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Prólogo

“En los últimos años las ciencias de la vida se han transformado, y están empezando a ser, en
cierto modo, una ciencia exacta. Se ha abierto un mundo nuevo en el estudio de los seres vivos,
un universo con una cantidad de datos enorme. Hay que ponerle forma a eso, y las matemáticas
son la herramienta para hacerlo”.
Fernando Giráldez, catedrático de Biología del Desarrollo de la Universidad de Pompeu Fabra.

En principio las matemáticas no precisan de la biología pero sí recíprocamente, siendo éste el
origen de la biología matemática, la cual será claramente líder de la ciencia en un futuro previsible.
Aunque no esté específicamente definida, la biología matemática es una ciencia de rápido crecimien-
to y bien reconocida. Los mejores modelos, muestran cómo funciona un proceso y predicen cómo
seguirá.

Un modelo matemático es algo más que un conjunto de ecuaciones que hay que analizar para que
luego un biólogo pueda interpretar sus resultados. Un modelo matemático se encuentra determinado
por el problema biológico que se quiere resolver, la pregunta biológica que se quiere responder.

No obstante, construir un modelo matemático y analizarlo no es hacer biología. La exploración
matemática de un fenómeno biológico, por ejemplo, mediante un sistema de ecuaciones, no es equi-
valente a la construcción de una teoría biológica. La aplicación de las matemáticas a la biología tiene
esencialmente dos caminos: por un lado la aplicación rutinaria de técnicas conocidas; por otro, el
desarrollo de nuevos métodos necesarios para el análisis de sistemas biológicos.

La aportación de las matemáticas, en concreto a la lucha contra el cáncer, se hace sobre todo a
través de modelos y programas que simulan desde cómo crece un tumor a qué efecto tiene sobre un
paciente determinada terapia. Los primeros modelos empezaron a desarrollarse en los años 70 y al-
gunos se emplean hoy ya rutinariamente en los hospitales. Se han desarrollo modelos provenientes
de diversos campos como la matemática aplicada, la estadística, la mecánica de fluidos, la ciencia
computacional, etc.

En particular, los modelos de ecuaciones en derivadas parciales, son herramientas muy usadas en
el estudio del crecimiento de tumores y la forma en que se difunden sobre los tejidos que los rodean.
Sin embargo, hoy en día se carece de un modelo que proporcione una predicción y caracterización del
comportamiento para el crecimiento de tumores cancerosos en sus múltiples formas y para cualquier
tipo de población, teniendo en cuenta que los modelos existentes funcionan bajo condiciones ideales
y con poblaciones específicas.

Así pues, a lo largo de este trabajo se tratará de introducir un primer modelo matemático sencillo,
con el fin de producir un acercamiento al lector con todo este campo. Se busca una ecuación que
modele en concreto tumores cerebrales, dando lugar a las ecuaciones de reacción-difusión. Posterior-
mente, se hará un estudio de este tipo de ecuaciones de forma matemática y de métodos numéricos
para su resolución, como el método de diferencias finitas.
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II Capítulo 0. Prólogo

Finalmente, veremos una posible aplicación de todo el estudio, mediante la simulación numérica
con Matlab de casos con pacientes virtuales donde nuestro fin será averiguar cuál es la mejor forma
de distribuir dosis de radioterapia en función de distintos aspectos o características.

No obstante, no se trata de que los matemáticos o los ordenadores vayan a suplantar a los oncólo-
gos, sino de orientar los pasos de los médicos y ayudarles a probar primero lo que parece más efectivo
y por tanto, produce mejores resultados.
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Summary

Mathematical biology is a science of rapid growth and well recognized, although not clearly de-
fined. In this field, a good mathematical model is determined by the biological problem to be solved,
i.e, biological question you want to answer.

The contribution of mathematics to cancer, was made primarily through models or programs that
simulate from how a tumor grows to what effect has a therapy given on a patient.

In particular, models of partial differential equations are widely used tools in the study of tumor
growth and in the way they are spread over the surrounding tissues.

Chapter 1: Reaction-diffusion equations in oncology

Cancer is one disease in which cells divide without control and can invade other tissues.
The cells of our body grow and divide in a controlled way to produce more as needed. When cells

grow old or get damaged, they die, and they are replaced by new cells. However, sometimes this or-
derly process goes wrong. The genetic material (DNA) of the cell may be damaged or altered, which
produces mutations that affect normal growth and division of cells. When this happens, cells do not
die when they should, and form new cells that the body does not need, creating a mass of tissue which
is called tumor.

In this work, we seek to analyze a simple model for brain tumors, in particular, gliomas, which
arise from the glial cells; that is, cells of the central nervous system, which mainly have the function
of support of neurons and are involved in brain information processing in the body.

The type of equation that models this type of tumor are reaction-diffusion equations.
We suppose a population u(x, t). It is in a set Ω⊆ Rn whit Ω compact and denote by J(x, t) ∈ Rn

the particles flow in and out of Ω. Thus, the conservation equation, says that the rate of change of the
density u(x, t) in Ω is equal to the rate of change of the flow of material through ∂Ω plus material
created in Ω:

∂

∂ t

∫
Ω

u(x, t)dΩ =−
∫

∂Ω

J(x, t)−→n d∂Ω+

∫
Ω

f (u(x, t))dΩ, (1)

where f (u(x, t)) describes the birth rate, death, etc.
By using the divergence theorem and substituting in (1) the following equation is finally obtained:

∂u
∂ t

= O(dOu)+ f (u), (2)

where d is the so-called diffusion constant. This type of equation is called reaction-diffusion equation.

In particular, we work with the Fisher-Kolmogorov equation, which we can obtain by deriving the
following logistic model for the growth of a population:{

u′(t) = ρu(t)(A−u(t)),
u(0) = f0, f0 ∈ (0,A),

(3)
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IV Capítulo 0. Summary

where u = u(t) is the density of population, ρ > 0 is the growth rate and A > 0 is the capacity of the
environment.

We assume that the population is uniformly distributed over an area all time, and thus by deriving
(3), the Fisher equation is obtained:

ut = duxx +ρu(A−u), (4)

where d is the diffusion coefficient and u = u(x, t) is again the density of population.
Normally, we study this equation together with boundary conditions of Neumann type,

ux(0, t) = ux(L, t) = 0, (5)

where L is the domain length.

Therefore, in the modeling of the most basic aspect of gliomas, the Fisher equation describes the
spatio-temporal dynamics of a density of cancer cells that can migrate and proliferate.

Defining f (u) = ρu(A−u) with ρ the parameter of proliferation, we rewrite (4) as:

ut = duxx + f (u), (6)

where f (u) models the proliferation (birth and death of tumor cells), and duxx models diffusion.
We could model other characteristics of tumor cells, however, equation (6) models two of their

most important features: proliferation and diffusion.

Chapter 2: Finite difference method

The method of finite difference is studied for the solution of the reaction-diffusion equation. This
method consists in the approximate solution of PDEs by using a discretization on a mesh.

First, the study of this method is done by considering the heat equation:

ut = uxx, (7)

with initial condition u(x,0) = η(x) and boundary conditions of Dirichlet type,{
u(0, t) = g0(t),
u(1, t) = g1(t),

(8)

for t > 0, 0≤ x≤ 1.

Generally, a set of finite difference equations is obtained on a grid with discrete points (xi, t j)
where:

xi = ih 0≤ i≤ N,

t j = jk 0≤ n≤M,

where h and k are the spatial and temporal discretization steps respectively. So, denote by U j
i ≈ u(xi, t j)

the numerical approximation of u at discrete point xi, in the time t j.

We distinguish between explicit and implicit methods. On the one hand, we obtain an explicit
method considering the following natural discretization of (7):

U j+1
i −U j

i
k

=
1
h2 (U

j
i−1−2U j

i +U j
i+1). (9)
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V

On the other hand, the most usual implicit method is the method of Crank-Nicolson, which can be
written as:

U j+1
i −U j

i
k

=
1

2h2 (U
j

i−1−2U j
i +U j

i+1 +U j+1
i−1 −2U j+1

i +U j+1
i+1 ). (10)

We can also consider the method of lines, which discretizes the PDE only in space, and solve the
resulting system of ODEs by any of the known methods, such as Euler method.

For example, for the heat equation (7), it can be discretized in space in the following way:

U
′
i (t) =

1
h2 (Ui−1(t)−2Ui(t)+Ui+1(t)) para i=1,2,...,N-1. (11)

Stability and convergence

To study the stability and convergence of the method we start by defining the local truncation error,
which is obtained by inserting the exact solution u(x, t) of the PDE in the finite difference equation.

In particular, for example for explicit methods, it is obtained that:

τ(x, t) =
u(x, t + k)−u(x, t)

k
− 1

h2 (u(x−h, t)−2u(x, t)+u(x+h, t)),

refering to τ j or ‖τ j‖ as the local truncation error. Although we do not know u(x, t), in general, we
assume that it is smooth and then use Taylor series expansions.

It is said that a method is consistent if τ(x, t)−→ 0 when k,h−→ 0.
It is said that the difference scheme is consistent of order (p,q) for the partial differential equation

given if:
‖τ j‖= O(hp)+O(kq).

The explicit methods are second order accurate in space and first order accurate in time, as the
local truncation error is O(h2 + k). However, the method of Crank-Nicolson is second-order accurate
in both space and time, that is O(h2 + k2).

To study the stability, we assume that U j+1 can be written as:

U j+1 = QU j, j ≥ 0, (12)

and say that a difference scheme of the form (12) is stable with respect to the norm ‖.‖ if there exist
positive constants h0 and k0 and non-negative constants α and β such that:

‖U j+1‖ ≤ αeβ t‖U0‖, (13)

for 0 ≤ t = ( j+1)k; 0 < h≤ h0 and 0 < k ≤ k0.
In conclusion, the most common approach for the convergence of a finite difference scheme is

through the concepts of consistency, stability and Lax theorem.
We can state the Lax theorem. It says that if a system is consistent of order (p,q) in the norm ‖.‖

for an initial value well-posed problem and it is stable with respect to norm ‖.‖, then it is convergent
of order (p,q) with respect to norm ‖.‖.
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Difference scheme for the Fisher equation

In this chapter, we also study the method for the Fisher equation.
Using an explicit scheme, you can obtain the following discretization:

U j+1
i =U j

i +d
k
h2 (U

j
i+1−2U j

i +U j
i−1)+ kρ(A−U j

i )U
j

i ,

with boundary conditions of Neumann type.

We know some properties of the solution of the Fisher equation, particularly with ρ = d = A = 1.
We suppose u(x, t), satisfying u,ux,uxx,ut ∈C([0,1]× [0,∞]), is the solution of a problem of the

form: 
ut = uxx +u(1−u),
ux(0, t) = ux(1, t) = 0,
u(x,0) = f (x).

(14)

Then, if f (x) satisfies 0 < ε ≤ f (x)≤ 1+ ε , it is fulfilled that:

0 < ε ≤ u(x, t)≤ 1+ ε,

for all x ∈ [0,1], t ≥ 0.
For the Neumann problem (14), it is easy to see that the solution can tend to infinity in a finite

time for some specific values of g with g(u) = u(1−u). Note that if the initial condition f is constant,
i.e,

f (x) = f0, (15)

for all x ∈ [0,1], then;
u(x, t) = v(t), x ∈ [0,1], t > 0,

where v is the solution of:
v′(t) = g(v), v(0) = f0.

