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Prologo

“En los ultimos aiios las ciencias de la vida se han transformado, y estdn empezando a ser, en
cierto modo, una ciencia exacta. Se ha abierto un mundo nuevo en el estudio de los seres vivos,
un universo con una cantidad de datos enorme. Hay que ponerle forma a eso, y las matemdticas
son la herramienta para hacerlo”.

Fernando Giraldez, catedratico de Biologia del Desarrollo de la Universidad de Pompeu Fabra.

En principio las matemdticas no precisan de la biologia pero si reciprocamente, siendo éste el
origen de la biologia matemdtica, la cual serd claramente lider de la ciencia en un futuro previsible.
Aunque no esté especificamente definida, la biologia matematica es una ciencia de rdpido crecimien-
to y bien reconocida. Los mejores modelos, muestran como funciona un proceso y predicen cémo
seguird.

Un modelo matematico es algo mds que un conjunto de ecuaciones que hay que analizar para que
luego un bidlogo pueda interpretar sus resultados. Un modelo matematico se encuentra determinado
por el problema bioldgico que se quiere resolver, la pregunta biolégica que se quiere responder.

No obstante, construir un modelo matematico y analizarlo no es hacer biologia. La exploracién
matemadtica de un fenémeno biolégico, por ejemplo, mediante un sistema de ecuaciones, no es equi-
valente a la construccion de una teoria bioldgica. La aplicacién de las matematicas a la biologia tiene
esencialmente dos caminos: por un lado la aplicacién rutinaria de técnicas conocidas; por otro, el
desarrollo de nuevos métodos necesarios para el anélisis de sistemas biol6gicos.

La aportacion de las matematicas, en concreto a la lucha contra el cancer, se hace sobre todo a
través de modelos y programas que simulan desde cdmo crece un tumor a qué efecto tiene sobre un
paciente determinada terapia. Los primeros modelos empezaron a desarrollarse en los afios 70 y al-
gunos se emplean hoy ya rutinariamente en los hospitales. Se han desarrollo modelos provenientes
de diversos campos como la matematica aplicada, la estadistica, la mecdnica de fluidos, la ciencia
computacional, etc.

En particular, los modelos de ecuaciones en derivadas parciales, son herramientas muy usadas en
el estudio del crecimiento de tumores y la forma en que se difunden sobre los tejidos que los rodean.
Sin embargo, hoy en dia se carece de un modelo que proporcione una prediccion y caracterizacién del
comportamiento para el crecimiento de tumores cancerosos en sus multiples formas y para cualquier
tipo de poblacién, teniendo en cuenta que los modelos existentes funcionan bajo condiciones ideales
y con poblaciones especificas.

Asi pues, a lo largo de este trabajo se tratard de introducir un primer modelo matemaético sencillo,
con el fin de producir un acercamiento al lector con todo este campo. Se busca una ecuacién que
modele en concreto tumores cerebrales, dando lugar a las ecuaciones de reaccidon-difusion. Posterior-
mente, se hard un estudio de este tipo de ecuaciones de forma matemdtica y de métodos numéricos
para su resolucién, como el método de diferencias finitas.
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Finalmente, veremos una posible aplicacién de todo el estudio, mediante la simulacién numérica
con Matlab de casos con pacientes virtuales donde nuestro fin serd averiguar cudl es la mejor forma
de distribuir dosis de radioterapia en funcién de distintos aspectos o caracteristicas.

No obstante, no se trata de que los mateméticos o los ordenadores vayan a suplantar a los oncélo-
gos, sino de orientar los pasos de los médicos y ayudarles a probar primero lo que parece mas efectivo
y por tanto, produce mejores resultados.
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Summary

Mathematical biology is a science of rapid growth and well recognized, although not clearly de-
fined. In this field, a good mathematical model is determined by the biological problem to be solved,
i.e, biological question you want to answer.

The contribution of mathematics to cancer, was made primarily through models or programs that
simulate from how a tumor grows to what effect has a therapy given on a patient.

In particular, models of partial differential equations are widely used tools in the study of tumor
growth and in the way they are spread over the surrounding tissues.

Chapter 1: Reaction-diffusion equations in oncology

Cancer is one disease in which cells divide without control and can invade other tissues.

The cells of our body grow and divide in a controlled way to produce more as needed. When cells
grow old or get damaged, they die, and they are replaced by new cells. However, sometimes this or-
derly process goes wrong. The genetic material (DNA) of the cell may be damaged or altered, which
produces mutations that affect normal growth and division of cells. When this happens, cells do not
die when they should, and form new cells that the body does not need, creating a mass of tissue which
is called tumor.

In this work, we seek to analyze a simple model for brain tumors, in particular, gliomas, which
arise from the glial cells; that is, cells of the central nervous system, which mainly have the function
of support of neurons and are involved in brain information processing in the body.

The type of equation that models this type of tumor are reaction-diffusion equations.

We suppose a population u(x,#). It is in a set Q C R” whit Q compact and denote by J(x,7) € R”
the particles flow in and out of Q. Thus, the conservation equation, says that the rate of change of the
density u(x,t) in Q is equal to the rate of change of the flow of material through dQ plus material
created in Q:

jt/gu(x,t)dﬂz— aQJ(x,f)7d3Q+/Qf(u(x,t))dQ, (1)

where f(u(x,t)) describes the birth rate, death, etc.
By using the divergence theorem and substituting in (1) the following equation is finally obtained:

@
ot

where d is the so-called diffusion constant. This type of equation is called reaction-diffusion equation.

=V (dVu)+ f(u), (2)

In particular, we work with the Fisher-Kolmogorov equation, which we can obtain by deriving the
following logistic model for the growth of a population:

{u’(z‘) = pu(t)(A—u(r)),

(3)
M(O) = fO’ fO € (O7A)7
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v Capitulo 0. Summary

where u = u(¢) is the density of population, p > 0 is the growth rate and A > 0 is the capacity of the
environment.

We assume that the population is uniformly distributed over an area all time, and thus by deriving
(3), the Fisher equation is obtained:

ur = duy + pu(A —u), 4)

where d is the diffusion coefficient and u = u(x,7) is again the density of population.
Normally, we study this equation together with boundary conditions of Neumann type,

uc(0,1) = uy(L,t) =0, (5)
where L is the domain length.
Therefore, in the modeling of the most basic aspect of gliomas, the Fisher equation describes the

spatio-temporal dynamics of a density of cancer cells that can migrate and proliferate.
Defining f(u) = pu(A — u) with p the parameter of proliferation, we rewrite (4) as:

Uy :duxx+f(u)u (6)

where f(u) models the proliferation (birth and death of tumor cells), and du,, models diffusion.
We could model other characteristics of tumor cells, however, equation (6) models two of their
most important features: proliferation and diffusion.

Chapter 2: Finite difference method

The method of finite difference is studied for the solution of the reaction-diffusion equation. This
method consists in the approximate solution of PDEs by using a discretization on a mesh.

First, the study of this method is done by considering the heat equation:

Ut = Uyxx, @)

with initial condition u(x,0) = 1 (x) and boundary conditions of Dirichlet type,

{uw,t) = olt). "
u(l,1) =gi(t),
fort >0,0<x<1.

Generally, a set of finite difference equations is obtained on a grid with discrete points (x;,?;)
where:

x = ih 0<i<N,

where /1 and k are the spatial and temporal discretization steps respectively. So, denote by Ul-j ~u(xi,t;)
the numerical approximation of u at discrete point x;, in the time 7;.

