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APÉNDICE A: Descripción simpléctica de la Mecánica Clásica
Hamiltoniana.1

Sea MC el espacio de configuración del sistema. Se trata de una variedad simpléctica2

que recibe el nombre de espacio de fases del sistema. En él, cada uno de los estados que lo
forman, viene determinado por una posición q⃗ y su correspondiente momento p⃗, de forma
que se puede considerar en los casos más simples MC ∼ R2n (con n el número de grados
de libertad).

Con respecto al espacio de “observables”, son las funciones f ∈ C∞(MC) definidas
sobre MC

f : MC → R

las que reflejan el proceso de medida, asignando a cada estado un determinado valor.

En este espacio de observables, se puede introducir una operación interna, conocida
como corchete de Poisson {·, ·}. Se trata de una operación bilineal

{·, ·} : C∞(MC)× C∞(MC) → C∞(MC)

que cumple las siguientes propiedades:

Es antisimétrica.

{f, g} = −{g, f} ∀f, g ∈ C∞(MC)

Satisface la identidad de Jacobi.

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0 ∀f, g, h ∈ C∞(MC)

Satisface la regla de Leibniz.

{f, gh} = {f, g}h+ g{f, h} ∀f, g, h ∈ C∞(MC)

Es precisamente esta operación la que permite definir el espacio de observables (C∞(MC), {·, ·})
como un álgebra de Poisson. Si únicamente cumpliera las dos primeras propiedades seŕıa
un álgebra de Lie, lo que significa que un corchete de Poisson es un corchete de Lie que
además satisface la regla de Leibniz.

Si las posiciones y momentos (qi, pi) son coordenadas de Darboux, comúnmente lla-
madas coordenadas canónicas en mecánica hamiltoniana, el corchete toma la forma:

{f, g} =
n∑

i=1

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi

1Para un desarrollo más completo de esta descripción véase la referencia [3].
2Ver apéndice B: B.20.
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Dado entonces este corchete de Poisson {·, ·} y una función f ∈ C∞(MC), podemos
definir el concepto de campo vectorial hamiltoniano de la función f como aquel campo
vectorial Xf tal que

Xf (g) = {f, g} ∀g ∈ C∞(MC)

que en nuestras coordenadas canónicas tomará la forma:

Xf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

Es aśı como en mecánica clásica hamiltoniana, se llama sistema dinámico hamilto-
niano a una terna (MC , {·, ·}, H), donde {·, ·} define una estructura de Poisson sobre MC

y donde H es una función H ∈ C∞(MC) que describe la dinámica del sistema a través de
las curvas integrales de su campo vectorial hamiltoniano XH .

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

Esta función H recibe el nombre de hamiltoniano del sistema.

De manera análoga, también puede describirse la dinámica del sistema sobre el espacio
de observables a través de la ecuación

df

dt
= {H, f} ∀f ∈ C∞(MC)

De esta forma, considerando las funciones “posición” qi(t) y “momento” pi(t) de una
part́ıcula se tiene que

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi

que resultan ser las ya conocidas como ecuaciones de Hamilton.
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APÉNDICE B: Glosario de geometŕıa diferencial.3

Primeramente, daremos algunas referencias sobre los objetos base de la geometŕıa di-
ferencial: las variedades diferenciales:

B.1. Definición: Sea M un espacio topológico. Llamaremos carta n-dimensional en
M , a un par (U , φ) tal que

U ⊂ M es un abierto en M .

φ es una aplicación φ : U → φ(U) ⊂ Rn abierta y φ es un homeomorfismo de U en
φ(U).

Si consideramos entonces dos cartas (U , φ) y (U ′, φ′), diremos que son compatibles si
son disjuntas U ∩ U ′ = ∅, o bien la aplicación φ′ ◦ φ−1 : φ(U ∩ U ′) → φ′(U ∩ U ′) es un
difeomorfismo de abiertos de Rn.

De esta forma dar una estructura diferenciable sobre M consiste en darle un atlas, que
es un conjunto de cartas, dos a dos compatibles, que cubre todo M .

B.2. Definición: Llamaremos variedad diferenciable, a toda variedad topológica do-
tada de una estructura diferenciable.