Therefore the solution of (14) is given by the solution of an ordinary differential equation which
tends to infinity in a finite time for some functions g.

IMEX method

Difference schemes can be extended in several dimensions, for example, for the Fisher-Kolmogorov
equation:

ut = d(uxx +uyy)+ρu(A−u),

with boundary conditions of Neumann type.

To treat the non-linear part of the equation, the IMEX method will be used. This method involves
treating implicitly the diffusion term and explicitly the reaction term.

So, in each time step, we have to solve a system of linear equations. In particular, to an internal
node (i, j) of the grid, the difference equation is:

U j+1
i −U j

i
k

−d
U j+1

i+1 −2U j+1
i +U j+1

i−1

h2 −d
U j+1

i+N+1−2U j+1
i +U j+1

i−(N+1)

h2 −ρU j
i (A−U j

i ) = 0.
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Chapter 3: Numerical simulation

Numerical solution: explicit method for heat equation

First, we use the explicit finite difference method for solving the heat equation;
ut = uxx, x ∈ (0,1), t < 0,
u(0, t) = u(1, t) = 0,
u(x,0) = sin(2πx).

(16)

If solving the heat equation by separate variables, the following solution is obtained:

u(x, t) = e−4π2t sin(2πx).

The aim of this section is to prove that with a finer mesh, we get better numerical approximations.
Therefore, first we compute the numerical aprroximation with h = 1

6 , k = 1
80 and after with h = 1

20 ,
k = 1

800 .

Also, one can make a study of the errors given by the method. We begin by calculating the error
in the two cases previously studied to corroborate more accurately than the numerical solution in the
second case is much closer to the exact solution. This study yields that 0.0013 < 0.0112; i.e, the error
with the values of h and k taken in the second case is much smaller than the error for the first case.

Numerical solution: explicit method for Fisher-Kolmogorov equation

A second aim is to apply the explicit finite difference method to other equations, such as the
Fisher-Kolmogorov (FK) equation and to study the behaviour for different values of the diffusion and
proliferation parameters.

The spatial interval where it is solved is [a,b] choosing a and b appropriately, and remember that
the FK equation is normally considered with boundary conditions of Neumann type. So, we choose
as integration interval [−L/2,L/2], taking L = 6 cm and we use as an initial condition the following
function:

u0(x) =U0e−
x2

σ2 .

This implies that the cancer cells are distributed in the tissue thereby, where the constant (amplitu-
de) 0 <U0 < 1 takes values in the range U0 ∈ [10−3,10−1]. The diffusion and proliferation parameters
are considered as d ∈ [1,103]mm2/year and ρ ∈ [10−1,102] year −1. The time interval we want to
explore is t ∈ [0,T ] with T ∈ [10−1,10] years.

We choose the remaining parameter σ so that the initial spatial distribution of the tumour is in a
sufficiently small region of the interval [−L/2,L/2].

In this way, we will calculate the solution varying independently the values of d and ρ . We have
implemented in Matlab the explicit finite difference method for solving FK equation and we are going
to discuss the different cases obtained.

First, we assume a fixed proliferation parameter given by ρ = 10 and we analyze the differences
that appear if the diffusion parameter is very small d = 1 or very high d = 1000.

It is noted, on the one hand, that for a proliferation parameter not excessively large, regardless of
what the tumor is disseminated, in a period of one year both tumors will occupy maximum tissue.

On the other hand, we see how for the same proliferation parameter, with a very large diffusion,
the number of cells is expanded in a short period of time, covering the entire line of integration; and
with a very small diffusion, it is not the covered even when u reaches its maximum value after a year.

Autora: Marta Gómez Gómez



VIII Capítulo 0. Summary

Now, we assume a fixed diffusion d = 100, and compare what happens for different values of
proliferation ρ =0.1 and ρ = 100.

In this case, the first observation we make is that due to the high value of the diffusion parameter,
both tumors cover the entire line of integration almost instantly at the start of the year.

In terms of proliferation, in this example, there is a clear difference between the tumors for the
same diffusion parameter. With a value of proliferation almost non-existent, though tumor spreads
very quickly, barely covers the capacity of tissue throughout the year. However, with a very high
value of proliferation, it not only diffuses quickly, but also in a month and a half the tumor has covered
maximum tissue.

Numerical solution: IMEX method in two dimensions

We consider the problem of the two-dimensional Fisher-Kolmogorov equation and IMEX method
is used to approximate the solution.

The objective is the study of the evolution of a single tumor over a year, with a diffusion D = 1
and proliferation ρ = 10.

We start from the same initial distribution as in the previous section, i.e, at beginning of the year
cells are highly concentrated at one point.

Evolution is observed in four different time periods of three months in length each. After one year,
you can see how the tumor is completely diffused and covers almost all tissue.

Radiotherapy and practical cases

Finally we make a study of radiation effects with tumor regrowth. It is known as radiotherapy
the form of cancer treatment based on the use of ionizing radiations (X-rays or radioactivity) and its
unit of measurement is the Grey (Gy). The aim of radiotherapy is to kill cancer cells without harming
surrounding tissue.

We start from a tumor growth according to the following ODE:

dN
dt

= ρN
Ç

1− N
Nmax

å
,

that is, the logistic equation studied, whose solution is:

N(t) =
N(t0)eρ(t−t0)

1+ N(t0
Nmax

Ç
eρ(t−t0)−1

å .
where N is the total number of tumor cells.

If we introduce the action of radiotherapy (S f ), which is killing some cells, we find than after
radiation, the number of cancer cells is given by:

N(t+1 ) = S f
N(t0)eρ(t1−t0)

1+ N(t0
Nmax

Ç
eρ(t1−t0)−1

å .
Therefore, it can be defined:

N j ≡ N(t+j ),

N j+1 = S f
N je

ρ(t j+1−t j)

1+
Nj

Nmax

Ç
eρ(t j+1−t j)−1

å , (17)
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for j = 0, . . . ,n−1.

We starting from a tumor, which has to receive a dose of radiation G (Gy).
Using this numerical simulation, we analyze a very simple model with the use of radiation as a

therapeutic strategy in different cases, viewing the most optimal way to distribute doses.

Suppose as initial data that the initial number of tumor cells, i.e, when the treatment starts is
N = 109, and the maximum number supported by the tissue is Nmax = 3 · 109. The treatment started
7 days after tumor detection and we assume that the patient survives while the tumor does not reach
70% of its maximum size.

First, we study radiosensitive tumors, with a survival fraction after each dose of 48% of the tumor
cells. We distinguish between aggressive tumors (cell doubling time is 20 days) and slow-growing
tumors (cell doubling time is 80 days). We have discussed the differences between treating the patient
daily and weekly.

We conclude that in the case of radiosensitive tumors, independently it they are aggresive, the
most optimal way to give to the patient the doses of radiation is daily. The explanation is simple. As
the tumor can be eliminated completly ensuring the survival of the patient, the best is to kill cancer
cells as soon as possible, giving them less time to replicate.

Secondly, we study non-highly radiosensitive tumors, with a survival fraction after each dose of
85% of the tumor cells. In this case, our only aim is to maximize the survival of the patients and
again to distinguish between aggressive and non-aggressive tumors, discusing same possible ways to
receive the treatment.

We conclude that for non-highly radiosensitive tumors, the most optimal way to give to the patient
the doses of radiotherapy is weekly. We look for extending the survival. Therefore, in this case better
to prolong in time the therapy in order to prevent the unlimited growth of the tumor.

Autora: Marta Gómez Gómez
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“Defiende tu derecho a pensar, porque incluso pensar de
forma errónea es mejor que no pensar”
Hipatia
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Capítulo 1

Ecuaciones de reacción-difusión en
oncología

1.1. ¿Qué es el cáncer?

Definición 1.1.1. Se denomina como cáncer al término usado para enfermedades en las que las
células se dividen sin control y pueden invadir otros tejidos.

No se trata únicamente de una enfermedad, sino de muchas, ya que existen más de 100 tipos
diferentes. No obstante, se pueden agrupar en las siguientes categorías principales:

- Carcinoma: cáncer que empieza en la piel o en tejidos que cubren órganos internos.

- Sarcoma: cáncer que empieza en hueso, cartílago, grasa, músculo o vasos sanguíneos.

- Leucemia: cáncer que empieza en el tejido en el que se forma la sangre, como la médula ósea.

- Linfoma y mieloma: cáncer que empieza en las células del sistema inmunitario.

- Cáncer del sistema nervioso central: cáncer que empieza en los tejidos del cerebro y la médula
espinal.

Todos empiezan en las células. Para entender bien qué es el cáncer, es importante saber lo que
sucede cuando las células normales se convierten en cancerosas.

Las células de nuestro cuerpo crecen y se dividen de una forma controlada para producir más
células según sea necesario. Cuando las células envejecen o se dañan, mueren y son reemplazadas por
células nuevas.

Sin embargo, algunas veces este proceso ordenado se descontrola. El material genético (ADN) de
una célula puede dañarse o alterarse, lo cual produce mutaciones que afectan al crecimiento y a la
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2 Capítulo 1. Ecuaciones de reacción-difusión en oncología

división normal de las células. Cuando esto sucede, las células no mueren cuando deberían morir, y
se forman células nuevas a pesar de que el cuerpo no las necesita.

Las células que sobran forman una masa de tejido a la que se le llama tumor. No obstante, no
todos los tumores son cancerosos; existen tumores benignos y malignos.

- Tumores benignos: pueden estirparse y en la mayoría de los casos no vuelven a aparecer. Las
células no se diseminan a otras partes del cuerpo.

- Tumores malignos: las células pueden invadir tejidos cercanos y diseminarse a otras partes del
cuerpo. Al proceso en el que el cáncer se disemina a otra parte del cuerpo, se le llama metástasis.

1.1.1. Tumores cerebrales

Este trabajo muestra modelos para tumores cerebrales, los cuales abarcan cualquier tumor que se
inicie en el cerebro.

Estos tumores se pueden originar a partir de las células cerebrales, las membranas alrededor del
cerebro, nervios o glándulas. Los tumores pueden destruir directamente células cerebrales o provocar-
les daño produciendo inflamación, ejerciendo presión sobre otras partes del cerebro e incrementando
la presión intracraneal.

Los tumores cerebrales pueden ocurrir a cualquier edad, pero muchos de ellos son más comunes
en un grupo de edad en particular. Por ejemplo, en los adultos, los gliomas y los meningiomas son los
más comunes.

Los meningiomas son muy frecuentes y por lo general benignos. Se presentan en el tejido aracnoi-
deo de las meninges1 y se adhieren a la duramadre. No obstante, pueden causar serias complicaciones
e incluso la muerte debido a su tamaño y localización.

Los gliomas, por contra, a pesar de que apenas metastatizan, rara vez se pueden curar. Surgen a
partir de las células gliales, es decir, células del sistema nervioso central que desempeñan de forma
principal, la función de soporte de las neuronas e intervienen activamente en el procesamiento cerebral
de la información en el organismo. Son clasificados de acuerdo a su grado, y del cual depende que se
augure un mejor o un peor pronóstico, siendo éste por lo general malo para pacientes con gliomas de
alto grado.

El tratamiento para tumores cerebrales puede involucrar cirugía, radioterapia y quimioterapia. No
obstante, el tratamiento depende en cada caso del tamaño, del tipo de tumor y de la salud del paciente
en general; y no siempre tiene como objetivo la cura. En algunas ocasiones en las que se sabe a prio-
ri que no tiene cura, únicamente se busca el alivio de los síntomas o la mejora de la actividad cerebral.