We distinguish between explicit and implicit methods. On the one hand, we obtain an explicit
method considering the following natural discretization of (7):
it -ul 1

k ﬁ(Uijfl - 2U1J + UiJJrl)‘ ©)
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On the other hand, the most usual implicit method is the method of Crank-Nicolson, which can be
written as: _ ‘
vt -ul 1

-— S oyt gty 1

Ul —2U! +U! A

i+1

We can also consider the method of lines, which discretizes the PDE only in space, and solve the
resulting system of ODEs by any of the known methods, such as Euler method.
For example, for the heat equation (7), it can be discretized in space in the following way:

, 1

ﬁ(U,-_l (t) —2U;(t) + Ui+ (t)) parai=1,2,...,N-1. an

Stability and convergence

To study the stability and convergence of the method we start by defining the local truncation error,
which is obtained by inserting the exact solution u(x,) of the PDE in the finite difference equation.
In particular, for example for explicit methods, it is obtained that:

(1) = ”(x’”ki_”(x’t) - %(u(xfh,t) —2u(x, )+ u(x+hyt)),

refering to 7/ or ||7/|| as the local truncation error. Although we do not know u(x,?), in general, we
assume that it is smooth and then use Taylor series expansions.
It is said that a method is consistent if 7(x,7) — 0 when k,h — 0.
It is said that the difference scheme is consistent of order (p,g) for the partial differential equation
given if:
1771l = O(r?) + O(k?).

The explicit methods are second order accurate in space and first order accurate in time, as the
local truncation error is O(h? + k). However, the method of Crank-Nicolson is second-order accurate
in both space and time, that is O(h? +k?).

To study the stability, we assume that U/*! can be written as:
vitt=oul, =0, (12)

and say that a difference scheme of the form (12) is stable with respect to the norm ||.|| if there exist
positive constants iy and ko and non-negative constants & and 3 such that:

|07 < aeP? U0, (13)

for0<t=(j+1)k;0<h<hyand 0 < k < k.

In conclusion, the most common approach for the convergence of a finite difference scheme is
through the concepts of consistency, stability and Lax theorem.

We can state the Lax theorem. It says that if a system is consistent of order (p,q) in the norm .||
for an initial value well-posed problem and it is stable with respect to norm ||.||, then it is convergent
of order (p,q) with respect to norm ||.||.

Autora: Marta Gomez Gémez
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Difference scheme for the Fisher equation

In this chapter, we also study the method for the Fisher equation.
Using an explicit scheme, you can obtain the following discretization:

- _ k . . . L
Uit :U[j“‘dﬁ(Uij—H —2U} + U y) +kp(A=U))UY,

with boundary conditions of Neumann type.

We know some properties of the solution of the Fisher equation, particularly withp =d =A = 1.
We suppose u(x,t), satisfying u, uy, uye,u; € C([0,1] x [0,00]), is the solution of a problem of the
form:
up = Uy +u(1—u),
uy(0,7) = uy(1,1) =0, (14)
u(x,0) = f(x).

Then, if f(x) satisfies 0 < € < f(x) < 1 +¢, it is fulfilled that:
0<e<u(xr)<l+eg,

forall x € [0,1],7 > 0.

For the Neumann problem (14), it is easy to see that the solution can tend to infinity in a finite
time for some specific values of g with g(u) = u(1 — u). Note that if the initial condition f is constant,
Le,

f(x) = fo, 15)

for all x € [0, 1], then;
u(x,t) =v(t), xe[0,1], >0,

where v is the solution of:

Therefore the solution of (14) is given by the solution of an ordinary differential equation which
tends to infinity in a finite time for some functions g.

IMEX method

Difference schemes can be extended in several dimensions, for example, for the Fisher-Kolmogorov
equation:

up = d (e +1tyy) + pu(A —u),

with boundary conditions of Neumann type.

To treat the non-linear part of the equation, the IMEX method will be used. This method involves
treating implicitly the diffusion term and explicitly the reaction term.

So, in each time step, we have to solve a system of linear equations. In particular, to an internal
node (i, j) of the grid, the difference equation is:

i ; i+1 i+1 i+1 J+1 Jj+1 Jj+1
Ut —u/ _dUiJ++l —2U/T Ul _dUi+N+1_2Ui U vy

k h2 "2 _pUi](A_Ui]) =0.
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VII

Chapter 3: Numerical simulation

Numerical solution: explicit method for heat equation

First, we use the explicit finite difference method for solving the heat equation;

Uy = Uyy, xe€(0,1),r <0,
u(0,¢) = u(1,t) =0, (16)
u(x,0) = sin(27x).

If solving the heat equation by separate variables, the following solution is obtained:
u(x,t) = e~ sin(27mx).

The aim of this section is to prove that with a finer mesh, we get better numerical approximations.

Therefore, first we compute the numerical aprroximation with 4 = é, k= 8—10 and after with & = %,
_ 1
k= g5-

Also, one can make a study of the errors given by the method. We begin by calculating the error
in the two cases previously studied to corroborate more accurately than the numerical solution in the
second case is much closer to the exact solution. This study yields that 0.0013 < 0.0112; i.e, the error
with the values of 4 and k taken in the second case is much smaller than the error for the first case.

Numerical solution: explicit method for Fisher-Kolmogorov equation

A second aim is to apply the explicit finite difference method to other equations, such as the
Fisher-Kolmogorov (FK) equation and to study the behaviour for different values of the diffusion and
proliferation parameters.

The spatial interval where it is solved is [a,b] choosing a and b appropriately, and remember that
the FK equation is normally considered with boundary conditions of Neumann type. So, we choose
as integration interval [—L/2,L/2], taking L = 6 cm and we use as an initial condition the following

function: ,

up(x) = Uge o7

This implies that the cancer cells are distributed in the tissue thereby, where the constant (amplitu-
de) 0 < Uy < 1 takes values in the range Uy € [10~3,10~!]. The diffusion and proliferation parameters
are considered as d € [1,10%]mm? /year and p € [10~!,10?] year ~!. The time interval we want to
explore is ¢ € [0, 7] with T € [10~!,10] years.

We choose the remaining parameter o so that the initial spatial distribution of the tumour is in a
sufficiently small region of the interval [—-L/2,L/2].

In this way, we will calculate the solution varying independently the values of d and p. We have
implemented in Matlab the explicit finite difference method for solving FK equation and we are going
to discuss the different cases obtained.

First, we assume a fixed proliferation parameter given by p = 10 and we analyze the differences
that appear if the diffusion parameter is very small d = 1 or very high d = 1000.

It is noted, on the one hand, that for a proliferation parameter not excessively large, regardless of
what the tumor is disseminated, in a period of one year both tumors will occupy maximum tissue.

On the other hand, we see how for the same proliferation parameter, with a very large diffusion,
the number of cells is expanded in a short period of time, covering the entire line of integration; and
with a very small diffusion, it is not the covered even when u reaches its maximum value after a year.

Autora: Marta Gomez Gomez



VIII Capitulo 0. Summary

Now, we assume a fixed diffusion d = 100, and compare what happens for different values of
proliferation p =0.1 and p = 100.

In this case, the first observation we make is that due to the high value of the diffusion parameter,
both tumors cover the entire line of integration almost instantly at the start of the year.

