectorias queda “pesada” con su probabilidad
inicial (que es lo méas natural desde el momento en que hemos supuesto la temperatura
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del reservorio constante®).

A partir de aqui, para calcular la evolucion de la pureza del sistema a lo largo del
tiempo, se puede proceder de foma similar al caso equiprobable. La distribucién marginal
Fo(1,t) tomard la forma

N i e\ LN k£ 2
Fo(u,t) = (Z e ) ) [e“%fz“ 5 — @;(&@%;t»]
j=1

k=1

La funcién asociada a la matriz densidad f,(n,t) sera

N @\ L e () (¥ n)

_ e i duod(p — @ (€8 )y: t)) L

fp(n,t) (Ze ) ; € /MQ HQ (w ¢(£07¢07t)) <w|w> ]
N
>

j=1 L
N y -1 T x(ck o (2
_ Ze—“o;gw o~ 50 | (1] @3, (S, Yo; 1))

y como consecuencia, la pureza a un tiempo ¢ resultard como

(1) = /M digFo(th,t) e, (1, 1)

g b [(PF(E5, Yo )| D6, vo; 1)) I

_ (Y T & ve OIPIOLE, Yo DI

Jj=1 k=1

Hay que destacar que, al igual que en el caso equiprobable, la pureza evoluciona de
acuerdo a las trayectorias del sistema (que es donde se encuentra la dependencia temporal).
Sin embargo aqui tenemos un parametro mas, o que es el que representa la temperatura
del sistema.

Utilicemos de esta forma, para nuestra representacion, una funcién hamiltoniana si-
milar a la vista

Fu(R, Pa' ., ) = PP+ SWIHLRY) = PP+ S(0lo + ccos(R)a o)

y un total de N = 21 condiciones iniciales para nuestro sistema clasico.

55Para una segunda aproximacioén, en la que se incorporaran efectos de correlacién entre reservorio y
subsistema cudntico, habria que hacer depender la densidad de probabilidad Fg(w,t) de las posiciones
de los nicleos en cada instante de tiempo, redefiniendo de la misma forma la normalizacién a cada paso
de integracion.
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Fc€,t=0)

015+

| 1 | |\ | | \| | 1 | f

&0-30 &-20 &-o0 bo+o  &+20 &+30

Figura 2. Densidad de probabilidad inicial para el subsistema cldsico a una temperatura
T=o.

= A partir de un valor concreto de & = (R, P), que serdn la posicién y momento
tedrico de nuestro atomo a la temperatura dada, se han tomado 10 condiciones mas
a cada lado de la gaussiana, de manera equiespaciada, y hasta un valor de 3o.

» Para la parte cudntica se sigue tomando 1y = (1,0, 0,0).

La evolucion de la pureza a lo largo del tiempo, y teniendo en cuenta al pardmetro o
como la temperatura del sistema, sera

0.5
Pureza

5

Tiempo

10

Figura 3. Evolucién de la pureza de nuestro sistema molecular a lo largo del tiempo en funcién
de la temperatura. Acoplo débil e = 0,1.
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Pureza

Tiempo

Figura 4. Evolucién de la pureza de nuestro sistema molecular a lo largo del tiempo en funcién
de la temperatura. Acoplo medio € = 1.

Pureza

Tiempo

Figura 5. Evolucién de la pureza de nuestro sistema molecular a lo largo del tiempo en funcién
de la temperatura. Acoplo fuerte ¢ = 10.

De la misma forma que para la distribucion equiprobable, se muestra la pureza para
un acoplo débil € = 0,1, un acoplo medio € = 1 y un acoplo fuerte ¢ = 10. Tal y como cabia
esperar, para € = 0,1 el sistema practicamente no pierde su pureza, haciéndolo muy len-
tamente. Para un acoplo un poco mayor € = 1 ya resulta evidente esta pérdida; mientras
que para un acoplo fuerte e = 10, el sistema alcanza la pureza de equilibrio casi al instante.
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No obstante, el hecho que cabe destacar de estas representaciones es la dependencia
con la temperatura. Nuestra hipétesis de trabajo decia que a una mayor temperatura,
cabria esperar una pérdida mas rapida de la pureza. Y efectivamente, en cualquiera de los
acoplos se puede observar que, cuanto mayor es el pardmetro o, mas rapidamente decae
la pureza del sistema.