Así pues, el objetivo es encontrar una ecuación en derivadas parciales que modele en concreto los
gliomas y resolverla mediante un método numérico adecuado.

1.2. Ecuaciones de reacción-difusión

Una clase importante de ecuaciones en derivadas parciales son las ecuaciones de reacción-difusión,
para las cuales las variables independientes son el tiempo t y las variables espaciales x.

Las ecuaciones de reacción-difusión implican la combinación de dos procesos diferentes: reacción
y difusión. Se comienza definiendo ambos conceptos.

1Las meninges son las membranas del tejido conectivo que cubren todo el sistema nervioso central, siendo la aracnoides
la meninge intermedia.
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1.2. Ecuaciones de reacción-difusión 3

Definición 1.2.1. Se entiende como difusión a la tendencia de las moléculas a moverse desde zonas
de alta concentración hacia zonas de baja concentración.

Definición 1.2.2. Se entiende por reacción al cambio de estado de las partículas, debido por ejemplo
a interacciones o de manera espontánea.

1.2.1. Modelo logístico

En primer lugar, se recobra un modelo de logística para el crecimiento de una población, del cual
se deducirá posteriormente la ecuación de Fisher-Kolmogorov como caso particular de ecuación de
reacción-difusión.

Este modelo, manifiesta que el crecimiento de la población frente a los recursos limitados es
gobernado por la siguiente ecuación:{

u′(t) = ρu(t)(A−u(t)),
u(0) = f0, f0 ∈ (0,A),

(1.1)

donde u = u(t) es la densidad de población, ρ > 0 es el índice de crecimiento y A > 0 es la llamada
capacidad de carga del medio ambiente. El modelo nos muestra que para pequeñas poblaciones, se
logra un crecimiento exponencial gobernado por:

u′(t)≈ ρAu(t).

Sin embargo, si u aumenta, el término −ρu2 comienza a ser significativo, el crecimiento se ralen-
tiza y la población alcanza poco a poco la capacidad de carga del medio ambiente.

El problema (1.1) puede ser resuelto analíticamente, mediante el método de variables separadas.

du
dt

= ρu(A−u), u 6= 0,A,

du
u(A−u)

= ρdt.

Es decir, se ha de resolver: ∫
du

u(u−A)
=

∫
−ρdt,

lo cual da lugar a:

ln
Ç

u−A
u

å
=−ρAt +C, con C constante,

o lo que es lo mismo, despejando u:

u(t) =
A

1−Ke−ρAt , con K constante.

Aplicando la condición inicial (u(0) = f0), se obtiene la solución buscada.

u(t) =
A f0

f0 +(A− f0)e−ρAt , t ≥ 0.

Notar que u = A es la solución asintótica cuando t −→ ∞ para cualquier valor inicial f0 > 0.
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4 Capítulo 1. Ecuaciones de reacción-difusión en oncología

Por ejemplo con A = ρ = 1, se puede observar gráficamente la solución para algunos valores de
f0 en la Figura 1.1, donde se aprecia como todas las hipotéticas poblaciones tienden finalmente a A.

Figura 1.1: Solución del modelo logístico del crecimiento de una población para distintos valores de
la condición inicial f0

1.2.2. Deducción de las ecuaciones de reacción-difusión

Se supone una población u(x, t) en un conjunto Ω⊆Rn con Ω abierto y se denota por J(x, t) ∈Rn

el flujo de partículas que entran y salen de Ω.
La ecuación de conservación, nos dice que la tasa de cambio de la densidad u(x, t) en Ω es igual

a la tasa de cambio del flujo del material a través de ∂Ω más el material creado en Ω.
Es decir, de forma esquemática:

CAMBIO EN Ω −→ FLUJO A TRAVÉS DE ∂Ω

+
CAMBIO EN LA TASA DE NACIMIENTO Y MUERTE EN Ω

Escrito de forma matemática, esto es:

∂

∂ t

∫
Ω

u(x, t)dΩ =−
∫

∂Ω

J(x, t) ·−→n d∂Ω+

∫
Ω

f (u(x, t))dΩ, (1.2)

donde f (u(x, t)) describe la tasa de nacimiento, muerte, etc. Notar, que consideramos que al final la
tasa media del flujo entra.

Teorema 1.2.3. Teorema de Gauss de la divergencia Sea Ω un abierto simple de R2 y S = ∂Ω su
borde, orientado con la norma exterior unitaria −→n . Sea F : Ω −→ R2 un campo vectorial de clase
C1(Ω).

Entonces: ∫
Ω

divFdΩ =

∫
S

F ·−→n dS.

De esta manera, haciendo uso del teorema de la divergencia y sustituyendo en (1.2), se obtiene:∫
Ω

(
∂u
∂ t
− f (u)+divJ)dΩ = 0.

Por la Ley de Fick, el flujo es proporcional al gradiente de la concentración del material, donde la
constante de proporcionalidad es el coeficiente de difusión d, es decir,

J =−dOu.

Observar que el signo negativo es debido al hecho de que va de mayor densidad a menor densidad.
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1.3. Ecuación de Fisher-Kolmogorov en oncología 5

Así, se llega a la ecuación:

∂u
∂ t

= O(dOu)+ f (u). (1.3)

Definición 1.2.4. A una ecuación de la forma (1.3), se le suele llamar ecuación de reacción-difusión.

Considerando condiciones iniciales y de contorno, se tiene por ejemplo, el siguiente problema:
∂u
∂ t

= d M u+ f (u), x ∈Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x,0) = g(x), x ∈Ω,

(1.4)

donde f puede depender de forma no lineal de u.
Se puede ver con más detalle en [M] (Volumen I: capítulo 11).

1.3. Ecuación de Fisher-Kolmogorov en oncología

En el modelo logístico (1.4), se supone que la variación espacial de la densidad de la población es
de poca importancia para el crecimiento de ésta. Es decir, se asume que la población se distribuye de
manera uniforme sobre un área todo el tiempo. No obstante, en poblaciones reales, esta suposición es
a menudo bastante dudosa.

Por lo tanto, se trabaja con la siguiente ecuación, obtenida de derivar el modelo logístico (1.1):

ut = duxx +ρu(A−u), (1.5)

donde d es el coeficiente de difusión y u = u(x, t) es nuevamente la densidad de población.

Definición 1.3.1. La ecuación del modelo de crecimiento de una población (1.5), se suele llamar
ecuación de Fisher.

La introducción de un término de difusión, conduce a una ecuación diferencial parcial que en con-
traste con la ecuación diferencial ordinaria (1.1), no puede ser generalmente resuelta analíticamente.

Como ya se ha mencionado, el término duxx modela la difusión de la población. Remarcar el hecho
de que, términos similares, surgen en muchas aplicaciones donde se quiere capturar la tendencia de la
naturaleza para suavizar las cosas.

Normalmente, la ecuación de Fisher (1.5) se estudia en conjunto con condiciones de frontera del
tipo Neumann,

ux(0, t) = ux(L, t) = 0, (1.6)

donde L denota la longitud del dominio. La razón por la que se eligen estas condiciones de frontera,
es que se asume que el área es cerrada, así que no hay migración a través del dominio.

La ecuación de Fisher-Kolmogorov, constituye uno de los ejemplos más elementales de ecuación
de reacción-difusión no lineal y uno de sus usos es la modelización de tumores cerebrales (gliomas
malignos), principalmente por la ausencia de metástasis, lo que justifica las condiciones de frontera
de tipo Neumann.

No obstante, como en todos los tumores, los aspectos biológicos y clínicos de los gliomas, son
complejos y los detalles de su crecimiento espacio-temporal todavía no se entienden bien. Para cons-
truir estos modelos se tienen que hacer algunas suposiciones previas. El modelo teórico más simple
incluye sólo el número total de células del tumor, asumiendo normalmente que el tumor tiene un cre-
cimiento exponencial.
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6 Capítulo 1. Ecuaciones de reacción-difusión en oncología

Estos modelos, no tienen en cuenta la disposición espacial de las células en un lugar anatómico en
concreto o la extensión espacial de las células cancerosas; aspectos que son cruciales en la estimación
del crecimiento del tumor, ya que determinan la capacidad de invasión y el aparente borde del tumor.
Así pues, la ausencia de un modelo simple que explique con exactitud el crecimiento de los gliomas
humanos, es lo que hace díficil explicar por qué los resultados tras una extirpación quirúrgica son tan
decepcionantes.

Por lo tanto, se modelan únicamente los aspectos más básicos de los gliomas, usando la ecua-
ción de Fisher-Kolmogorov para describir la dinámica espacio-temporal de una densidad de células
cancerígenas que pueden migrar y proliferar. Definiendo f (u) = ρu(A− u) con ρ el parámetro de
proliferación, se puede reescribir (1.5) como:

ut = duxx + f (u), (1.7)

donde f (u) modela la proliferación, es decir, la tasa de nacimiento y muerte de las células tumorales
y duxx viene del hecho de que cuando las células tumorales han crecido lo suficiente, migran, se di-
funden.

Notar de nuevo, que se podrían modelizar muchas otras características de las células tumorales.
No obstante, la ecuación (1.7) modela dos de las más importantes: proliferación y difusión.

En el siguiente capítulo se estudiará un método numérico para la resolución de dicha ecuación.
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Capítulo 2

Método de diferencias finitas

2.1. Métodos explícitos e implícitos

En este capítulo, se va a estudiar el método de diferencias finitas para aproximar ecuaciones en
derivadas parciales dependientes del tiempo.

Se puede ver un estudio completo del método en [L] (capítulo 13).

Definición 2.1.1. El método de diferencias finitas es un método de carácter general que permite
la resolución aproximada de ecuaciones diferenciales en derivadas parciales definidas en recintos
finitos, mediante la discretización del recinto del plano en el que se quiere resolver la ecuación con
una malla, por conveniencia cuadrada.

Se realiza el estudio del método de diferencias finitas para la ecuación del calor unidimensional
en el dominio Ω = (0,1), la cual es un clásico ejemplo de ecuación parabólica:

ut = uxx. (2.1)

Junto con esta ecuación, se necesitan condiciones iniciales,

u(x,0) = η(x), (2.2)

y condiciones de contorno, como por ejemplo, condiciones de tipo Dirichlet,

u(0, t) = g0(t), u(1, t) = g1(t), (2.3)

para t > 0, si 0≤ x≤ 1.

En la práctica, por lo general, se aplica un conjunto de ecuaciones en diferencias finitas en una
cuadrícula discreta con puntos discretos (xi, tn ) donde dados N,M ∈ Z+:

xi = ih 0≤ i≤ N,

t j = jk 0≤ j ≤M,

con h y k los pasos de discretización espacial y temporal respectivamente.
De esta manera, se denota por U j

i ≈ u(xi, t j) la aproximación numérica en el punto discreto xi en
el tiempo t j.