Los siguientes conceptos a destacar serán los de campos vectoriales y formas diferen-
ciables de una variedad diferenciable:

B.3. Definición: Sea M una variedad diferenciable y p ∈ M . Llamaremos vector
tangente en p a toda aplicación Xp : C

∞(p) → R que verifique:

Xp es lineal, es decir: Xp(λf + µg) = λXp(f) + µXp(g) λ, µ ∈ R.

Xp(f · g) = f(p)Xp(g) + g(p)Xp(f) (Regla de Leibniz).

También existe la posibilidad de definir los vectores tangentes como clase de equiva-
lencia de curvas. De esta forma:

B.4. Definición: Diremos que dos curvas γ1 y γ2 en la variedad M que parten de p,
son equivalentes en p si existe una carta (U , φ) en p tal que

d(φ ◦ γ1)
dt

∣∣∣
t=0

=
d(φ ◦ γ2)

dt

∣∣∣
t=0

siendo γ1(0) = p = γ2(0).

B.5. Definición: Llamaremos vector tangente en p ∈ M a una clase de equivalencia
en p de dichas curvas.

3Para estudiar más en profundidad los elementos de este glosario, acudir a la referencia [1] y a las notas
del curso de Introducción a la geometŕıa diferencial del profesor José F. Cariñena. de la Univ. Zaragoza.
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B.6. Definición: Llamaremos espacio vectorial tangente a M en el punto p al espacio
vectorial de los vectores en el punto p. Será denotado por Tp(M).

B.7. Definición: El espacio lineal T ∗
p (M) dual de Tp(M) recibe el nombre de espacio

vectorial cotangente en p ∈ M . Sus elementos se llamarán covectores en p o vectores
covariantes en p.

En general, dada una función f ∈ C∞(p), se puede definir un covector en p ∈ M , que
denotaremos (df)p por (df)p(Xp) = Xpf .

Como conclusión entonces:

B.8. Definición: Un campo vectorial X sobre una variedad diferenciable M es una
función

X : M → T (M) =
∪
p∈M

Tp(M)

que asocia a cada punto p ∈ M un vector Xp ∈ Tp(M), siendo T (M) el conjunto de todos
los pares (p,Xp) con p ∈ M y Xp ∈ Tp(M).

B.9. Definición: Una 1-forma diferencial en una variedad diferenciable M es una
función

ω : M → T ∗(M) =
∪
p∈M

T ∗
p (M)

que asocia a cada punto p ∈ M un covector ωp ∈ T ∗
p (M), siendo T ∗(M) el dual de T (M).

Pasemos entonces al concepto de aplicación diferencial y aplicación codiferencial entre
dos variedades diferenciables.

B.10. Definición: Sea F : M → N una aplicación diferenciable de M en N .
Para cada punto p ∈ M , la aplicación F∗p : Tp(M) → TF (p)(N) definida mediante
F∗p(Xp)f = Xp(f ◦ F ),∀f ∈ C∞(F (p)), recibe el nombre de diferencial de F en p ∈ M .

Como interpretación geométrica de esta aplicación, podŕıamos decir que F∗p es una
aplicación lineal de Tp(M) en TF (p)(M) tal que la imagen de un vector v tangente en
p ∈ M a la curva γ : (−ϵ, ϵ) → M con γ(0) = p, es el vector tangente a la curva F ◦ γ en
el punto F (p) ∈ N .

B.11. Definición: De la misma forma, llamaremos codiferencial de F en p ∈ M
a la aplicación lineal F ∗

p := (F∗p)
∗ : T ∗

F (p)(N) → T ∗
p (M) definida por F ∗

p (ωF (p))Xp =

ωF (p) [F∗p(Xp)].

Por supuesto, estos conceptos son generalizables al caso de campos tensoriales de tipo
(r, s) y no sólo a los de tipo (1, 0) (campos vectoriales) ó (0, 1) (1-formas).
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Visto entonces el significado de lo que es un campo vectorial y que un vector puede
interpretarse como la clase de equivalencia de las curvas con el mismo “vector velocidad”,
podemos definir:

B.12. Definición: Si X es un campo vectorial (diferenciable) sobre una variedad M ,
diremos que una curva diferenciable γ : I → M , donde I = (a, b), es una curva integral
del campo X si

dγ

dt

∣∣∣
t=t0

= Xγ(t0) ∀t0 ∈ (a, b)

De esta forma puede demostrarse que la imagen a través de la aplicación diferencial
F∗p de una curva integral de X partiendo de p ∈ M , es una curva integral de F∗p(X)
partiendo de F (p) ∈ N .