In terms of proliferation, in this example, there is a clear difference between the tumors for the
same diffusion parameter. With a value of proliferation almost non-existent, though tumor spreads
very quickly, barely covers the capacity of tissue throughout the year. However, with a very high
value of proliferation, it not only diffuses quickly, but also in a month and a half the tumor has covered
maximum tissue.

Numerical solution: IMEX method in two dimensions

We consider the problem of the two-dimensional Fisher-Kolmogorov equation and IMEX method
is used to approximate the solution.

The objective is the study of the evolution of a single tumor over a year, with a diffusion D = 1
and proliferation p = 10.

We start from the same initial distribution as in the previous section, i.e, at beginning of the year
cells are highly concentrated at one point.

Evolution is observed in four different time periods of three months in length each. After one year,
you can see how the tumor is completely diffused and covers almost all tissue.

Radiotherapy and practical cases

Finally we make a study of radiation effects with tumor regrowth. It is known as radiotherapy
the form of cancer treatment based on the use of ionizing radiations (X-rays or radioactivity) and its
unit of measurement is the Grey (Gy). The aim of radiotherapy is to kill cancer cells without harming
surrounding tissue.

We start from a tumor growth according to the following ODE:

dN N
= —oNl1=- 22—
a P ( Nmax>’

that is, the logistic equation studied, whose solution is:

N(to)ep(tfto)

N(t)= .
1+ 57(’3 (gp(tto) _ 1)

where N is the total number of tumor cells.
If we introduce the action of radiotherapy (Sy), which is killing some cells, we find than after
radiation, the number of cancer cells is given by:

N(5)eP-1)

1+ 1]37([0 <eP(l1—lo) _ 1)

N(t") =5y

Therefore, it can be defined:

N;=N(t]),
Njy1 =Sy

Njep(’j+l’tj)

)
14+ <ep<’f+1’./>—1>
N’ﬂax

A7
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IX

for j=0,...,n—1.

We starting from a tumor, which has to receive a dose of radiation G (Gy).
Using this numerical simulation, we analyze a very simple model with the use of radiation as a
therapeutic strategy in different cases, viewing the most optimal way to distribute doses.

Suppose as initial data that the initial number of tumor cells, i.e, when the treatment starts is
N = 10°, and the maximum number supported by the tissue is Nyqr = 3 - 10°. The treatment started
7 days after tumor detection and we assume that the patient survives while the tumor does not reach
70 % of its maximum size.

First, we study radiosensitive tumors, with a survival fraction after each dose of 48 % of the tumor
cells. We distinguish between aggressive tumors (cell doubling time is 20 days) and slow-growing
tumors (cell doubling time is 80 days). We have discussed the differences between treating the patient
daily and weekly.

We conclude that in the case of radiosensitive tumors, independently it they are aggresive, the
most optimal way to give to the patient the doses of radiation is daily. The explanation is simple. As
the tumor can be eliminated completly ensuring the survival of the patient, the best is to kill cancer
cells as soon as possible, giving them less time to replicate.

Secondly, we study non-highly radiosensitive tumors, with a survival fraction after each dose of
85 % of the tumor cells. In this case, our only aim is to maximize the survival of the patients and
again to distinguish between aggressive and non-aggressive tumors, discusing same possible ways to
receive the treatment.

We conclude that for non-highly radiosensitive tumors, the most optimal way to give to the patient
the doses of radiotherapy is weekly. We look for extending the survival. Therefore, in this case better
to prolong in time the therapy in order to prevent the unlimited growth of the tumor.

Autora: Marta Gomez Gomez
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“Defiende tu derecho a pensar, porque incluso pensar de
forma errénea es mejor que no pensar”
Hipatia
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Capitulo 1

Ecuaciones de reaccion-difusion en
oncologia

1.1. (;Qué es el cancer?

Definicion 1.1.1. Se denomina como cdncer al término usado para enfermedades en las que las
células se dividen sin control y pueden invadir otros tejidos.

No se trata Unicamente de una enfermedad, sino de muchas, ya que existen més de 100 tipos
diferentes. No obstante, se pueden agrupar en las siguientes categorias principales:

- Carcinoma: cancer que empieza en la piel o en tejidos que cubren 6rganos internos.

- Sarcoma: cancer que empieza en hueso, cartilago, grasa, muisculo o vasos sanguineos.

Leucemia: cidncer que empieza en el tejido en el que se forma la sangre, como la médula dsea.
- Linfoma y mieloma: cincer que empieza en las células del sistema inmunitario.

- Cancer del sistema nervioso central: cancer que empieza en los tejidos del cerebro y la médula
espinal.

Todos empiezan en las células. Para entender bien qué es el cancer, es importante saber lo que
sucede cuando las células normales se convierten en cancerosas.

Las células de nuestro cuerpo crecen y se dividen de una forma controlada para producir mas
células segun sea necesario. Cuando las células envejecen o se dafian, mueren y son reemplazadas por
células nuevas.

O

Dafio celular
sin reparacién

©®
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Q0020030000
Divisién celular normal Divisidn sin control de celulas cancerosas

Sin embargo, algunas veces este proceso ordenado se descontrola. El material genético (ADN) de
una célula puede dafiarse o alterarse, lo cual produce mutaciones que afectan al crecimiento y a la
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divisién normal de las células. Cuando esto sucede, las células no mueren cuando deberian morir, y
se forman células nuevas a pesar de que el cuerpo no las necesita.

Las células que sobran forman una masa de tejido a la que se le llama tumor. No obstante, no
todos los tumores son cancerosos; existen tumores benignos y malignos.

- Tumores benignos: pueden estirparse y en la mayoria de los casos no vuelven a aparecer. Las
células no se diseminan a otras partes del cuerpo.

- Tumores malignos: las células pueden invadir tejidos cercanos y diseminarse a otras partes del
cuerpo. Al proceso en el que el cancer se disemina a otra parte del cuerpo, se le llama metastasis.

1.1.1. Tumores cerebrales

Este trabajo muestra modelos para tumores cerebrales, los cuales abarcan cualquier tumor que se
inicie en el cerebro.

Estos tumores se pueden originar a partir de las células cerebrales, las membranas alrededor del
cerebro, nervios o gldndulas. Los tumores pueden destruir directamente células cerebrales o provocar-
les dafio produciendo inflamacién, ejerciendo presion sobre otras partes del cerebro e incrementando
la presién intracraneal.

Los tumores cerebrales pueden ocurrir a cualquier edad, pero muchos de ellos son mas comunes
en un grupo de edad en particular. Por ejemplo, en los adultos, los gliomas y los meningiomas son los
mds comunes.

Los meningiomas son muy frecuentes y por lo general benignos. Se presentan en el tejido aracnoi-
deo de las meninges! y se adhieren a la duramadre. No obstante, pueden causar serias complicaciones
e incluso la muerte debido a su tamaifio y localizacidn.

Los gliomas, por contra, a pesar de que apenas metastatizan, rara vez se pueden curar. Surgen a
partir de las células gliales, es decir, células del sistema nervioso central que desempefian de forma
principal, la funcién de soporte de las neuronas e intervienen activamente en el procesamiento cerebral
de la informacién en el organismo. Son clasificados de acuerdo a su grado, y del cual depende que se
augure un mejor o un peor pronodstico, siendo éste por lo general malo para pacientes con gliomas de
alto grado.