7



8 Capítulo 2. Método de diferencias finitas

2.1.1. Método explícito

Como un primer ejemplo, se puede considerar la siguiente discretización natural de (2.1) para
1≤ i≤ N−1, j ≥ 0:

U j+1
i −U j

i
k

=
1
h2 (U

j
i−1−2U j

i +U j
i+1). (2.4)

Este ejemplo se trata de un método explícito ya que se puede calcular cada U j+1
i explícitamente en

términos de los datos de la etapa de tiempo anterior:

U j+1
i =U j

i +
k
h2 (U

j
i−1−2U j

i +U j
i+1). (2.5)

La Figura 2.1 muestra la molécula para este método. Se trata de un método de un paso en el
tiempo, llamado método de dos niveles en el contexto de las EDPS, ya que consta de la solución en
dos niveles de tiempo diferentes.

Figura 2.1: Molécula para el método (2.5)

No siempre se obtienen buenos resultados con el método explícito, debido a la existencia de una
condición de estabilidad que se cumple para elecciones apropiadas de los pasos de discretización
espacial y temporal.

En particular, para la ecuación del calor unidimensional se tiene la restricción:

k
(h)2 ≤

1
2
,

de forma que si se eligen unos pasos de discretización que no la cumplan, puede ocurrir que los errores
obtenidos en un paso de tiempo sean más grandes que en el paso anterior.

Se consideran por ello métodos implícitos para obtener métodos más estables, ya que no tienen
ninguna restricción en los tamaños de los pasos de discretización. No obstante, cuentan con el incon-
veniente de ser más costosos (en cada paso de tiempo) desde un punto de vista computacional, ya que
hay que resolver un sistema de ecuaciones en cada nivel temporal.

2.1.2. Método de Crank-Nikolson

Por otro lado, como ejemplo clásico de método implícito se tiene el método de Euler:

U j+1
i −U j

i
k

=
1
h2 (U

j+1
i−1 −2U j+1

i +U j+1
i+1 ). (2.6)
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2.1. Métodos explícitos e implícitos 9

No obstante, otro método mucho más usual en la práctica, por sus beneficios en cuanto a condi-
ciones de orden que se estudiarán más adelante es el método de Crank-Nikolson, donde se tiene la
siguiente discretización:

U j+1
i −U j

i
k

=
1
2
(D2U j

i +D2U j+1
i ) =

1
2h2 (U

j
i−1−2U j

i +U j
i+1 +U j+1

i−1 −2U j+1
i +U j+1

i+1 ), (2.7)

que puede ser reescrito como:

− rU j+1
i−1 +(1+2r)U j+1

i − rU j+1
i+1 = rU j

i+1 +(1−2r)U j
i + rU j

i+1, (2.8)

donde r =
k

2h2 .

Su correspondiente molécula es:

Figura 2.2: Molécula para el método (2.8)

El método de Crank-Nikolson es un método implícito y da lugar a un sistema tridiagonal de ecua-
ciones a resolver en cada paso de tiempo.

En forma matricial, se tiene 1:



(1+2r) −r
−r (1+2r) −r

−r (1+2r) −r
. . . . . . . . .

−r (1+2r) −r
−r (1+2r)





U j+1
1

U j+1
2

U j+1
3
...

U j+1
N−2

U j+1
N−1


=



r(g0(t j)+g0(t j+1))+(1−2r)U j
1 + rU j

2
rU j

1 +(1−2r)U j
2 + rU j

3
rU j

2 +(1−2r)U j
3 + rU j

4
...

rU j
N−3 +(1−2r)U j

N−2 + rU j
N−1

rU j
N−2 +(1−2r)U j

N−1 + r(g1(t j)+g1(t j+1))


.

Un sistema tridiagonal de (N− 1) ecuaciones puede ser resuelto con un coste computacional de
O(N) por el algoritmo de Thomas.

1Notar que las condiciones de contorno (2.3) entran en esas ecuaciones.
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10 Capítulo 2. Método de diferencias finitas

2.2. Método de líneas

Otra manera de discretizar las EDPS dependientes del tiempo, consiste en hacer una discretización
en el espacio dando lugar a un sistema de ecuaciones diferenciales, una por cada punto de la malla.

El sistema resultante de EDOS puede ser aproximado usando cualquiera de los métodos conoci-
dos para aproximar sistemas de ecuaciones diferenciales, como el método de Euler o el método del
trapecio.

Por ejemplo, se puede discretizar la ecuación del calor (2.1) en espacio en cada punto de la malla
xi mediante:

U
′
i (t) =

1
h2 (Ui−1(t)−2Ui(t)+Ui+1(t)) parai = 1,2, . . . ,N−1. (2.9)

Se puede observar que se trata de un sistema acoplado de (N−1) EDOS para las variables Ui(t),
las cuales varían continuamente en el tiempo a través de las líneas mostradas en la siguiente figura.

Figura 2.3: Interpretación del método de líneas

Este sistema puede ser escrito como:

U
′
(t) = AU(t)+g(t), (2.10)

donde la matriz tridiagonal A es de la siguiente forma:

A =
1
h2



−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2


, (2.11)

y g(t) incluye los términos para las condiciones de frontera, U0(t)≡ g0(t) y UN(t)≡ g1(t).

g(t) =
1
h2



g0(t)
0
0
...
0

g1(t)


.
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2.3. Estabilidad y convergencia 11

Si aplicamos un método numérico de EDOS para aproximar el sistema (2.10), se obtendrá un
método totalmente discreto que produce aproximaciones U j

i ≡ Ui(t j) en los puntos discretos en el
tiempo, que son exactamente los puntos (xi, t j) de la malla que hemos introducido previamente.
Por ejemplo, aplicando el método de Euler explícito a este sistema lineal resulta el método discreto
(2.5). Por contra, aplicando el método del trapecio, resulta el método de Crank-Nikolson (2.8).

2.3. Estabilidad y convergencia

El estudio de la estabilidad y la convergencia se puede ver en [T] (capítulo 2).

2.3.1. Errores de truncamiento

El error de truncamiento es el error que se produce al sustituir la solución exacta de u(x, t) en las
ecuaciones en diferencias finitas.

En particular, el error local de truncamiento del método (2.5), se basa en la forma (2.4):

τ(x, t) =
u(x, t + k)−u(x, t)

k
− 1

h2 (u(x−h, t)−2u(x, t)+u(x+h, t)).

Definición 2.3.1. Nos referimos a τ j o ‖τ j‖ como error de truncamiento local.

Aunque no se conoce u(x, t), en general, se asume que es suficientemente derivable para poder
utilizar desarrollos en serie de Taylor.

Definición 2.3.2. Un método se dice consistente si τ(x, t)→ 0 cuando k,h→ 0.

Definición 2.3.3. Se dice que el esquema de diferencias es consistente de orden (p,q) para la ecuación
en derivadas parciales dada, si:

‖τ j‖= O(hp)+O(kq).

Se espera que la consistencia, además de algún tipo de estabilidad, sean suficientes para probar
que el método converge en cada punto fijo (x, t). Más aún, se espera que para un método estable el
orden global de exactitud, coincida con el orden del error de truncamiento local.

Consistencia en métodos explícitos

El error de consistencia del método de Euler explícito (2.5) es:

τ(x, t) =
u(xi, t j+k)−u(xi, t j)

k
− 1

h2 (u(xi+1, t j)−2u(xi, t j)+u(xi−1, t j)),

y utilizando un desarrollo en serie de Taylor alrededor de u(xi, t j), se obtiene:

τ(x, t) = (ut +
1
2

kutt +
1
6

k2uttt + · · ·)− (uxx +
1

12
h2uxxxx + · · ·).

Como ut = uxx, el término O(1) desaparece.
Por otra parte, derivando ut = uxx, se llega a utt = utxx = uxxxx y así:

τ(x, t) = (
1
2

k− 1
12

h2)uxxxx +O(k2 +h4).

Se dice que el método es consistente de segundo orden en espacio y consistente de primer orden
en tiempo, ya que el error de truncamiento local es O(h2 + k).

Autora: Marta Gómez Gómez



12 Capítulo 2. Método de diferencias finitas

Consistencia en métodos implícitos

Para estudiar la consistencia del método de Euler implícito basado en (2.6), se aplican de nuevo
desarrollos en serie de Taylor, llegando a las mismas condiciones de orden que las obtenidas en los
métodos explícitos, es decir O(h2 + k).

Sin embargo, el método de Crank-Nicolson, está centrado en el espacio y en el tiempo, por lo que
un análisis del error local de truncamiento muestra que es consistente de segundo orden en ambos2,
lo cual como se había adelantado previamente hace que este método sea mejor frente a (2.6).

τ(x, t) = O(k2 +h2).

2.3.2. Teoría de estabilidad

Para realizar el análisis de la estabilidad de sistemas como (2.5) o (2.8), se supone que U j+1 puede
ser escrito de la forma:

U j+1 = QU j, j ≥ 0. (2.12)

Definición 2.3.4. Se dice que un esquema de diferencias de la forma (2.12) es estable con respecto a
la norma ‖.‖ si existen constantes positivas h0 y k0 y constantes no negativas α y β tal que:

‖U j+1‖ ≤ αeβ t‖U0‖, (2.13)

para 0 ≤ t = ( j+1)k; 0 < h≤ h0 y 0 < k ≤ k0.

Notar que hay una gran variedad de definiciones de estabilidad alternativas. Una de las defini-
ciones más comunes es la que no se permite el crecimiento exponencial. Así, (2.13) es reemplazada
por:

‖U j+1‖ ≤ α‖U0‖. (2.14)

Una caracterización de estabilidad de gran utilidad viene de considerar la inequación (2.13) y se
puede observar en la siguiente proposición.

Proposición 2.3.5. El esquema de diferencias (2.12) es estable con respecto a la norma ‖.‖⇔ existen
constantes positivas h0 y k0 y constantes no negativas α y β tal que:

‖Q j+1‖ ≤ αeβ t , (2.15)

para 0 ≤ t = ( j+1)k; 0 < h≤ h0 y 0 < k ≤ k0.

Demostración. Se tiene que:

U j+1 = QU j = Q(QU j−1) = Q2U j−1 = · · ·= Q j+1U0.

Así la expresión (2.13) puede ser escrita como:

‖U j+1‖= ‖Q j+1U0‖ ≤ αeβ t‖U0‖,

o lo que es lo mismo:
‖Q j+1U0‖
‖U0‖

≤ αeβ t .

⇒) Tomando el supremo en ambos lados, sobre todos los vectores U0 no nulos, se obtiene:

‖Q j+1‖ ≤ αeβ t .

⇐) Por otra parte, usando que ‖Q j+1U0‖ ≤ ‖Q j+1‖‖U0‖ y la desigualdad (2.15), se tiene (2.13)
(estabilidad).

2Se puede ver fácilmente aplicando en este caso un desarollo en serie de Taylor alrededor de (xi, t j+ 1
2
).
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2.3.3. Convergencia

La forma más común de demostrar la convergencia en el contexto de los métodos en diferencias,
es a través del teorema de Lax usando la consistencia y la estabilidad.

Los métodos estudiados hasta ahora, pueden ser escritos de la forma;

U j+1 = QU j +b j, (2.16)

donde Q ∈ R(N−1)×(N−1) y b j ∈ Rm.
Se puede aplicar, de la manera habitual, la ecuación en diferencias a la solución exacta y se obtie-

ne:

u j+1 = Qu j +b j + kτ
j. (2.17)

Restando ecuaciones (2.16) y (2.17) se obtiene la ecuación en diferencias para el error global
E j =U j−u j.

E j+1 = QE j− kτ
j.

Utilizando esta fórmula de forma recursiva, se tiene:

E j = Q jE0− k
j∑

m=1

Q j−m
τ

m−1.

