000162561 001__ 162561
000162561 005__ 20251017144608.0
000162561 0247_ $$2doi$$a10.1103/fh7m-4p37
000162561 0248_ $$2sideral$$a145052
000162561 037__ $$aART-2025-145052
000162561 041__ $$aeng
000162561 100__ $$aNgouagnia Yemeli, I.
000162561 245__ $$aSelf-Modulation Instability in High Power Ferromagnetic Resonance of BiYIG Nanodisks
000162561 260__ $$c2025
000162561 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162561 5203_ $$aWe study the high power ferromagnetic resonance of perpendicularly magnetized BiYIG nanodisks where the uniaxial anisotropy almost compensates for the shape anisotropy. We observe a strong saturation of the averaged magnetization upon moderately increasing the amplitude of the rf field and a broadening of the ferromagnetic resonance line toward lower and higher magnetic fields. Full micromagnetic simulations reveal that a self-modulation of the dynamic magnetization is responsible for this behavior. To get more insight into this unstable dynamics, we analyze it in terms of normal modes. The number of modes involved is found to rapidly increase above the critical threshold. Still, a normal mode model taking into account only a few of them and their mutual nonlinear couplings allows us to reproduce the observed phenomenon. The normal mode analysis and micromagnetic simulations also predict a Suhl-like instability at a larger excitation power, when it is slowly increased from low values, and bistability. Using two-tone spectroscopy, we directly measure the self-modulation spectrum and provide experimental evidence of bistable dynamics. These findings open some perspectives on using high dimensional dynamics in magnetic nanostructures for unconventional information processing.
000162561 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/EC/H2020/899646/EU/k-space Neural computation with magnEtic exciTations/k-NET$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 899646-k-NET$$9info:eu-repo/grantAgreement/ES/MICIU/CEX2023-001286-S
000162561 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000162561 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000162561 700__ $$aPerna, S.
000162561 700__ $$aGouéré, D.
000162561 700__ $$aKolli, A.
000162561 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, S.$$uUniversidad de Zaragoza
000162561 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, J.M.
000162561 700__ $$aMuñoz, M.
000162561 700__ $$aAnane, A.
000162561 700__ $$ad’Aquino, M.
000162561 700__ $$aMerbouche, H.
000162561 700__ $$aSerpico, C.
000162561 700__ $$ade Loubens, G.
000162561 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000162561 773__ $$g135, 5 (2025), 056703 [7 pp.]$$pPhys. rev. lett.$$tPhysical Review Letters$$x0031-9007
000162561 8564_ $$s2049584$$uhttps://zaguan.unizar.es/record/162561/files/texto_completo.pdf$$yPostprint
000162561 8564_ $$s3443721$$uhttps://zaguan.unizar.es/record/162561/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000162561 909CO $$ooai:zaguan.unizar.es:162561$$particulos$$pdriver
000162561 951__ $$a2025-10-17-14:16:09
000162561 980__ $$aARTICLE