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APENDICE A: Descripcién simpléctica de la Mec4dnica Clasica
Hamiltoniana.!

Sea M el espacio de configuracién del sistema. Se trata de una variedad simpléctica?
que recibe el nombre de espacio de fases del sistema. En él, cada uno de los estados que lo
forman, viene determinado por una posicién ¢’y su correspondiente momento p, de forma
que se puede considerar en los casos mas simples Mg ~ R?" (con n el niimero de grados
de libertad).

Con respecto al espacio de “observables”, son las funciones f € C*(M¢) definidas
sobre M¢

fiM(j—>R

las que reflejan el proceso de medida, asignando a cada estado un determinado valor.

En este espacio de observables, se puede introducir una operacién interna, conocida
como corchete de Poisson {-,-}. Se trata de una operacién bilineal

{', } : COO(Mc) X Coo(Mc) — Coo(Mc)

que cumple las siguientes propiedades:

» Es antisimétrica.

{fvg}:_{gaf} vfagECOO(MC>

» Satisface la identidad de Jacobi.

{f {g.hiy +{nAf 93} +{9.{h. f}} =0 Vf.g,heC=(Mc)

» Satisface la regla de Leibniz.

Es precisamente esta operacién la que permite definir el espacio de observables (C*(M¢), {-,-})
como un dlgebra de Poisson. Si inicamente cumpliera las dos primeras propiedades seria
un algebra de Lie, lo que significa que un corchete de Poisson es un corchete de Lie que
ademas satisface la regla de Leibniz.

Si las posiciones y momentos (¢*, p;) son coordenadas de Darboux, comtinmente lla-
madas coordenadas canodnicas en mecanica hamiltoniana, el corchete toma la forma:

" 0f 0g 0Og Of

i

!Para un desarrollo méas completo de esta descripcién véase la referencia [3].
2Ver apéndice B: B.20.
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Dado entonces este corchete de Poisson {-,-} y una funcién f € C*(M¢), podemos
definir el concepto de campo vectorial hamiltoniano de la funcién f como aquel campo
vectorial Xy tal que

Xi(g)={f9} VgeC*(Mcp)

que en nuestras coordenadas canoénicas tomara la forma:

_of o of 0
" opiog g op;

Es asi como en mecanica clasica hamiltoniana, se llama sistema dindmico hamilto-
niano a una terna (M¢, {-,-}, H), donde {-,-} define una estructura de Poisson sobre M¢
y donde H es una funcién H € C*°(M¢) que describe la dindmica del sistema a través de
las curvas integrales de su campo vectorial hamiltoniano Xg.

COH O 9H 9
~ Op; 0" Oq' Op;

Esta funcion H recibe el nombre de hamiltoniano del sistema.

Xu

De manera andloga, también puede describirse la dindmica del sistema sobre el espacio
de observables a través de la ecuacion

V_tmn  vreoxou

De esta forma, considerando las funciones “posicién” ¢*(t) y “momento” p;(t) de una
particula se tiene que

_6’H .'__(9H
B Op; b= dq*

que resultan ser las ya conocidas como ecuaciones de Hamilton.

33

q
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APENDICE B: Glosario de geometria diferencial.?

Primeramente, daremos algunas referencias sobre los objetos base de la geometria di-
ferencial: las variedades diferenciales:

B.1. Definicién: Sea M un espacio topolégico. Llamaremos carta n-dimensional en
M, a un par (U, ) tal que

n U C M es un abierto en M.

» ¢ es una aplicacion ¢ : U — p(U) C R™ abierta y ¢ es un homeomorfismo de U en
pU).

Si consideramos entonces dos cartas (U, ) y (U, ¢’), diremos que son compatibles si
son disjuntas U NU’" = (), o bien la aplicaciéon ¢’ o =t : (U NU") — @' (U NU") es un
difeomorfismo de abiertos de R"™.

De esta forma dar una estructura diferenciable sobre M consiste en darle un atlas, que
es un conjunto de cartas, dos a dos compatibles, que cubre todo M.