Tomando normas,

‖E j‖ ≤ ‖Q j‖‖E0‖+ k
j∑

m=1

‖Q j−m‖‖τm−1‖.

Se tiene así la siguiente definición de convergencia.

Definición 2.3.6. Se dice que el método converge siempre que sea consistente, es decir, τm−1 −→ 0
en cada paso; y estable, lo cual requiere que ‖Q j‖ sea acotado uniformemente ∀k, j con jk ≤ t.

La forma de estabilidad requerida, es decir, la cota uniforme en ‖Q j‖, es a menudo llamada esta-
bilidad de Lax-Richtmyer.

Consistencia, estabilidad y convergencia están conectados mediante el teorema de Lax-Richtmyer.

Teorema 2.3.7. Equivalencia de Lax Un esquema de diferencias consistente para un problema de
valor inicial lineal bien planteado es convergente⇔ es estable.

Así pues, siempre y cuando se tenga un esquema consistente, la convergencia es sinónimo de
estabilidad.

Teorema 2.3.8. Teorema de Lax Si un sistema es consistente de orden (p,q) en la norma ‖.‖ para
un problema de valor inicial bien planteado y es estable con respecto a la norma ‖.‖, entonces es
convergente de orden (p,q) con respecto a la norma ‖.‖.

Demostración. Se supone un esquema en diferencias de la forma:

U j+1 = QU j + kG j.

Sea u = u(x, t) la solución exacta del problema de valor inicial. Entonces, puesto que el esquema de
diferencias es consistente de orden (p,q), se tiene:

u j+1 = Qu j + kG j + kτ
j,

Autora: Marta Gómez Gómez



14 Capítulo 2. Método de diferencias finitas

con ‖τ j‖= O(hp)+O(kq). Se define E j como la diferencia U j−u j. Entonces E también satisface:

E j+1 = QE j + kτ
j.

Aplicando esta última ecuación de forma recursiva se deduce que:

E j+1 = QE j + kτ
j

= Q(QEn j−1 + kτ
j−1)+ kτ

j

= Q2E j−1 + kQτ
j−1 + kτ

j

. . .

= Qn+1E0 + k
m∑

m=0

Qm
τ

j−m.

Como E0 = 0, se tiene:

E j+1 = k
j∑

m=0

Qm
τ

j−m. (2.18)

El hecho de que el esquema de diferencias sea estable implica que para cualquier m,

‖Qm‖ ≤ αeβ t . (2.19)

Tomando la norma en ambos lados de la ecuación (2.18) y usando (2.19),

‖E j+1‖ ≤ k
j∑

m=0

‖Qm‖‖τ j−m‖

≤ kα

j∑
m=0

eβmk‖τ j−m‖

≤ kαeβ ( j+1)k
j∑

m=0

‖τ j−m‖

≤ ( j+1)kαeβ ( j+1)kC∗(t)(hp + kq), (2.20)

con C∗(t) = sup0≤s≤tC(s) y donde C(s), s = ( j−m)k es la constante implicada en la expresión de “O
grande” para ‖τ j−m‖.

Conforme a la definición de convergencia, t es elegido de forma que ( j+1)k−→ t cuando k−→ 0
(y por supuesto j −→ ∞). Entonces, cuando h,k −→ 0, la expresión (2.20) da lugar a:

( j+1)kαeβ tC∗(t)(hp + kq)−→ 0.

Por supuesto, es equivalente a decir ‖E j+1‖ −→ 0.
Para ver que la convergencia es de orden (p,q), notar que la expresión (2.20) puede ser reescrita

como:

‖E j+1‖ ≤ α(t)(hp + kq)

= O(hp)+O(kq).

Modelos matemáticos en oncología

Simulación numérica



2.4. Esquema en diferencias para la ecuación de Fisher 15

2.4. Esquema en diferencias para la ecuación de Fisher

Se han estudiado los esquemas en diferencias para la ecuación del calor (2.1). Se estudian ahora
para nuestro modelo, es decir, para la ecuación de Fisher:

ut = duxx +ρ(A−u)u.

Usando un esquema de diferencias explícito, se tiene la siguiente discretización para los nodos
interiores del mallado:

U j+1
i =U j

i +d
k
h2 (U

j
i+1−2U j

i +U j
i−1)+ kρ(A−U j

i )U
j

i .

Utilizando la condición inicial se tiene que:

U0
i = f (xi) i = 0, . . . ,N.

Para los nodos de la frontera, como se tienen condiciones de contorno de tipo Neumann, se obtie-
nen las siguientes ecuaciones en diferencias:

U j+1
0 = U j

0 +d
k
h2 (2U j

1 −2U j
0 )+ kρ(A−U j

0 )U
j

0 ,

U j+1
N = u j

N +d
k
h2 (2U j

N−1−2U j
N)+ kρ(A−U j

N)U
j

N ,

con N =
L
h

siendo L la longitud del dominio.

2.4.1. Propiedades de la solución

A continuación se enuncian algunas propiedades de la solución de la ecuación de Fisher, en el
caso ρ = d = A = 1.

Tanto el esquema en diferencias, como las propiedades para la ecuación de Fisher, se pueden ver
más ampliamanete en [TW] (capítulo 11).

Teorema 2.4.1. Suponer u(x, t), satisfaciendo u,ux,uxx,ut ∈ C([0,1]× [0,∞]), es la solución de un
problema de la forma: 

ut = uxx +u(1−u),
ux(0, t) = ux(1, t) = 0,
u(x,0) = f (x).

(2.21)

Entonces, si la condición inicial f (x) satisface 0 < ε ≤ f (x)≤ 1+ε , se cumple que la solución u(x, t)
en cualquier instante de tiempo cumple:

0 < ε ≤ u(x, t)≤ 1+ ε,

para todo x ∈ [0,1], t ≥ 0.

Sea u(x, t) la solución de (2.21) con f (x) satisfaciendo 0 < ε ≤ f (x)≤ 1+ ε . Se define para t ≥ 0:

E(t) =
∫ 1

0
(u(x, t)−1)2dx.

Usando ut = uxx +u(1−u) y las condiciones de frontera ux(0, t) = ux(1, t) = 0, se obtiene:

E ′(t) = 2
∫ 1

0
(u−1)utdx = 2

∫ 1

0
(u−1)uxx−u(1−u)2dx =−2

∫ 1

0
(ux)

2dx−2
∫ 1

0
u(1−u)2dx.

Autora: Marta Gómez Gómez
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Se sigue del Teorema 2.4.1 que u(x, t)≥ ε > 0,∀x ∈ [0,1], t ≥ 0 y como consecuencia se tiene:

E ′(t)≤−2ε

∫ 1

0
(1−u(x, t))2dx =−2εE(t).

Por tanto, la desigualdad de Gronwall3 implica que:

E(t)≤ e−2εtE(0),

de donde se obtiene el siguiente resultado.

Teorema 2.4.2. Sea u(x, t) solución del problema (2.21) con f (x) satisfaciendo 0 < ε ≤ f (x)≤ 1+ε ,
∀x ∈ [0,1]. Entonces la solución asintótica de u(x, t) se aproxima a u = 1 en el sentido de que:

∫ 1

0
(u(x, t)−1)2dx≤ e−2εt

∫ 1

0
(1− f (x))2dx,

para t ≥ 0.

Para el problema de Neumann (2.21), no es difícil ver que la solución puede tender a infinito en
un tiempo finito para algunos valores concretos de g con g(u) = u(1− u). Notar que si la condición
incial f es constante, por ejemplo,

f (x) = f0, (2.22)

para todo x ∈ [0,1], entonces:

u(x, t) = v(t), x ∈ [0,1], t > 0,

donde v es la solucion de: {
v′(t) = g(v),
v(0) = f0.

Por lo tanto, la solución de (2.21) viene dada por la solución de una ecuación diferencial ordinaria,
la cual es conocido que tiende a infinito en un tiempo finito para algunas funciones g.

Sea, por ejemplo,

g(v) = v3, f0 > 0,

entonces la solución será:

v(t) =
f0»

1−2t f 2
0

,

la cual cumple que:

v(t)−→ ∞ cuando t −→ 1
2 f 2

0
.

En conclusión, la solución de (2.21) tiende a infinito en un tiempo finito con unas condiciones
iniciales que satisfacen (2.22) cuando g(u) = u3 y f0 > 0.

3Sea I un intervalo de la forma [a,b] con a < b. Si u es diferenciable en I y satisface u′(t)≤ β (t)u(t) entonces se cumple
u(t)≤ u(a)exp(

∫ t
a β (s)ds).
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2.5. Extensión del método a dos dimensiones para la ecuación de Fisher

Los esquemas en diferencias finitas explicados en las secciones anteriores, se pueden extender
fácilmente a varias dimensiones. En particular, en el siguiente capítulo se presentarán resultados para
la ecuación de Fisher en dos dimensiones:

ut = d(uxx +uyy)+ρu(A−u),

con condiciones de frontera de tipo Neumann.

Se considera una malla uniforme para un cuadrado y una discretización uniforme en tiempo. Para
tratar la parte no lineal de la ecuación se usará el método IMEX, que consiste en tratar implícitamente
el término de difusión y explícitamente el de reacción. De esta forma, en cada paso de tiempo, ten-
dremos que resolver un sistema de ecuaciones lineales. En particular, para un nodo interior (i, j) de la
malla la ecuación en diferencias es:

U j+1
i −U j

i
k

−d
U j+1

i+1 −2U j+1
i +U j+1

i−1

h2 −d
U j+1

i+N+1−2U j+1
i +U j+1

i−(N+1)

h2 −ρU j
i (A−U j

i ) = 0,

o lo que es lo mismo:

−d
k
h2U j+1

i+1 −d
k
h2U j+1

i−1 −d
k
h2U j+1

i+N+1−d
k
h2U j+1

i−(N+1)+(4d
k
h2 +1)U j+1

i =U j
i + kρU j

i (A−U j
i ).

De esta manera, resulta un sistema de ecuaciones lineales (ya que la parte no lineal de la ecuación
se ha discretizado explícitamente) Ax = b donde b incluye la parte no lineal y la solución del sistema
es la solución u buscada.

Este tipo de métodos pueden verse en [HV] (capítulo 4).

Autora: Marta Gómez Gómez





Capítulo 3

Simulación numérica

3.1. Solución numérica: método explícito

3.1.1. Ecuación del calor

Un primer objetivo de este capítulo, es comparar la solucion numérica y analítica de la ecuación
del calor; para la cual se ha implementado el método de diferencias finitas explícito presentado en el
capítulo anterior.

Se considera el siguiente problema parabólico:
ut = uxx, x ∈ (0,1), t < 0,
u(0, t) = u(1, t) = 0,
u(x,0) = sin(2πx).

(3.1)

Se puede obtener fácilmente la solución analítica de este problema por el método de separación
de variables. Para ello se buscan soluciones u(x, t) de la forma u(x, t) = X(x)T (t).

Insertando u(x, t) = X(x)T (t) en (3.1), se obtiene:

X(x)T ′(t) = X ′′(x)T (t).

Dividiendo por X(x)T (t):
T ′(t)
T (t)

=
X ′′(x)
X(x)

=−λ

Considerando las condiciones de contorno del problema (3.1), se calculan los valores propios y
las funciones propias del problema de Sturm-Liouville:{

X ′′(x)+λX(x) = 0,
X(0) = 0,X(1) = 0.