A modo de comprobacién, ahora que ya hemos cogido la idea intuitiva de como abor-
dar el problema, podriamos complicarlo un poco mas considerando un atomo similar al
estudiado pero en un espacio bidimensional®®. Los calculos de la matriz densidad y de
la pureza son exactamente los mismos. Sin embargo, habré ligeros cambios tanto en la
funciéon hamiltoniana

1
fH(vaRy7Px7Py7q17q27plap2) = |P|2 + §<¢|O‘Z + ECOS(lRDO‘xh/J)

como en las condiciones iniciales del subsistema clésico®”:

3

&x

Figura 6. Densidad de probabilidad inicial para el subsistema clasico bidimensional a una
temperatura T = o. Planta.

56Pasarfamos directamente al caso tridimensional, pero los tiempos de computacién son extremada-
mente largos.
57 Ahora con N = 26.
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Figura 7. Densidad de probabilidad inicial para el subsistema cldsico bidimensional a una
temperatura T' = o. Perspectiva.

De esta forma, los resultados son:

0.5
Pureza

5

Tiempo

1

Figura 8. Evoluciéon de la pureza de nuestro sistema molecular a lo largo del tiempo en funcién
de la temperatura. Acoplo débil € = 0,1.
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Pureza

Tiempo

Figura 9. Evolucién de la pureza de nuestro sistema molecular a lo largo del tiempo en funcién
de la temperatura. Acoplo medio € = 1.

Pureza

Tiempo

Figura 10. Evolucién de la pureza de nuestro sistema molecular a lo largo del tiempo en
funcién de la temperatura. Acoplo fuerte € = 10.

Dado que reflejan exactamente la misma informacién que en el caso unidimensional,
podriamos dar por validada nuestra hipdtesis:

| A mayor temperatura, mds rapida es la pérdida de pureza de sistemas moleculares. |

Conviene recordar que los resultados en cualquier caso son fiables solamente de un
modo cualitativo y que por lo tanto, no permiten ir mucho mas alld. En cualquier ca-
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so, esta claro que las herramientas desarrolladas a lo largo de todo el trabajo nos han
permitido hacer predicciones correctas sobre el comportamiento de nuestro sistema.
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3. CONCLUSION

En el trabajo se ha comenzado presentando el Formalismo Geométrico de la Mecdnica
Cudntica como una herramienta poderosa con la que poder describir sistemas puramente
cuanticos. En concreto, lo que ha permitido ha sido convertir un sistema lineal sobre un
espacio de Hilbert y descrito por la ecuacién de Schrodinger, en un sistema no lineal so-
bre una variedad simpléctica con un corchete de Poisson definido y descrito mediante las
ecuaciones de Hamilton. El cambio no parece muy sorprendente en cuanto a que los dos
formalismos parecen describir la misma dindamica; es mas, parece incluso antiproducente
si pensamos en la pérdida de la estructura lineal del espacio de estados. Sin embargo, en
seguida ha salido a la luz su potencialidad.

Como hemos visto, el modelo de Ehrenfest resulta una de las mejores opciones a la
hora de describir sistemas mixtos clasico-cuanticos. Sin embargo, a pesar de resultar mu-
cho mas céomodo por las simplificaciones que hace sobre el sistema de estudio, también
nos hemos dado cuenta de las limitaciones que supone. En nuestro caso, nos interesaba
recuperar la informacién perdida sobre la evolucién de la pureza, y eso solo nos ha sido
posible mediante conceptos estadisticos aplicados al modelo.