El tratamiento para tumores cerebrales puede involucrar cirugia, radioterapia y quimioterapia. No
obstante, el tratamiento depende en cada caso del tamaiio, del tipo de tumor y de la salud del paciente
en general; y no siempre tiene como objetivo la cura. En algunas ocasiones en las que se sabe a prio-
ri que no tiene cura, Unicamente se busca el alivio de los sintomas o la mejora de la actividad cerebral.

Asfi pues, el objetivo es encontrar una ecuacién en derivadas parciales que modele en concreto los
gliomas y resolverla mediante un método numérico adecuado.

1.2. Ecuaciones de reaccion-difusion

Una clase importante de ecuaciones en derivadas parciales son las ecuaciones de reaccion-difusion,
para las cuales las variables independientes son el tiempo t y las variables espaciales X.

Las ecuaciones de reaccion-difusion implican la combinacién de dos procesos diferentes: reaccién
y difusién. Se comienza definiendo ambos conceptos.

Las meninges son las membranas del tejido conectivo que cubren todo el sistema nervioso central, siendo la aracnoides
la meninge intermedia.

Modelos matemadticos en oncologia
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1.2. Ecuaciones de reaccion-difusion 3

Definicion 1.2.1. Se entiende como difusion a la tendencia de las moléculas a moverse desde zonas
de alta concentracion hacia zonas de baja concentracion.

Definicion 1.2.2. Se entiende por reaccion al cambio de estado de las particulas, debido por ejemplo
a interacciones o de manera espontdnea.

1.2.1. Modelo logistico

En primer lugar, se recobra un modelo de logistica para el crecimiento de una poblacion, del cual
se deducird posteriormente la ecuacién de Fisher-Kolmogorov como caso particular de ecuacién de
reaccion-difusion.

Este modelo, manifiesta que el crecimiento de la poblacién frente a los recursos limitados es
gobernado por la siguiente ecuacién:

{u’(t) = pu(r)(A —u(r)),
M(O) = an fO € (OvA)a
donde u = u(t) es la densidad de poblacién, p > 0 es el indice de crecimiento y A > 0 es la llamada

capacidad de carga del medio ambiente. El modelo nos muestra que para pequefias poblaciones, se
logra un crecimiento exponencial gobernado por:

(1.1)

u'(t) ~ pAu(t).

Sin embargo, si u aumenta, el término —pu? comienza a ser significativo, el crecimiento se ralen-
tiza y la poblacién alcanza poco a poco la capacidad de carga del medio ambiente.
El problema (1.1) puede ser resuelto analiticamente, mediante el método de variables separadas.

% = pu(A—u), u#0,A,
du
WA—u) — P

Es decir, se ha de resolver:

/u(ude):/—pdt,

lo cual da lugar a:

—A
In ( “ ) = —pAt+C, con C constante,
u

o lo que es lo mismo, despejando u:

= A K tant
u(t) = T Ko—pAt’ con K constante.
Aplicando la condicién inicial (u#(0) = fp), se obtiene la solucién buscada.

_ Afo
l/t([) - f0+ (A_fo)e_pAtv

Notar que u = A es la solucién asintdtica cuando t — oo para cualquier valor inicial fo > 0.

t>0.
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4 Capitulo 1. Ecuaciones de reaccion-difusion en oncologia

Por ejemplo con A = p = 1, se puede observar graficamente la solucién para algunos valores de
fo en la Figura 1.1, donde se aprecia como todas las hipotéticas poblaciones tienden finalmente a A.

Population growth

Figura 1.1: Solucién del modelo logistico del crecimiento de una poblacién para distintos valores de
la condicién inicial fy

1.2.2. Deduccion de las ecuaciones de reaccion-difusion

Se supone una poblacién u(x,7) en un conjunto Q C R” con Q abierto y se denota por J(x,z) € R"
el flujo de particulas que entran y salen de Q.

La ecuacion de conservacion, nos dice que la tasa de cambio de la densidad u(x,¢) en Q es igual
a la tasa de cambio del flujo del material a través de dQ mds el material creado en Q.

Es decir, de forma esquemadtica:

CAMBIOENQ — FLUJO A TRAVES DE 9Q
+
CAMBIO EN LA TASA DE NACIMIENTO Y MUERTE EN Q

Escrito de forma matematica, esto es:

9 N R
5 /Q u(n)dQ = [ J(en)-TdoQ+ /Q Flulx,1))de, (1.2)

donde f(u(x,t)) describe la tasa de nacimiento, muerte, etc. Notar, que consideramos que al final la
tasa media del flujo entra.

Teorema 1.2.3. Teorema de Gauss de la divergencia Sea Q un abierto simple de R> y S = 0Q. su
borde, orientado con la norma exterior unitaria W.Sea F:Q — R?un campo vectorial de clase

cl(Q).
/ divFdQ = / F-7dS.
Q S

Entonces:
De esta manera, haciendo uso del teorema de la divergencia y sustituyendo en (1.2), se obtiene:
d
/ (2L F(u) + divd)dQ = 0.
Q ot
Por la Ley de Fick, el flujo es proporcional al gradiente de la concentracién del material, donde la
constante de proporcionalidad es el coeficiente de difusion d, es decir,
J=—dVu.
Observar que el signo negativo es debido al hecho de que va de mayor densidad a menor densidad.

Modelos matemadticos en oncologia
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1.3. Ecuacién de Fisher-Kolmogorov en oncologia 5

Asi, se llega a la ecuacién:

@
ot

Definicion 1.2.4. A una ecuacion de la forma (1.3), se le suele llamar ecuacion de reaccion-difusion.

= V(dVu)+ f(u). (1.3)

Considerando condiciones iniciales y de contorno, se tiene por ejemplo, el siguiente problema:

Y dsutf).  xeQ
u(x,t) =0, x€dQ, >0, (1.4)
u(x,0) = g(x), XEQ,

donde f puede depender de forma no lineal de u.
Se puede ver con més detalle en [M] (Volumen I: capitulo 11).

1.3. Ecuacion de Fisher-Kolmogorov en oncologia

En el modelo logistico (1.4), se supone que la variacion espacial de la densidad de la poblacién es
de poca importancia para el crecimiento de ésta. Es decir, se asume que la poblacién se distribuye de
manera uniforme sobre un drea todo el tiempo. No obstante, en poblaciones reales, esta suposicion es
a menudo bastante dudosa.

Por lo tanto, se trabaja con la siguiente ecuacién, obtenida de derivar el modelo logistico (1.1):

U = duy + pu(A —u), (1.5)
donde d es el coeficiente de difusién y u = u(x,t) es nuevamente la densidad de poblacion.

Definicion 1.3.1. La ecuacion del modelo de crecimiento de una poblacion (1.5), se suele llamar
ecuacion de Fisher.

La introduccién de un término de difusidn, conduce a una ecuacién diferencial parcial que en con-
traste con la ecuacidn diferencial ordinaria (1.1), no puede ser generalmente resuelta analiticamente.

Como ya se ha mencionado, el término du,, modela la difusién de la poblacién. Remarcar el hecho
de que, términos similares, surgen en muchas aplicaciones donde se quiere capturar la tendencia de la
naturaleza para suavizar las cosas.

Normalmente, la ecuacion de Fisher (1.5) se estudia en conjunto con condiciones de frontera del
tipo Neumann,

u(0,1) = u,(L,t) =0, (1.6)

donde L denota la longitud del dominio. La razén por la que se eligen estas condiciones de frontera,
es que se asume que el drea es cerrada, asi que no hay migracién a través del dominio.