(3.2)

Se tiene que para k = 1,2, . . . los valores propios son λk = (kπ)2 y las funciones propias Xk(x) =
sin(kπx). Resolviendo por otro lado T ′(t)+λT (t) = 0 como un problema de primer orden se tiene
como solución Tk(t) = e−λkt = e−(kπ)2t .

Por lo tanto, se sigue que para cada k= 1,2, . . . uk(x, t)=Xk(x)Tk(t)= e−(kπ)2tsin(kπx) es solución
de la ecuación en derivadas y satisface las condiciones de contorno.

19



20 Capítulo 3. Simulación numérica

Aplicando la condición inicial f (x) = sin(2πx) y suponiendo que la solución es formalmente una
combinación lineal infinita de las soluciones anteriores u(x, t), se llega finalmente a:

u(x, t) = e−4π2t sin(2πx).

Se ha implementado en Matlab el método de Euler explícito para la resolución del problema (3.1).
Llamando a la función1:

u = ecalorexpl1(Nx, Mt, L, T)

se ha representado la solución numérica y la exacta en la Figura 3.1.

Se ha elegido como Tf inal = 0.1, h= 1
6 , k = 1

80 . Es decir, los valores de los parámetros en la función
corresponden con Nx = 7, Mt = 8, T = 0.1 y L = 1.

Figura 3.1: Solución exacta y numérica del problema (3.1)

Aunque la solución numérica no da problemas de convergencia y parece aproximase a la solución
exacta, es claro que no es la mejor que se puede encontrar.

Se puede comprobar que usando una malla más fina, con h = 1
20 y k = 1

800 la aproximación numé-
rica es mucho mejor.

En este caso, los valores de los parámetros son Nx = 21, Mt = 80, T = 0.1 y L = 1.

Figura 3.2: Solución exacta y numérica del problema (3.1)

1Ver Anexo-Sección 3.1.1.a (página 33).
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¿Se puede elegir h y k aleatoriamente? Se eligen, por ejemplo, h = 1
23 y k = 1

800 , es decir, Nx= 24,
Mt = 80, T = 0.1 y L = 1 como valores de los parámetros y se puede observar en la Figura 3.3 la
solución obtenida .

Figura 3.3: Solución numérica del problema (3.1) que oscila

Claramente para estos valores de h y k la solución numérica oscila. ¿Por qué sucede esto? El mé-
todo de diferencias finitas explícito requiere de una condición de estabilidad. Como se comenta en el
capítulo 2, hay una restricción en el paso de discretización temporal en función de la espacial.

Por último se puede hacer un estudio de los errores cometidos con el método. Se comienza calcu-
lando el error cometido en los dos casos estudiados anteriormente, para corroborar con más exactitud
que la solución numérica en el segundo caso se aproxima mucho más a la solución exacta. Es decir,
se estudian los errores para h = 1

6 , k = 1
80 y h = 1

20 , k = 1
800 .

Se añade en el programa correspondiente en Matlab, la orden para el cálculo del error2 en nor-
ma infinito, calculando previamente la solución exacta en cada nodo, y se obtienen los siguientes
resultados:

Nx Mt Error
7 8 0.0112
21 80 0.0013

donde como era de esperar 0.0013 < 0.0112; es decir, el error cometido con los valores tomados
de h y k en el segundo caso es mucho menor que el error cometido en el primer caso.

3.1.2. Ecuación de reacción-difusión lineal

De forma más genérica, se puede hacer un estudio de los errores cometidos para distintos valores
de h y k, por ejemplo con la siguiente ecuación de reacción-difusión lineal:

ut = (1+ x2)uxx−3u, x ∈ (−1,1), t > 0,
u(x,0) = 1+ x2, x ∈ [−1,1],
u(−1, t) = u(1, t) = 2e−t , t ≥ 0.

(3.3)

2Ver Anexo-Sección 3.1.1.b (página 34).

Autora: Marta Gómez Gómez



22 Capítulo 3. Simulación numérica

Se parte de Nx = 10, Mt = 10 y se van duplicando los pasos de malla tanto en espacio como en
tiempo, con el fin de verificar el orden de convergencia del método explícito estudiado en el capítulo
2.

H
HHH

HHNx

Mt 10 20 40 80

10 6.6407e−06 3.2952e−06 1.6453e−06 8.2205e−07

20 7.0854e−06 3.5222e−06 1.7561e−06 8.7682e−07

40 8.7659e−06 3.5615e−06 1.7741e−06 8.8544e−07

80 62.8877 4.0132e04 23.0589 8.8885e−07

Si se observan los valores de la diagonal en la tabla, se ve como el valor del error cometido va
reduciéndose por dos a medida que dividimos por la mitad h y k; lo cual es debido a que el orden de
convergencia del método es O(h2 + k).

3.1.3. Ecuación de Fisher-Kolmogorov

Un segundo objetivo es aplicar el método de diferencias finitas explícito a otras ecuaciones, como
por ejemplo a la ecuación de Fisher-Kolmogorov y estudiar el comportamiento de las soluciones para
distintos valores de los parámetros de difusión y proliferación.

Como se ha visto en el primer capítulo, la ecuación de Fisher-Kolmogorov (FK) se utiliza en
la modelización de tumores cerebrales (gliomas), describiendo el comportamiento de una densidad
P = P(x, t) de células cancerígenas que pueden migrar y proliferar, y la cual viene definida por:

∂P
∂ t

= d
∂ 2P
∂x2 +ρ

Ç
1− P

P̃

å
P, x ∈ [a,b], t ≥ 0,

donde d, ρ y P̃ son constantes que representan el coeficiente de difusión (migración) celular, la tasa
de proliferación y la densidad tisular máxima, respectivamente. Notar que las unidades de P y P̃
son número de células/longitud, d se mide en longitud2/tiempo y ρ es inversamente proporcional al
tiempo.

El intervalo espacial donde se resuelve es [a,b], escogiendo a y b de manera adecuada y recordar
que la ecuación de FK se suplementaba normalmente con condiciones de frontera del tipo Neumann.

La ecuación de FK se puede simplificar si definimos una nueva variable u(x, t) = P(x, t)/P̃ , de
manera que 0 ≤ u(x, t) ≤ 1 para todo x ∈ [a,b] y t > 0. De esta manera, se considera en nuestra
simulación la EDP normalizada:

ut = duxx +ρ(1−u)u, x ∈ [a,b], t > 0, (3.4)

la cual coincide con la estudiada previamente.

El intervalo donde se integra es [−L/2,L/2], tomando L= 6 cm y se utiliza como condición inicial
la siguiente función:

u0(x) =U0e−
x2

σ2 ,

lo cual supone que las células cancerígenas se distribuyen en el tejido mediante una distribución de
tipo gaussiana y donde la constante (amplitud) 0 < U0 < 1 se toma en el rango de valores U0 ∈
[10−3,10−1]. Los parámetros de difusión y proliferación se supone que cumplen d ∈ [1,103]mm2/año
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y ρ ∈ [10−1,102] año −1. El intervalo de tiempo que se quiere explorar es t ∈ [0,T ] con T ∈ [10−1,10]
años.

El parámetro restante σ , se elige de manera que la distribución espacial inicial del tumor esté
confinada en una región suficientemente pequeña del intervalo [−L/2,L/2].

Se pretende ver cómo la solución de nuestro problema varía en función de los parámetros d y ρ . Se
ha implementado en Matlab el método explícito de diferencias finitas para la resolución del problema
(3.4) y se llama a la siguiente función3:

u = FKi(Nx, Mt, L, T, D, Rho, U0, sigma)

En todos los casos se usan los siguientes valores para el resto de argumentos: Nx = 10, U0 = 0.1,
T = 1, L = 1, sigma = 0.1 y Mt el necesario en cada caso para que converja.

En primer lugar se supone fijo el parámetro de proliferación, ρ = 10 y se compara qué diferencias
hay si el parámetro de difusión es muy pequeño, es decir, d = 1 o comienza a ser significativo como
por ejemplo d = 10.

Figura 3.4: Solución para un parámetro de difusión muy pequeña en la izquierda y una difusión grande
en la derecha

Se observa por un lado, como para un parámetro no excesivamente grande de proliferación, in-
dependientemente de lo que el tumor se difunda, en un período de un año, ambos tumores llegan a
ocupar el máximo del tejido (suponiendo que este sea u = 1 con la ecuación normalizada).

Por otro lado, se ve como para un mismo valor del parámetro de proliferación, con una difusión
significativa (figura de la derecha) el número de células se expande en un período muy breve de
tiempo cubriendo toda la línea de integración y sin embargo, con una difusión muy pequeña (figura
de la izquierda) no la cubre ni siquiera cuando u = 1, es decir cuando alzanca el máximo posible, al
cabo de un año.

3Ver Anexo-Sección 3.1.3 (página 34).
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Se supone ahora fija la difusión d = 10, y se compara qué sucede para distintos valores de proli-
feración, uno apenas inexistente con ρ =0.1 y otro muy elevado como por ejemplo ρ = 100.

Figura 3.5: Solución para un parámetro de proliferación muy pequeño en la izquierda y una prolifera-
ción elevada en la derecha

En este caso, lo primero que se observa es que debido al alto valor del parámetro de difusión,
ambos tumores cubren toda la línea de integración casi instantáneamente al comienzo del año.

En cuanto a la proliferación, en este ejemplo se ve clara la diferencia entre ambos tumores para
un mismo parámetro de difusión. Con un valor de proliferación casi inexistente (figura de la derecha),
a pesar de que el tumor se difunde muy rápido, apenas cubre la capacidad del tejido, quedándose
a lo largo de todo el año en u = 0.007 aproximadamente. Sin embargo, con un valor muy alto de
proliferación (figura de la izquierda), no sólo se difunde rápidamente, sino que además en apenas un
mes y medio el tumor ya ha cubierto el máximo del tejido siendo éste u = 1.

3.2. Solución numérica: método IMEX en dos dimensiones

3.2.1. Ecuación de Fisher-Kolmogorov

En esta sección, se va a considerar el problema de Fisher-Kolmogorov en dos dimensiones. Para
aproximar la solución de dicho problema se va a usar el método IMEX explicado en el capítulo 2.

Se ha implementado en Matlab el método IMEX para resolver numéricamente la ecuación:

ut = d(uxx +uyy)+ρu(1−u). (3.5)

Se llama a la función4:

u = Fk2d(Nx, Mt, L, T, D, Rho, U0, sigma)

y se fijan todos los argumentos. Se tiene como objetivo ver la evolución de un único tumor a lo
largo de un año con un valor de proliferación ρ = 10 y de difusión d = 1.

Los valores de los argumentos que se usan son: Nx = 40, Mt = 30, D = 1, Rho = 10, U0 = 0.1,
sigma = 0.1, L = 6 y T = 1.

Se parte de la misma distribución inicial que en el apartado anterior, donde al comienzo del año
las células están muy concentradas en un punto, cubriendo aproximadamente el 5% del tejido.

4Ver Anexo-Sección 3.2.1 (página 35).
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Figura 3.6: Distribución inicial de las células tumorales

Se observa la evolución en cuatro períodos de tiempo distintos, de 3 meses de longitud cada uno.