Aqui es donde entra en juego el Formalismo Geométrico de la Mecdnica Cudntica,
puesto que sin una descripcién hamiltoniana de nuestro sistema completo®, nos hubie-
ra resultado imposible hacer la ampliacién del modelo y aplicar los objetos estadisticos
definidos® sobre la forma tradicional de la dindmica de Ehrenfest. La razén es sencilla.
Para la construccién de la mecéanica estadistica sobre sistemas mixtos, hay que encontrar
una forma de traspasar la dindmica desde el espacio de observables (funcién hamiltoniana
fu®) hacia una densidad de probabilidad (Fgo(¢)%") bien definida sobre un espacio de
fases. Sin embargo, para la correcta definicién de esta funcién, es necesario contar con un
elemento de volumen que sea invariante temporal que permita integrar las probabilida-
des sobre ese espacio. Es asi como, al haber descrito la dindmica del sistema como una
dindmica hamiltoniana (tratando los dos subsistemas “como si fueran clésicos”), hemos
conseguido que se respete el volumen simpléctico (por el teorema de Liouville) consiguien-
do de esta manera la correcta construccion de Fye. Bajo este hecho entre otros podemos
entonces afirmar la potencialidad del formalismo geométrico.

Sin embargo, ;por qué nos hemos visto en la necesidad de ampliar el formalismo de
Ehrenfest para poder estudiar la evolucion de la pureza?

Generalmente, cuando se quiere crear un modelo de dindmica mixta clasico-cuantica
(MQCD), se comienza con una “destrucciéon” del sistema completo (separacién en subsis-
temas) seguida de una “reconstrucciéon” que trata de recuperar las propiedades del sistema
cuantico completo. La decoherencia de estados es una de esas propiedades que tratan de
recuperar la mayoria de modelos, pues es sumamente significativa para un modelo que
pretenda ser realista: es la que permite describir estados entrelazados dentro del sistema

58No sélo de la parte clasica, sino también de la parte cudntica.

590bjetos puramente dentro del marco de la Mecénica Estadistica Clésica.
60Capaz de describir los microestados del sistema en cualquier instante de tiempo.
61Capaz de describir el macroestado del sistema en cualquier instante de tiempo.
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completo. Como consecuencia de ello, mientras que la forma tradicional del modelo de
Ehrenfest sélo contempla la existencia de estados separables, una buena “reconstruccién”
deberia contemplar también una mezcla estadistica de los mismos, llevdndonos asi a una
pérdida de pureza del sistema. Es por ello que en nuestro estudio hemos querido comenzar
con este pequeno paso, contemplando en el modelo la evoluciéon de la pureza, un ingre-
diente necesario para la decoherencia. La solucién al problema tltimo podria encontrarse
también en nuestro formalismo geométrico, es cuestion de “sequir descubriéndolo”.

Como posible mejora de los cédlculos realizados sobre la influencia de la temperatu-
ra, cabria mejorar la aproximacién hecha a la distribucién gaussiana, pensando en incluir
efectos de correlacién entre el reservorio (subsistema cldsico) y la nube electrénica (subsis-
tema cudntico). En ese caso, la influencia de la parte cudntica sobre la cldsica ya no seria
despreciable, y esta ultima no podria mantener la temperatura del sistema constante. En
cada instante de tiempo, habria que considerar también la evolucion del reservorio debida
al acoplo de tal forma que

_ 1
N @fe] o —of Eoton)? N T @pehvon—erEvon)? o

Fo(y,t) = E e 207 E e 207 0(¢ — @&, Yoi t))
j=1 k=

1

Notar que en esta expresién, el “peso” de cada una de las trayectorias ya no se mantiene
constante en el tiempo. Esto implicaria tener que renormalizar a cada paso de integracion
la funcién completa.

Otra posible mejora en el trabajo seria considerar un modelo més realista para la inter-
accion entre electrones y nicleos, ya que sélamente he considerado para las simulaciones
un sistema cuantico de dos niveles y éste no refleja el comportamiento de la ecuacion
13 2

real”.
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