B.13. Definición: Dado el campo vectorial X, llamaremos flujo de X y denotare-
mos por ΦX a la aplicación ΦX : R × M → M , definida por ΦX(t, p) = γp(t); siendo
γp : I(p) → M la curva integral maximal del campo X que parte de p. A veces, a esta
curva integral se le denota también como Φt(p).

Puesto que el vector tangente Xp a una curva integral Φt(p) en p es tal que Xp =
d
dt
Φt(p)

∣∣∣
t=0

, vemos que

(Xf)(p) = Xpf = ĺım
t→0

1

t
[f(Φt(p))− f(p)] =

d

dt
[f(Φt(p))]

De forma análoga, con el concepto de codiferencial, esta expresión puede ser reescrita
como:

(Xf)(p) = ĺım
t→0

1

t
[(Φ∗

tf)(p)− f(p)]

Y aśı:

B.14. Definición: Para cada campo vectorial X y cada campo r-covariante ω defini-
remos la derivada de Lie de ω según el campo vectorial X como el campo r-covariante:

(LXω)(p) = ĺım
t→0

1

t
[(Φ∗

tω)(p)− ω(p)]

donde se tiene que si ω es un campo r-covariante,

[(Φ∗
tω)(X1, . . . , . . . Xr)] (p) = ω(Φt(p))(Φt∗p(X1p), . . . ,Φt∗p(Xrp))

Vemos que, intuitivamente, la derivada de Lie no hace referencia más que a la variación
de los campos ω a lo largo de las curvas integrales de X.

Vayamos ahora con algunos de los conceptos topológicos aparecidos:

B.15. Definición: Llamaremos álgebra a todo par (A, ϕ) en donde A es un A-módulo
y ϕ una aplicación bilineal ϕ : A×A → A.
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B.16. Definición: Diremos que un álgebra es asociativa si ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c), ∀a, b, c ∈
A.

B.17. Definición: Diremos que un álgebra (L, [·, ·]) es de Lie si ∀a, b, c ∈ A

[a, b] + [b, a] = 0 (antisimétrica).

[[a, b] , c] + [[b, c] , a] + [[c, a] , b] = 0 (identidad de Jacobi).

B.18. Definición: Diremos que un álgebra (A, ◦) es de Jordan si ∀a, b ∈ A

a ◦ b = b ◦ a (conmutativa).

(a ◦ b) ◦ (a ◦ a) = a ◦ (b ◦ (a ◦ a)) (identidad de Jordan).

B.19. Definición: Diremos que un álgebra (A, {·, ·}) es de Poisson si es un álgebra
de Lie y además ∀a, b, c ∈ A satisface

{a, bc} = {a, b}c+ b{a, c} (regla de Leibniz).

Por último daremos algunos conceptos de geometŕıa simpléctica.

B.20. Definición: Sea M una variedad diferenciable. Llamaremos forma simpléctica
en M a una 2-forma cerrada (dω = 0) no degenerada (de rango máximo) ω. El par (M,ω)
recibe el nombre de variedad simpléctica. En particular, cuando ω sea exacta (ω = dΘ)
diremos que (M,ω) es una variedad simpléctica exacta.

B.21. Teorema: Sea M una variedad de dimensión finita n y sea ω una 2-forma
bilineal antisimétrica. La 2-forma es no degenerada si y sólo si n es par, es decir, n = 2m
con m ∈ N, y además ωm = ω ∧ m veces. . . ∧ ω es un elemento de volumen.

B.22. Teorema: (Teorema de Darboux) Si ω es una forma simpléctica en una varie-
dad diferenciable M , para cada punto x ∈ M hay una carta local coordenada en torno a
x en la cual las coordenadas de ω son constantes.

B.23. Corolario: Si (M,ω) es una variedad simpléctica de dimensión finita 2n, en-
tonces, alrededor de cada punto x ∈ M , hay una carta coordenada (U , φ), en donde la
aplicación φ está dada por φ(x) = (q1, . . . , qn, p1, . . . , pn), tal que ω se escribe como:

ω =
n∑

i=1

dqi ∧ dpi

A tales coordenadas (qi, pi) las denominaremos coordenadas canónicas.
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