Figura 3.7: Evolución del tumor al cabo de 3, 6, 9 y 12 meses

Se observa que en los primeros tres meses apenas ha proliferado (cubre un 6% del tejido aproxi-
madamente) y sin embargo ya empieza a difundirse. Al cabo de medio año, se empiezan a notar los
efectos de la proliferación (cubre un 20% del tejido aproximadamente) y continua difundiéndose.

A los nueve meses, duplica casi su valor cubriendo aproximadamente la mitad del tejido y ya se
ha difundido por casi toda la malla. Finalmente, se ve como tras un año está completamente difundido
y su valor es aproximadamente u = 0.75 siendo 1 el máximo valor que puede alcanzar.
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3.3. Radioterapia y casos prácticos

Por último, se hace un estudio práctico en modelos de efectos de radiación con recrecimiento del
tumor, donde poder aplicar en parte los capítulos previos. Se introduce en primer lugar el concepto de
radioterapia. Para más información ver [JV].

Definición 3.3.1. La radioterapia es una forma de tratamiento oncológico basada en el empleo de
radiaciones ionizantes (rayos X o radiactividad, la cual incluye rayos gamma y partículas alfa). Su
unidad de medida es el Grey (Gy).

El objetivo de la radioterapia es destruir las células cancerosas, sin dañar el tejido sano cercano. A
diferencia de la quimioterapia, en la cual se expone a todo el cuerpo, la radioterapia es un tratamiento
de aplicación local, la cual sólo afecta a la parte del cuerpo tratada.

Más de la mitad de los pacientes con cáncer reciben algun tipo de radioterapia. Para algunos tipos
de cáncer, la radioterapia sola resulta un tratamiento eficaz; sin embargo, la mayoría de los cánceres
responden mejor a enfoques de tratamiento combinados, los cuales pueden incluir radiación más ci-
rugía o quimioterapia.

En esta sección no vamos a tener en cuenta el efecto espacial.
Por otro lado y como ya se ha adelantado en capítulos previos, se supone también que se trata

de tumores cerebrales, debido a su simplificación a la hora de modelarlos, entre otras cosas, por su
ausencia generalmente de metástasis.

Se parte de un tumor que crece según la siguiente ecuación diferencial ordinaria:

dN
dt

= ρN,

con N el número de células y ρ el parámetro de proliferación.

Resolviendo mediante variables separadas, se obtiene que:

N(t) = N(t0)eρ(t−t0),

con t0 el tiempo inicial.
Se puede calcular ρ en función del tiempo de duplicación de las células tumorales, Tdup, partiendo

de t0 = 0;

2N(t0) = N(t0)eρ(Tdup−t0),

2N(0) = N(0)eρTdup ,

Tdup =
log2

ρ
,

ρ =
log2
Tdup

.

Sin embargo, los tumores no crecen exponencialmente, debido a que en la vida real, hay limita-
ciones físicas, de nutrientes, etc.

Por lo tanto, hay que añadir un término que frene el crecimiento del tumor, lo que lleva a:

dN
dt

= ρN
Ç

1− N
Nmax

å
,

es decir, la ecuación logística hallada en el Capítulo 2, y cuya solución era:

N(t) =
N(t0)eρ(t−t0)

1+ N(t0)
Nmax

Ç
eρ(t−t0)−1

å .
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Así pues, si t es pequeño, crece como una exponencial y para t grande se alcanza Nmax.

Esta solución dice cuanto crece el tumor en un tiempo t partiendo de t0, es decir, el núme-
ro de células al cabo de M días sin ser tratado, sin más que sustituir los datos correspondientes
(Nmax,Tdup, t0,N(t0),ρ), y siendo t = M.

Se introduce ahora la acción de la radioterapia (S f ), la cual va matando un porcentaje de las
células. Se supone que las dosis se dan en los tiempos t1, t2, . . . , tn. De esta manera, justo antes se
irradiar, se tiene:

N(t−1 ) =
N(t0)eρ(t1−t0)

1+ N(t0)
Nmax

Ç
eρ(t1−t0)−1

å ,
siendo el número de células que quedan tras la irradiación:

N(t+1 ) = S f
N(t0)eρ(t1−t0)

1+ N(t0)
Nmax

Ç
eρ(t1−t0)−1

å .
Se supone que las células muertas desaparecen (hecho que no es real) y que el tiempo de radiación

es muy pequeño, siendo aproximadamente de 10 minutos.
Denotamos por N j y N j+1: 

N j ≡ N(t+j ),

N j+1 = S f
N je

ρ(t j+1−t j)

1+
Nj

Nmax

Ç
eρ(t j+1−t j)−1

å , (3.6)

para j = 0, . . . ,n−1.

Se parte pues de un tumor al que se le ha de dar una dosis de radiación G (Gy) y del cual sobrevi-
ve una fracción de células tumorales S f , las cuales contribuyen al recrecimiento del número total de
células del tumor.

Como se ha dicho anteriormente, en un tratamiento con radioterapia de un tumor, se realiza una
aplicación repetida de una cierta dosis total de radiación G repartida en fracciones g.

Mediante esta simulación numérica, se pretende estudiar con un modelo muy simple, el uso de la
radiación como estrategia terapéutica en varios escenarios distintos.

Como datos iniciales, en t = 0, se supone que el número inicial de células en el tumor, en el
momento en que empieza el tratamiento es N = 109 y el número máximo que soporta el tejido es
Nmax = 3 · 109. El tratamiento empieza 7 días después de la detección del tumor y se acepta que el
paciente sobrevive mientras que el tumor no llegue al 70% de su tamaño máximo.

1. En primer lugar, se estudian tumores radiosensibles, con una fracción de supervivencia después
de cada dosis del 48% de las células tumorales. Se hace en dos casos: el primero siendo un
tumor agresivo (es decir, con un tiempo de duplicación celular medio del orden de 20 días); y el
segundo, siendo un tumor de crecimiento lento (tiempo de duplicación celular medio del orden
de 80 días). Se compara en ambos casos cual es la respuesta del tumor y se discute si es posible
eliminarlo haciendo el tratamiento cada dos días en relación con el tratamiento diario.

2. En segundo lugar, se estudian tumores poco radiosensibles, con una fracción de superviven-
cia celular después de cada dosis del 85% de las células tumorales. En este caso, el objetivo
es únicamente maximizar la supervivencia del paciente. Se consideran nuevamente los casos
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por separado de un tumor con crecimiento rápido y un tumor con crecimiento más lento y se
compararan las mismas posibilidades de dar las dosis.

3.3.1. Tumores radiosensibles

Definición 3.3.2. Se llaman tumores radiosensibles a aquellos que responden considerablemente
bien al efecto de la radioterapia, matando gran porcentaje de células cancerígenas tras cada radia-
ción.

En primer lugar, se supone un tumor radiosensible agresivo, es decir, con un tiempo de duplicación
de las células cancerígenas pequeño, en particular, de 20 días.

Se implementa en Matlab5 el problema (3.6) y se estudia qué sucede gráficamente, si por ejemplo,
al paciente se le suministran las dosis de radioterapia diariamente.

Figura 3.8: Dosis diaria

Puesto que la diferencia entre el número de células cancerígenas en el punto de partida y tras el
tratamiento con radioterapia es notablemente diferente, no se puede apreciar bien qué sucede exacta-
mente en la gráfica. Se toma escala logarítmica en el dibujo y se obtiene:

Figura 3.9: Dosis diaria-Escala logarítmica

5Ver Anexo-Sección 3.3 (página 37).
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Se puede observar como en este caso, el tratamiento diario con radioterapia logra eliminar todas
o casi todas las células cancerígenas dejando tras la última sesión un número despreciable de ellas.
Aunque matemáticamente y por la forma que tiene el programa que se ha utilizado se observa un
crecimiento exponencial tras el tratamiento (debido a que el número final de células en ese momento
es positivo y no nulo), biológicamente carece de importancia, puesto que el paciente virtual que se
está considerando sobrevive y el tumor es eliminado con la radioterapia.

Veamos que sucede si al mismo paciente con las mismas condiciones se le suministran dosis de
radioterapia de forma semanal. Se observa directamente la gráfica en escala logarítmica.

Figura 3.10: Dosis semanal

Es clara la diferencia en cuanto al efecto que tiene la radioterapia repartiendo las dosis semanal-
mente. Se observa como ahora tras el tratamiento, el número de células cancerígenas sigue siendo
muy elevado y por tanto no se puede afirmar biológicamente que el tumor sea eliminado. Más aún,
en el momento en que finaliza el tratamiento, el tumor vuelve a crecer de forma exponencial, dando
lugar a la muerte del paciente en un período de aproximadamente 700 días (entre 1 y dos años).

Se pueden suponer también tumores radiosensibles pero de crecimiento más lento, por ejemplo
con un tiempo de duplicación de las células cancerígenas de 80 días.

Se cambia en Matlab el parámetro de tiempo de duplicación, y se obtiene la misma situación que
en el caso anterior para tumores agresivos.

Así pues, se puede afirmar que en el caso de tumores radiosensibles, que reaccionan bien ante el
efecto de la radioterapia, ya sean muy agresivos o no, la forma más óptima de dar al paciente las dosis
de radioterapia es diaria. La explicación es clara, al ser tumores que se pueden eliminar y por tanto
asegurar la supervivencia del paciente, cuanto más rápido se logren eliminar las células cancerígenas,
menos tiempo se les da para duplicarse.

3.3.2. Tumores poco radiosensibles

Definición 3.3.3. Se llaman tumores poco radiosensibles a aquellos que apenas tienen respuesta al
efecto de la radioterapia, matando un porcentaje de células cancerígenas muy pequeño tras cada
radiación.

Como en el apartado anterior, en primer lugar se supone un tumor poco radiosensible agresivo, es
decir, con un tiempo de duplicación de las células cancerígenas pequeño, en particular, de 20 días.
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Basta con cambiar en Matlab el parámetro S f , para estudiar qué sucede gráficamente si por ejem-
plo al paciente se le suministran las dosis de radioterapia diariamente. Se sigue trabajando en escala
logarítmica.

Figura 3.11: Dosis diaria

Se observa claramente, que el número de células cancerígenas tras el tratamiento sigue siendo
muy elevado, esto es debido a que la fracción se supervivencia en este tipo de tumores impide que se
eliminen de forma notable. Por lo tanto, en este caso al paciente virtual se le logrará eliminar parte del
tumor, pero tras la radioterapia, éste volverá a crecer de forma exponencial y en un período de menos
de un año morirá.

Veamos qué sucede si al mismo paciente con las mismas condiciones se le suministran las dosis
de radioterapia semanalmente.

Figura 3.12: Dosis semanal

Se observa ahora como el número de células cancerígenas tras el tratamiento no sólo sigue siendo
muy elevado, sino que es incluso mayor que en el caso anterior. Sin embargo, al paciente se le con-
sigue alargar el tiempo de vida aproximadamente dos meses. Esto es debido a que el tumor vuelve a
crecer de forma exponencial una vez finalizado el tratamiento. Por lo tanto, si se retrasa ese momento
alargando la radioterapia dando las dosis más espaciadas en el tiempo, también se retrasa la muerte
del paciente.

En el caso de tumores poco radiosensibles de crecimiento más lento, con un tiempo de duplica-
ción, de las células cancerígenas de 80 días se obtiene un resultado semejante al cambiar en Matlab el
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parámetro de tiempo de duplicación; con la diferencia de que al tardar más en duplicarse las células el
paciente tiene un tiempo de supervivencia mayor. No obstante, tampoco es posible eliminar el tumor
y el paciente muere al cabo de aproximadamente 2 años.