B.2. Definicién: Llamaremos variedad diferenciable, a toda variedad topoldgica do-
tada de una estructura diferenciable.

Los siguientes conceptos a destacar seran los de campos vectoriales y formas diferen-
ciables de una variedad diferenciable:

B.3. Definicién: Sea M wuna variedad diferenciable y p € M. Llamaremos vector
tangente en p a toda aplicacion X, : C*(p) — R que verifique:

» X, es lineal, es decir: Xp(Af + pg) = AX,(f) + pXp(9) A peR.
= Xp(f-9) = FP)Xp(9) + 9(P) X, (f) (Regla de Leibniz).

También existe la posibilidad de definir los vectores tangentes como clase de equiva-
lencia de curvas. De esta forma:

B.4. Definicion: Diremos que dos curvas v, y 2 en la variedad M que parten de p,
son equivalentes en p si existe una carta (U, p) en p tal que

dlpom)| _ dlporn)

dt t=0 dt t=0
siendo 71(0) = p = 12(0).

B.5. Definicion: Llamaremos vector tangente en p € M a una clase de equivalencia
en p de dichas curvas.

3Para estudiar més en profundidad los elementos de este glosario, acudir a la referencia [1] y a las notas
del curso de Introduccion a la geometria diferencial del profesor José F. Carinena. de la Univ. Zaragoza.
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B.6. Definicidon: Liamaremos espacio vectorial tangente a M en el punto p al espacio
vectorial de los vectores en el punto p. Serd denotado por T,(M).

B.7. Definicién: El espacio lineal T (M) dual de T,(M) recibe el nombre de espacio
vectorial cotangente en p € M. Sus elementos se llamardn covectores en p o wvectores
covariantes en p.

En general, dada una funcién f € C*°(p), se puede definir un covector en p € M, que
denotaremos (df), por (df),(X,) = X,f.

Como conclusién entonces:

B.8. Definicién: Un campo vectorial X sobre una variedad diferenciable M es una
funcion

X:M—=T(M)= | T,(M)

que asocia a cada punto p € M un vector X, € T,(M), siendo T'(M) el conjunto de todos
los pares (p, X,) conp e M y X, € T,(M).

B.9. Definicién: Una I-forma diferencial en una variedad diferenciable M es una
funcion

w: M — T (M) = | T;(M)

peEM

que asocia a cada punto p € M un covector w, € T)(M), siendo T*(M) el dual de T'(M).

Pasemos entonces al concepto de aplicacion diferencial y aplicacion codiferencial entre
dos variedades diferenciables.

B.10. Definicion: Sea F' : M — N una aplicacion diferenciable de M en N.
Para cada punto p € M, la aplicacion Fy, : T,(M) — Tpey(N) definida mediante
Fo,(Xp)f = X,(f o F),Vf € C®(F(p)), recibe el nombre de diferencial de F' en p € M.

Como interpretacién geométrica de esta aplicacion, podriamos decir que Fj, es una
aplicacién lineal de T,(M) en Tp(,) (M) tal que la imagen de un vector v tangente en
p € M ala curva vy : (—¢,€) — M con v(0) = p, es el vector tangente a la curva F oy en
el punto F(p) € N.

B.11. Definicion: De la misma forma, llamaremos codiferencial de F en p € M
a la aplicacion lineal Fy := (Fip)* : Ty, (N) — T7(M) definida por I} (wr))X, =
WF(p) [Fap (X))

Por supuesto, estos conceptos son generalizables al caso de campos tensoriales de tipo
(r,s) y no sélo a los de tipo (1,0) (campos vectoriales) 6 (0, 1) (1-formas).
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Visto entonces el significado de lo que es un campo vectorial y que un vector puede
interpretarse como la clase de equivalencia de las curvas con el mismo “vector velocidad”,
podemos definir:

B.12. Definicién: Si X es un campo vectorial (diferenciable) sobre una variedad M,
diremos que una curva diferenciable v : I — M, donde I = (a,b), es una curva integral
del campo X si

dy
dt t=to
De esta forma puede demostrarse que la imagen a través de la aplicacién diferencial

F,, de una curva integral de X partiendo de p € M, es una curva integral de F,(X)
partiendo de F(p) € N.