La ecuacion de Fisher-Kolmogorov, constituye uno de los ejemplos mds elementales de ecuacién
de reaccién-difusion no lineal y uno de sus usos es la modelizacion de tumores cerebrales (gliomas
malignos), principalmente por la ausencia de metéstasis, lo que justifica las condiciones de frontera
de tipo Neumann.

No obstante, como en todos los tumores, los aspectos bioldgicos y clinicos de los gliomas, son
complejos y los detalles de su crecimiento espacio-temporal todavia no se entienden bien. Para cons-
truir estos modelos se tienen que hacer algunas suposiciones previas. El modelo teérico mds simple
incluye s6lo el nimero total de células del tumor, asumiendo normalmente que el tumor tiene un cre-
cimiento exponencial.
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6 Capitulo 1. Ecuaciones de reaccion-difusion en oncologia

Estos modelos, no tienen en cuenta la disposicion espacial de las células en un lugar anatémico en
concreto o la extension espacial de las células cancerosas; aspectos que son cruciales en la estimacién
del crecimiento del tumor, ya que determinan la capacidad de invasién y el aparente borde del tumor.
Asi pues, la ausencia de un modelo simple que explique con exactitud el crecimiento de los gliomas
humanos, es lo que hace dificil explicar por qué los resultados tras una extirpacién quirtrgica son tan
decepcionantes.

Por lo tanto, se modelan inicamente los aspectos mas bdsicos de los gliomas, usando la ecua-
cién de Fisher-Kolmogorov para describir la dindmica espacio-temporal de una densidad de células
cancerigenas que pueden migrar y proliferar. Definiendo f(u) = pu(A —u) con p el pardmetro de
proliferacién, se puede reescribir (1.5) como:

Uy :duxx+f<u)a (17)

donde f(u) modela la proliferacion, es decir, la tasa de nacimiento y muerte de las células tumorales
y du,, viene del hecho de que cuando las células tumorales han crecido lo suficiente, migran, se di-
funden.

Notar de nuevo, que se podrian modelizar muchas otras caracteristicas de las células tumorales.
No obstante, la ecuacién (1.7) modela dos de las mds importantes: proliferacion y difusion.

En el siguiente capitulo se estudiard un método numérico para la resolucién de dicha ecuacion.

Modelos matemadticos en oncologia
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Capitulo 2

Meétodo de diferencias finitas

2.1. Métodos explicitos e implicitos

En este capitulo, se va a estudiar el método de diferencias finitas para aproximar ecuaciones en
derivadas parciales dependientes del tiempo.
Se puede ver un estudio completo del método en [L] (capitulo 13).

Definicion 2.1.1. El método de diferencias finitas es un método de cardcter general que permite
la resolucion aproximada de ecuaciones diferenciales en derivadas parciales definidas en recintos
finitos, mediante la discretizacion del recinto del plano en el que se quiere resolver la ecuacion con
una malla, por conveniencia cuadrada.

Se realiza el estudio del método de diferencias finitas para la ecuacién del calor unidimensional
en el dominio Q = (0, 1), la cual es un cldsico ejemplo de ecuacién parabdlica:

U = Uy 2.1
Junto con esta ecuacion, se necesitan condiciones iniciales,
u(x,0) =n(x), (2.2)
y condiciones de contorno, como por ejemplo, condiciones de tipo Dirichlet,

u(0,1) = go(t), u(l,t)=gi(t), (2.3)
parat >0, si0<x<1.

En la préctica, por lo general, se aplica un conjunto de ecuaciones en diferencias finitas en una
cuadricula discreta con puntos discretos (x;, f, ) donde dados N.M € Z . :

xi = ih 0Zi<N,
ti = jk 0<j<M,
con h y k los pasos de discretizacion espacial y temporal respectivamente.

De esta manera, se denota por U/ ~ u(x;,;) la aproximacién numérica en el punto discreto x; en
el tiempo 7;.



8 Capitulo 2. Método de diferencias finitas

2.1.1. Método explicito

Como un primer ejemplo, se puede considerar la siguiente discretizacién natural de (2.1) para
I1<i<N-1,j>0:
it -ul 1

. =2 Ul —2u! +U/). (2.4)

Este ejemplo se trata de un método explicito ya que se puede calcular cada Uij + explicitamente en
términos de los datos de la etapa de tiempo anterior:

k

j+1

U/ _Uf+h2( = 2U! UL ). (2.5)
La Figura 2.1 muestra la molécula para este método. Se trata de un método de un paso en el

tiempo, llamado método de dos niveles en el contexto de las EDPS, ya que consta de la solucidn en

dos niveles de tiempo diferentes.

Xig X; Xit1

Figura 2.1: Molécula para el método (2.5)

No siempre se obtienen buenos resultados con el método explicito, debido a la existencia de una
condicién de estabilidad que se cumple para elecciones apropiadas de los pasos de discretizacion
espacial y temporal.

En particular, para la ecuacion del calor unidimensional se tiene la restriccion:

k 1
— < =,

(h)?

de forma que si se eligen unos pasos de discretizacién que no la cumplan, puede ocurrir que los errores
obtenidos en un paso de tiempo sean mds grandes que en el paso anterior.

[\)

Se consideran por ello métodos implicitos para obtener métodos més estables, ya que no tienen
ninguna restriccién en los tamafios de los pasos de discretizacion. No obstante, cuentan con el incon-
veniente de ser mds costosos (en cada paso de tiempo) desde un punto de vista computacional, ya que
hay que resolver un sistema de ecuaciones en cada nivel temporal.

2.1.2. Método de Crank-Nikolson

Por otro lado, como ejemplo cldsico de método implicito se tiene el método de Euler:

Uij+1 B Uj

—=m (Uf+1 2w/ Ui, (2.6)

i+1
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2.1. Métodos explicitos e implicitos 9

No obstante, otro método mucho mds usual en la prictica, por sus beneficios en cuanto a condi-
ciones de orden que se estudiardn mas adelante es el mérodo de Crank-Nikolson, donde se tiene la
siguiente discretizacion:

vt —uy/ . . 1 . . . . . .
— = (DU DU = s (U - 20 + UL+ U 20T U, @)

que puede ser reescrito como:

— U+ (120U = Ul = rUL + (=200 + U 2.8)

k
donde r = Tk

Su correspondiente molécula es:

t.y @ o
7 o ®
Xiz7 X; Xi+1

Figura 2.2: Molécula para el método (2.8)

El método de Crank-Nikolson es un método implicito y da lugar a un sistema tridiagonal de ecua-
ciones a resolver en cada paso de tiempo.
En forma matricial, se tiene !:

(1+2r) —r U{:“
—r (1+2r) —r UZJ_Jrl
—r (1+2r) —r U_{Jrl

—r (1+42r) —r Uitt
—r (1+2r) AR

r(go(t) +8o(tj1)) + (1 —2r)U{ +rUJ
rU{ + (1 =2r)U; +rUj
rUy + (1 —2r)U{ + rUj

| rUl_+(1 - 20U+ Ui
rUN o+ (1 =2r)Us_ +r(g1(t;) + g1(tj11))

Un sistema tridiagonal de (N — 1) ecuaciones puede ser resuelto con un coste computacional de
O(N) por el algoritmo de Thomas.

INotar que las condiciones de contorno (2.3) entran en esas ecuaciones.
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10 Capitulo 2. Método de diferencias finitas

2.2. Meétodo de lineas

Otra manera de discretizar las EDPS dependientes del tiempo, consiste en hacer una discretizacién
en el espacio dando lugar a un sistema de ecuaciones diferenciales, una por cada punto de la malla.