Así pues, se puede afirmar ahora que para tumores poco radiosensibles, agresivos o no, los cua-
les no se puede lograr la supervivencia del paciente, ya que no se puede eliminar el tumor mediante
radioterapia, la forma más óptima de darle las dosis de radioterapia es semanalmente. Esto se debe a
que no se busca la supervivencia del paciente, sino alargar su tiempo de vida y por lo tanto, cuanto
más tiempo se mantenga la terapia, más tiempo evitaremos que el tumor crezca exponencialmente.

Se puede exagerar el espacio entre las dosis de radioterapia para ver más claro este efecto en el
caso de tumores poco radiosensibles y agresivos (tiempo de duplicación de 20 días). Se supone por
ejemplo que el tiempo entre cada dosis es de 15 días, lo cual significa que el paciente estaría más de
un año en tratamiento (450 días) y se obtiene la siguiente gráfica.

Figura 3.13: Dosis cada 15 días

Es clara la diferencia de tiempo que se logra alargar la vida del paciente, duplicando casi el tiempo
obtenido dando las dosis semanalmente. No obstante, remarcar que no se puede aumentar el tiempo
entre cada dosis aleatoriamente, ya que si las células cancerígenas se duplican cada 20 días, no se
puede dar las dosis con una diferencia de tiempo mayor, o se obtendría el efecto contrario y crecerían
más rápido de lo que se controlan con la radioterapia. Sucede lo mismo en el caso de tumores de
crecimiento lento (tiempo de duplicación de 80 días).
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Anexo

Simulación numérica

Sección 3.1.1.a

En primer lugar, se ha programado el método de diferencias finitas explícito para la resolución de
la ecuación del calor, con el fin de comparar gráficamente la solución exacta con la numérica.

function u = ecalorexpl1(Nx, Mt, L, T)

hx = L/(Nx-1); %Paso espacial en x

ht = T/(Mt-1); %Paso temporal

s = ht/hx^2;

%Inicializamos la matriz solucion y vectores posicion y tiempo

u=zeros(Nx, Mt);

x=zeros(1,Nx);

t=zeros(1,Mt);

for j=1:Nx

x(j) = (j-1)*hx;

end

for m=1:Mt

t(m) = (m-1)*ht;

end

%Imponemos la condicion inicial u(x,0)

for j=1:Nx

u(j,1) = sin(2*pi*x(j));

end

%Condiciones de contorno

u(1,1:Mt)=u(1,1);

u(Nx,1:Mt)=u(Nx,1);

%Formula de recurrencia explicita

for m=1:Mt-1

for j=2:Nx-1

u(j,m+1)=u(j,m) + s*(u(j+1,m) - 2*u(j,m) + u(j-1,m))

end

end

%Solucion exacta
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for i=1:101

Xx(i)=(i-1)/100;

Z(i)=exp(-4*pi*pi*0.1)*sin(2*pi*Xx(i));

end

%Dibujamos ambas soluciones

hold on

grid on

plot(x,u(:,Mt), ’m--’,’linewidth’, 2)

plot(Xx, Z, ’linewidth’, 2)

xlabel(’u(x,t)’)

end %Final del programa

Sección 3.1.1.b

Se calcula también el error cometido con el método para los casos estudiados gráficamente, sin
más que añadir al programa anterior el cálculo del error y definir la solución exacta en todos los nodos.

Xe = zeros(1,Nx);

for i=1:Nx

Xe(i) = exp(-4*pi*pi*0.1)*sin(2*pi*x(i));

end

error = max(abs(Xe’ - u(:,Mt)))

Sección 3.1.3

Posteriormente, se modifica ligeramente el programa, para resolver ahora la ecuación de Fisher
mediante un método nuevamente explícito. En este caso no se puede calcular la solución exacta, luego
no podemos compararlas. Se trata de cambiar los valores de la difusión y la proliferación para ver
como cambian distintos tumores a lo largo del tiempo en función de qué características tengan.

function u = FKi(Nx, Mt, L, T, D, Rho, U0, sigma)

hx = L/(Nx-1); %paso espacial en x

ht = T/(Mt-1); %paso temporal

s = D*ht/hx^2;

%Inicializamos la matriz solucion y vectores posicion y tiempo

u=zeros(Nx,Mt);

x=zeros(1,Nx);

t=zeros(1,Mt);

for j=1:Nx

x(j) = -(L/2) + (j-1)*hx;

end

for m=1:Mt

t(m) = (m-1)*ht;
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end

%Imponemos la condicion inicial u(x,0)

for j=1:Nx

u(j,1) = U0*exp(-x(j)*x(j)/sigma);

end

%Formula de recurrencia explicita

for m=1:Mt-1

for j=2:Nx-1

u(j,m+1)=u(j,m) + s*(u(j+1,m) - 2*u(j,m) + u(j-1,m))+ ht*Rho*(1-u(j,m))*u(j,m);

end

u(1,m+1) = u(1,m) + s*(2*u(2,m)-2*u(1,m)) + ht*Rho*(1-u(1,m))*u(1,m);

u(Nx,m+1) = u(Nx,m) + s*(2*u(Nx-1,m)-2*u(Nx,m)) + ht*Rho*(1-u(Nx,m))*u(Nx,m);

end

%Dibujar

surf(t,x,u)

xlabel(’t’, ’fontname’, ’Times new Roman’, ’fontsize’, 20) %Eje t

ylabel(’x’, ’fontname’, ’Times new Roman’, ’fontsize’, 20) %Eje x

xlabel(’u(x,t)’, ’fontname’, ’Times new Roman’, ’fontsize’, 20)

colormap hsv

colorbar

end %Final del programa

Sección 3.2.1

Por otra parte, se ha programado un método IMEX en dos dimensiones para la resolución de nuevo
de la ecuación de Fisher-Kolmogorov.

El objetivo en este caso, es observar la evolución de un único tumor a lo largo de un año con todos
los valores de los parámetros fijos.

function u = Fk2d(Nx, Mt, L, T, D, Rho, U0, sigma)

hx = L/(Nx-1); %paso espacial en x

ht = T/(Mt-1); %paso temporal

s = D*ht/hx^2;

%Inicializamos la matriz solucion y vectores posicion y tiempo

u=zeros(Nx*Nx,Mt);

x=zeros(1,Nx*Nx);

t=zeros(1,Mt);

x1=-L/2:hx:L/2;

y1=-L/2:hx:L/2;

[X Y]=meshgrid(x1,y1);

for j=1:Nx

for i=1:Nx

x(i,j)=-L/2+(i-1)*hx;
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y(i,j)=-L/2+(j-1)*hx;

end

end

for m=1:Mt

t(m) = (m-1)*ht;

end

%Imponemos la condicion inicial u(x,0)

for j=1:Nx

for i=1:Nx

ind=(j-1)*Nx+i;

u(ind,1) = U0*exp(-(x(i,j)*x(i,j)+y(i,j)*y(i,j))/sigma);

end

end

%Definicion de los nodos en la malla (suponemos una malla cuadrada)

A=sparse(Nx*Nx, Nx*Nx);

i = 1;

A(1,1) = 4*s + 1;

A(1,2) = -2*s;

A(1,1+Nx) = -2*s;

for i=2:Nx-1

A(i,i) = 4*s + 1;

A(i,i+1) = -s;

A(i, i-1) = -s;

A(i, i+Nx) = -2*s;

end

i = Nx;

A(Nx,Nx) = 4*s + 1;

A(Nx, Nx-1) = -2*s;

A(Nx, 2*Nx) = -2*s;

for j = 2:(Nx-1)

i=i+1;

A(i,i) = 4*s + 1;

A(i,i+1) = -2*s;

A(i,i+Nx) = -s;

A(i,i-Nx) = -s;

for k = 2:(Nx-1)

i=i+1;

A(i,i) = 4*s + 1;

A(i,i+1) = -s;

A(i,i-1) = -s;

A(i,i+Nx) = -s;

A(i,i-Nx) = -s;

end
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i=i+1;

A(i,i)= 4*s + 1;

A(i,i-1)= -2*s;

A(i,i+Nx)= -s;

A(i,i-Nx)= -s;

end

i = i + 1;

A(i,i) = 4*s + 1;

A(i,i+1) = -2*s;

A(i,i-Nx) = -2*s;

for k = 2:Nx-1

i=i+1;

A(i,i) = 4*s + 1;

A(i,i+1) = -s;

A(i, i-1) = -s;

A(i, i-Nx) = -2*s;

end

i=i+1;

A(i,i) = 4*s + 1;

A(i,i-1) = -2*s;

A(i,i-Nx) = -2*s;

%Resolucion del sistema

for m=1:Mt-1

for j=1:Nx*Nx

b(j) = u(j,m)+ ht*Rho*u(j,m)*(1-u(j,m));

end

u(:,m+1) = A\b’

end

%Dibujar

for i=1:Mt

um=reshape(u(:,i),Nx,Nx)

surf(X,Y,um)

end

end %Final del programa

Radioterapia y casos prácticos

Sección 3.3

Por último, se ha programado la ecuación que nos da el crecimiento del número de células cance-
rosas de un tejido en un período de tiempo cuando un paciente se somete a radioterapia y posterior-
mente.

El objetivo es comparar en función de las características de un tumor, cual es la forma más óptima
de distribuirle al paciente las dosis de radioterapia.

Autora: Marta Gómez Gómez
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%DATOS INICIALES NECESARIOS PARA EL PROGRAMA

%En primer lugar Sf nos indica la fraccion de supervivencia de las celulas

%tumorales tras cada sesion de radioterapia, pudiendo valer 0.48 o 0.85 en

%funcion de como de sensible sea el tumor a las radiaciones.

Sf = 0.85;

%Sf = 0.48;

%Por otro lado, definimos rho, el parametro de proliferacion de las celulas

%tumorales, el cual hemos deducido que viene dado por rho = log(2) / Tdupl,

%pudiendo ser el tiempo de duplicacion 20 o 80, en funcion de como de

%agresivo es el tumor.

%rho = log(2)/20;

rho = log(2)/80;

%En cuanto al numero de celulas tumores, conocemos el numero de celulas

%tumorales en el instante inicial y el numero maximo de celulas tumorales

%que soporta nuestro tejido.

N(1) = 1e9;

Nmax = 3e9;

%Realizaremos la simulacion durante 1000 dias y con un reparto de las 30 dosis

%de radioterapia continuo o semanalmente

Tend = 1000;

t = [7:37]; %Continuo

%t = [0 7:7:210]; % Cada semana

%PROGRAMA PRINCIPAL

length(t)

for j=1:length(t)-1

N(j+1) = Sf*N(j)*exp(rho*(t(j+1)-t(j)))/(1+(N(j)/Nmax)*(exp(rho*(t(j+1)-t(j)))-1));

Tn = t(j+1);

Nn = N(j+1);

end;

time = [t(end):0.1:Tend];

Number = Nn*exp(rho*(time-Tn))./(1+(Nn/Nmax)*(exp(rho*(time-Tn))-1));

DL = 0.7*Nmax;

size(N)

size(t)

N

%REPRESENTACION GRAFICA DEL VALOR DE N A LO LARGO DE LOS 1000 DIAS

plot(t,log(N),’o’,time,log(Number),’-’,[0 Tend],[log(DL) log(DL)],’--r’);

N(end)

Modelos matemáticos en oncología
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