= Xv(to) Viy € (CL, b)

B.13. Definicién: Dado el campo vectorial X, llamaremos flujo de X vy denotare-
mos por ®x a la aplicacion ®x : R x M — M, definida por ®x(t,p) = 7,(t); siendo
Y 1 I(p) = M la curva integral mazimal del campo X que parte de p. A veces, a esta
curva integral se le denota también como ®;(p).

Puesto que el vector tangente X, a una curva integral ®;(p) en p es tal que X, =

%@t(p) , Vemos que

(XD)w) = X,f = im © [F(®(p) ~ )] = & (@)

De forma analoga, con el concepto de codiferencial, esta expresién puede ser reescrita
como:

(XF)(p) =i+ (@ 1)) — £ (7)]

Y asfi:

B.14. Definicion: Para cada campo vectorial X y cada campo r-covariante w defini-
remos la deriwada de Lie de w segun el campo vectorial X como el campo r-covariante:

(Lx)(p) = lim 7 [(®70)(p) — w(p)]

t—0

donde se tiene que si w es un campo r-covariante,

[(@;w)(Xy, oo X)) () = W(@e(P)) (Prap(X1p) -+ Prap (X))

Vemos que, intuitivamente, la derivada de Lie no hace referencia més que a la variacién
de los campos w a lo largo de las curvas integrales de X.

Vayamos ahora con algunos de los conceptos topoldgicos aparecidos:

B.15. Definicién: Liamaremos dlgebra a todo par (A, ¢) en donde A es un A-mddulo
y ¢ una aplicacion bilineal ¢ : A x A — A.
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B.16. Definicién: Diremos que un dlgebra es asociativa si ¢p(a, (b, c)) = ¢(p(a,b),c),Va,b,c €
A.

B.17. Definicién: Diremos que un dlgebra (L,[-,+]) es de Lie si Va,b,c € A
» [a,b] +[b,a] =0 (antisimétrica).

v [[a,b],c] +[[b,c],a]l + [[c,a] ,b] =0 (identidad de Jacobi).

B.18. Definicién: Diremos que un dlgebra (A, o) es de Jordan siVa,b € A

» aob=boa (conmutativa).

» (aob)o(aoca)=ao(bo(aoa)) (identidad de Jordan).

B.19. Definicién: Diremos que un dlgebra (A,{-,-}) es de Poisson si es un dlgebra
de Lie y ademds Va,b,c € A satisface

» {a,bc} = {a,b}c+ b{a,c} (regla de Leibniz).
Por ultimo daremos algunos conceptos de geometria simpléctica.

B.20. Definicién: Sea M una variedad diferenciable. Llamaremos forma simpléctica
en M a una 2-forma cerrada (dw = 0) no degenerada (de rango mdzimo) w. El par (M,w)
recibe el nombre de variedad simpléctica. En particular, cuando w sea exacta (w = dO)
diremos que (M,w) es una variedad simpléctica exacta.

B.21. Teorema: Sea M wuna variedad de dimension finita n y sea w una 2-forma
bilineal antisimétrica. La 2-forma es no degenerada si y sélo sin es par, es decir, n = 2m
conm € N, y ademads w™ = w A™Y A w es un elemento de volumen.

B.22. Teorema: (Teorema de Darboux) Si w es una forma simpléctica en una varie-
dad diferenciable M, para cada punto x € M hay una carta local coordenada en torno a
x en la cual las coordenadas de w son constantes.

B.23. Corolario: Si (M,w) es una variedad simpléctica de dimension finita 2n, en-
tonces, alrededor de cada punto x € M, hay una carta coordenada (U, ), en donde la
aplicacion o estd dada por o(z) = (¢*,...,q¢",p1,---,Pn), tal que w se escribe como:

w:idqi/\dpi

i=1

A tales coordenadas (q', p;) las denominaremos coordenadas candnicas.
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