El sistema resultante de EDOS puede ser aproximado usando cualquiera de los métodos conoci-
dos para aproximar sistemas de ecuaciones diferenciales, como el método de Euler o el método del
trapecio.

Por ejemplo, se puede discretizar la ecuacion del calor (2.1) en espacio en cada punto de la malla
x; mediante:

Ul(t) = %(Ui,l(t) C2U(t)+ Ui () parai=1,2,... . N—1. (2.9)

1

Se puede observar que se trata de un sistema acoplado de (N — 1) EDOS para las variables U;(7),
las cuales varfan continuamente en el tiempo a través de las lineas mostradas en la siguiente figura.

Ug®) Uyr) Uyt) Unat) Uyi(®) Un®)

A r r 4 A 3 &

X X; x; Xau2 Xng Xy

Figura 2.3: Interpretacion del método de lineas

Este sistema puede ser escrito como:
U'(t) =AU (1) +g(1), (2.10)

donde la matriz tridiagonal A es de la siguiente forma:

A=— o , @.11)

" eo(t) 1
0
0
g(t)Z% :
0

L gi(t) |
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2.3. Estabilidad y convergencia 11

Si aplicamos un método numérico de EDOS para aproximar el sistema (2.10), se obtendrd un
método totalmente discreto que produce aproximaciones U/ = U;(t;) en los puntos discretos en el
tiempo, que son exactamente los puntos (x;, ¢;) de la malla que hemos introducido previamente.

Por ejemplo, aplicando el método de Euler explicito a este sistema lineal resulta el método discreto
(2.5). Por contra, aplicando el método del trapecio, resulta el método de Crank-Nikolson (2.8).

2.3. Estabilidad y convergencia

El estudio de la estabilidad y la convergencia se puede ver en [T] (capitulo 2).

2.3.1. Errores de truncamiento

El error de truncamiento es el error que se produce al sustituir la solucién exacta de u(x,t) en las
ecuaciones en diferencias finitas.
En particular, el error local de truncamiento del método (2.5), se basa en la forma (2.4):
Cu(x k) —u(xt) 1

T(x,1) = - —ﬁ(u(x—h,t)—2u(x,t)—|—u(x+h,t)).

Definicion 2.3.1. Nos referimos a t/ o ||1/|| como error de truncamiento local.

Aunque no se conoce u(x,t), en general, se asume que es suficientemente derivable para poder
utilizar desarrollos en serie de Taylor.

Definicion 2.3.2. Un método se dice consistente si T(x,t) — 0 cuando k,h — 0.

Definicion 2.3.3. Se dice que el esquema de diferencias es consistente de orden (p,q) para la ecuacion
en derivadas parciales dada, si:
[7/]l = O(h”) + O (k7).

Se espera que la consistencia, ademads de algin tipo de estabilidad, sean suficientes para probar
que el método converge en cada punto fijo (x,#). Més atin, se espera que para un método estable el
orden global de exactitud, coincida con el orden del error de truncamiento local.

Consistencia en métodos explicitos

El error de consistencia del método de Euler explicito (2.5) es:

u(xi, tivg) — u(xi,tj 1
() = ) )L )~ dun) + ul. ).

y utilizando un desarrollo en serie de Taylor alrededor de u(x;,¢;), se obtiene:

1 1 1
T('x7t) = (M[ + Eku[t + gkzunt + - ) - (Mxx + Ehzl/‘xxxx + .- )

Como u; = uyy, el término O(1) desaparece.
Por otra parte, derivando u; = u,y, se llega a u;; = tyxy = Uyyrr y aST:

1 1
T(xat) = (Ek_ Ehz)uxxxx‘i'O(kz +h4)'

Se dice que el método es consistente de segundo orden en espacio y consistente de primer orden
en tiempo, ya que el error de truncamiento local es O(h? 4 k).

Autora: Marta Gomez Gomez



12 Capitulo 2. Método de diferencias finitas

Consistencia en métodos implicitos

Para estudiar la consistencia del método de Euler implicito basado en (2.6), se aplican de nuevo
desarrollos en serie de Taylor, llegando a las mismas condiciones de orden que las obtenidas en los
métodos explicitos, es decir O(h* + k).

Sin embargo, el método de Crank-Nicolson, estd centrado en el espacio y en el tiempo, por lo que
un andlisis del error local de truncamiento muestra que es consistente de segundo orden en ambos?,
lo cual como se habia adelantado previamente hace que este método sea mejor frente a (2.6).

T(x,t) = O(K* + h?).

2.3.2. Teoria de estabilidad

Para realizar el andlisis de la estabilidad de sistemas como (2.5) o (2.8), se supone que U J+1 puede
ser escrito de la forma: ' _
Uitt=9ui, j>o. (2.12)

Definicion 2.3.4. Se dice que un esquema de diferencias de la forma (2.12) es estable con respecto a
la norma ||.|| si existen constantes positivas hy y ko y constantes no negativas o,y f tal que:

07+ < e 00, @1
para0<t=(j+ 1k, 0<h<hy y 0<k<k.

Notar que hay una gran variedad de definiciones de estabilidad alternativas. Una de las defini-
ciones mds comunes es la que no se permite el crecimiento exponencial. Asi, (2.13) es reemplazada
por:

071 < a0 214

Una caracterizacion de estabilidad de gran utilidad viene de considerar la inequacién (2.13) y se
puede observar en la siguiente proposicion.

Proposicion 2.3.5. El esquema de diferencias (2.12) es estable con respecto a la norma ||.|| < existen
constantes positivas hy y ko y constantes no negativas o 'y f tal que:

107! < aef, (2.15)
para0<t=(j+ 1k, 0<h<hy y 0<k<k.
Demostracion. Se tiene que:
Uit = QU-’ _ Q(QU-"’I) — Q2U-"’1 - .= Qj+1U0_
Asi la expresion (2.13) puede ser escrita como:
o7 = 17U < aefr U7,

o lo que es lo mismo:
j+1770
020 _ 1
1]

=) Tomando el supremo en ambos lados, sobre todos los vectores U 0 no nulos, se obtiene:
lo7|| < ae?.

<) Por otra parte, usando que ||@/H'U°|| < ||Q/F!||||U°|| y 1a desigualdad (2.15), se tiene (2.13)
(estabilidad). O]

2Se puede ver facilmente aplicando en este caso un desarollo en serie de Taylor alrededor de (xi,1 il ).
2
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2.3.3. Convergencia

La forma mas comuin de demostrar la convergencia en el contexto de los métodos en diferencias,
es a través del teorema de Lax usando la consistencia y la estabilidad.

Los métodos estudiados hasta ahora, pueden ser escritos de la forma;

Uit = U’ + b/, (2.16)

donde Q € RV-1)xWN=1) y pi ¢ R™,
Se puede aplicar, de la manera habitual, la ecuacion en diferencias a la solucién exacta y se obtie-
ne:

Wt = Qu b 4kt (2.17)
Restando ecuaciones (2.16) y (2.17) se obtiene la ecuacion en diferencias para el error global
E'=U)—uw.
E/ = QE/ —k1/.

Utilizando esta férmula de forma recursiva, se tiene:

J
E/ = QjEO _kZ Qj_mfm_l.
m=1

Tomando normas,

J
ET| < IQ7IE +& D™ 0™z 1.

m=1

Se tiene as{ la siguiente definicion de convergencia.

Definicién 2.3.6. Se dice que el método converge siempre que sea consistente, es decir, 7"~ — 0
en cada paso; y estable, lo cual requiere que ||Q’|| sea acotado uniformemente Vk, j con jk <t.

La forma de estabilidad requerida, es decir, la cota uniforme en [|Q/||, es a menudo llamada esta-
bilidad de Lax-Richtmyer.
Consistencia, estabilidad y convergencia estdn conectados mediante el teorema de Lax-Richtmyer.

Teorema 2.3.7. Equivalencia de Lax Un esquema de diferencias consistente para un problema de
valor inicial lineal bien planteado es convergente < es estable.

Asi pues, siempre y cuando se tenga un esquema consistente, la convergencia es sinénimo de
estabilidad.

Teorema 2.3.8. Teorema de Lax Si un sistema es consistente de orden (p,q) en la norma ||.|| para
un problema de valor inicial bien planteado y es estable con respecto a la norma ||.||, entonces es
convergente de orden (p,q) con respecto a la norma ||.|.

Demostracion. Se supone un esquema en diferencias de la forma:
U/t = QUY + kG

Sea u = u(x,t) la solucion exacta del problema de valor inicial. Entonces, puesto que el esquema de
diferencias es consistente de orden (p,q), se tiene:

wt = Qul + kG + k1!,
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14 Capitulo 2. Método de diferencias finitas

con ||7/|| = O(h?) + O(k9). Se define E/ como la diferencia U/ — u/. Entonces E también satisface:

E/Y = QF/ +kt/.
Aplicando esta tltima ecuacién de forma recursiva se deduce que:

E/TY = QFE) ki
Q(QE™ ! +kt/™1) 4 kt/
= Q'+ kQt kT

m
— QMEC kY QT

m=0
Como E° =0, se tiene:
J
Ej-H — kz erj—m‘
m=0
El hecho de que el esquema de diferencias sea estable implica que para cualquier m,
10| < aeP".

Tomando la norma en ambos lados de la ecuacién (2.18) y usando (2.19),

J
IEZ < kY lemlie
m=0
j .
< ko> P e
m=0
J
< kaeﬁ(ﬂrl)kz”f[ﬁm”

m=0

< (j+ DkaePUrDkC (1) (h? 4 k9),

(2.18)

(2.19)

(2.20)

con C*(t) = supo<;<;C(s) y donde C(s), s = (j — m)k es la constante implicada en la expresién de “O

grande” para ||7/7"|.

Conforme a la definicién de convergencia, ¢ es elegido de forma que (j+ 1)k — ¢ cuando k — 0

(y por supuesto j — o0). Entonces, cuando 4,k — 0, la expresion (2.20) da lugar a:
(j+ DkoeP'C* (1) (h? + k1) — 0.

Por supuesto, es equivalente a decir ||E/*!|| — 0.

Para ver que la convergencia es de orden (p,g), notar que la expresion (2.20) puede ser reescrita

Ccomo:

IE7TH] < a(r) (W +K9)
O(h?)+ O(KY).
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2.4. Esquema en diferencias para la ecuacion de Fisher

Se han estudiado los esquemas en diferencias para la ecuacién del calor (2.1). Se estudian ahora
para nuestro modelo, es decir, para la ecuacién de Fisher:

Uy = duy + p(A—u)u.
Usando un esquema de diferencias explicito, se tiene la siguiente discretizacién para los nodos
interiores del mallado:
vt =ul + d%(uif;l —2U! + U\ +kp(A—U])U.
Utilizando la condicién inicial se tiene que:
U'=f(x) i=0,...,N.

Para los nodos de la frontera, como se tienen condiciones de contorno de tipo Neumann, se obtie-
nen las siguientes ecuaciones en diferencias:

. S N

gt = Uj+d 5 (U] = 209) +kp(A-U)UY,
. Ck o - N

U™ = ult+d 5 U —2U3) +kp(A = UY)UR,

L
con N = W siendo L la longitud del dominio.

2.4.1. Propiedades de la solucion

A continuacién se enuncian algunas propiedades de la solucién de la ecuacion de Fisher, en el
casop=d=A=1.

Tanto el esquema en diferencias, como las propiedades para la ecuacion de Fisher, se pueden ver
mds ampliamanete en [TW] (capitulo 11).

Teorema 2.4.1. Suponer u(x,t), satisfaciendo u,uy,ux.,u; € C([0,1] x [0,0]), es la solucion de un
problema de la forma:

U =ty +u(l—u),
uy(0,¢) = ux(1,1) =0, (2.21)
u(x,0) = f(x).

Entonces, si la condicion inicial f(x) satisface 0 < € < f(x) < 1+ ¢, se cumple que la solucion u(x,t)
en cualquier instante de tiempo cumple:

0<e<u(xt)<l+eg,

para todo x € [0,1], 1 > 0.

Sea u(x,t) la solucién de (2.21) con f(x) satisfaciendo 0 < € < f(x) < 14 &. Se define para s > 0:

1
E(t) = /0 (u(x,1) — 1)2dx.

Usando u, = uy, +u(1 —u) y las condiciones de frontera u,(0,7) = u,(1,7) = 0, se obtiene:
1 1 1 1
E'(t)= 2/ (u—1)udx = 2/ (u— 1)ty —u(1 —u)?dx = —2/ (1) *dx — 2/ u(1—u)?dx.
0 0 0 0

Autora: Marta Gomez Gomez



16 Capitulo 2. Método de diferencias finitas

Se sigue del Teorema 2.4.1 que u(x,7) > € > 0,Vx € [0,1],7 > 0 y como consecuencia se tiene:

1
E%Og—ds/(l—ﬂLﬂfdv:—%EO)
0
Por tanto, la desigualdad de Gronwall® implica que:

E(t) < e *'E(0),

de donde se obtiene el siguiente resultado.

Teorema 2.4.2. Sea u(x,t) solucion del problema (2.21) con f(x) satisfaciendo 0 < € < f(x) < 1+¢,
Vx € [0,1]. Entonces la solucion asintdtica de u(x,t) se aproxima a u = 1 en el sentido de que:

1 1
/0 (u(x,t) — 1)2dx < e ¢ /0 (1 —f(x))za’x,

parat > 0.

Para el problema de Neumann (2.21), no es dificil ver que la solucién puede tender a infinito en
un tiempo finito para algunos valores concretos de g con g(u) = u(1 — u). Notar que si la condicién
incial f es constante, por ejemplo,

f(x) = fo, (2.22)

para todo x € [0, 1], entonces:
donde v es la solucion de:

Por lo tanto, la solucién de (2.21) viene dada por la solucién de una ecuacion diferencial ordinaria,
la cual es conocido que tiende a infinito en un tiempo finito para algunas funciones g.
Sea, por ejemplo,

g(v) =7, fo>0,

entonces la solucion sera:

Jo

V(’):7m7

la cual cumple que:

v(t) —> o0 cuando t— =—-
215

En conclusidn, la solucién de (2.21) tiende a infinito en un tiempo finito con unas condiciones
iniciales que satisfacen (2.22) cuando g(u) = u’y fo > 0.

3Sea I un intervalo de la forma [a,b] con a < b. Si u es diferenciable en I y satisface /() < B(¢)u(t) entonces se cumple

u(t) < u(aexp( [ B(s)ds).
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2.5. Extension del método a dos dimensiones para la ecuacion de Fisher

Los esquemas en diferencias finitas explicados en las secciones anteriores, se pueden extender
facilmente a varias dimensiones. En particular, en el siguiente capitulo se presentardn resultados para
la ecuacién de Fisher en dos dimensiones:

up = d(tex + ttyy) + pu(A —u),
con condiciones de frontera de tipo Neumann.

Se considera una malla uniforme para un cuadrado y una discretizacion uniforme en tiempo. Para
tratar la parte no lineal de la ecuacién se usard el método IMEX, que consiste en tratar implicitamente
el término de difusién y explicitamente el de reaccion. De esta forma, en cada paso de tiempo, ten-
dremos que resolver un sistema de ecuaciones lineales. En particular, para un nodo interior (i, j) de la
malla la ecuacién en diferencias es:

; ; i+1 i+1 i+1 J+1 Jj+1 Jj+1
vt —ul _dUl.fjl v/ Ul dUi+N+1_2Ui +U (v

k h? h?

: —pU/(A-U}) =0,

o lo que es lo mismo:

ki ki ki ki1 k 1 ' ' j
—dUl —dozUly —d s Uiy —dis Ul + (4dog + DU = Ul +kpU/ (A= U).

De esta manera, resulta un sistema de ecuaciones lineales (ya que la parte no lineal de la ecuacién
se ha discretizado explicitamente) Ax = b donde b incluye la parte no lineal y la solucién del sistema
es la solucién u buscada.

Este tipo de métodos pueden verse en [HV] (capitulo 4).

Autora: Marta Gomez Gomez






Capitulo 3

Simulacion numérica

3.1. Soluciéon numérica: método explicito

3.1.1. Ecuacion del calor

Un primer objetivo de este capitulo, es comparar la solucion numérica y analitica de la ecuacién
del calor; para la cual se ha implementado el método de diferencias finitas explicito presentado en el
capitulo anterior.

Se considera el siguiente problema parabdlico:

Uy = Uy, x€(0,1),1 <0,
u(0,1) = u(1,1) =0, 3.1)
u(x,0) = sin(27x).

Se puede obtener facilmente la solucidn analitica de este problema por el método de separacién
de variables. Para ello se buscan soluciones u(x,7) de la forma u(x,1) = X (x)T ().
Insertando u(x,t) = X (x)T(¢) en (3.1), se obtiene:

X(x)T'(t) =X"(x)T(¢).
Dividiendo por X (x)7 (¢):
') X"(x)
T(t)  X(x)
Considerando las condiciones de contorno del problema (3.1), se calculan los valores propios y
las funciones propias del problema de Sturm-Liouville:

{X”(x) +AX(x) =0, (3.2)

X(0) = 0,X(1) =0.

Se tiene que para k = 1,2,... los valores propios son A; = (kx)? y las funciones propias X;(x) =
sin(kmx). Resolviendo por otro lado 7'(¢) + AT (¢t) = 0 como un problema de primer orden se tiene
como solucién Ty (1) = e~ M = ¢~ (*kn)*,

Por lo tanto, se sigue que paracadak = 1,2,... ug(x,t) = X (x)T;.(t) = e*("”)ztsin(knx) es solucién
de la ecuacion en derivadas y satisface las condiciones de contorno.

19



20 Capitulo 3. Simulacién numérica

Aplicando la condicién inicial f(x) = sin(27x) y suponiendo que la solucién es formalmente una
combinacién lineal infinita de las soluciones anteriores u(x,?), se llega finalmente a:

u(x,t) = e ™ sin(27x).

Se ha implementado en Matlab el método de Euler explicito para la resolucién del problema (3.1).
Llamando a la funcién':

u = ecalorexpll(Nx, Mt, L, T)

se ha representado la solucién numérica y la exacta en la Figura 3.1.

Se ha elegido como Ty, = 0.1, h = é, k= %. Es decir, los valores de los pardmetros en la funcién
corresponden con Nx =7, Mt =8, T=0.1yL=1.

Ecuacitn del calor

TN — == Solucién numérica

Solucién exacta

Figura 3.1: Solucién exacta y numérica del problema (3.1)

Aunque la soluciéon numérica no da problemas de convergencia y parece aproximase a la solucién
exacta, es claro que no es la mejor que se puede encontrar.
. 1 1 . .. <
Se puede comprobar que usando una malla mds fina, con & = 55 y k = g5; la aproximacion numé-
rica es mucho mejor.
En este caso, los valores de los pardmetros son Nx =21, Mt =80, T=0.1yL = 1.

Ecuacitn del calor

— == Solucién numérica
Solucién exacta

0005

001~

Figura 3.2: Solucién exacta y numérica del problema (3.1)

Ver Anexo-Seccién 3.1.1.a (pagina 33).
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(Se puede elegir i1 y k aleatoriamente? Se eligen, por ejemplo, i = 2—13 yk= ﬁ, es decir, Nx = 24,

Mt =80, T = 0.1 yL =1 como valores de los pardimetros y se puede observar en la Figura 3.3 la
solucién obtenida .

Ecuacion del calor

— — = Solucién numérica

(e

Figura 3.3: Solucién numérica del problema (3.1) que oscila

Claramente para estos valores de % y k la solucién numérica oscila. ;Por qué sucede esto? El mé-
todo de diferencias finitas explicito requiere de una condicién de estabilidad. Como se comenta en el
capitulo 2, hay una restriccidn en el paso de discretizacién temporal en funcién de la espacial.

Por ultimo se puede hacer un estudio de los errores cometidos con el método. Se comienza calcu-
lando el error cometido en los dos casos estudiados anteriormente, para corroborar con mds exactitud
que la solucién numérica en el segundo caso se aproxima mucho mas a la solucién exacta. Es decir,
se estudian los errores para h = é, k= % yh= %, k= ﬁ.

Se anade en el programa correspondiente en Matlab, la orden para el célculo del error” en nor-
ma infinito, calculando previamente la solucién exacta en cada nodo, y se obtienen los siguientes

resultados:

2

N, | M, | Error
7 8 0.0112
21 | 80 | 0.0013

donde como era de esperar 0.0013 < 0.0112; es decir, el error cometido con los valores tomados
de h 'y k en el segundo caso es mucho menor que el error cometido en el primer caso.

3.1.2. Ecuacion de reaccion-difusion lineal

De forma maés genérica, se puede hacer un estudio de los errores cometidos para distintos valores
de hy k, por ejemplo con la siguiente ecuacion de reaccién-difusion lineal:

ur = (1 +x%)uy — 3u, xe€(—1,1), >0,
u(x,0) = 1+x2, x€[-1,1], (3.3)
u(—1,8) =u(l,r) =2e7", t>0.

2Ver Anexo-Seccién 3.1.1.b (pagina 34).
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22 Capitulo 3. Simulacién numérica

Se parte de Nx = 10, Mt = 10 y se van duplicando los pasos de malla tanto en espacio como en
tiempo, con el fin de verificar el orden de convergencia del método explicito estudiado en el capitulo

2.

M,
N, 10 20 40 80
10 6.6407e % | 3.29052¢706 [ 1.6453¢7 ¢ | 8.2205¢ Y7
20 7.0854¢7 9 | 3.5222¢ 790 | 1.7561¢ % | 8.7682¢~ 77
40 8.7659¢ 90 [ 3.5615¢ % | 1.7741e % | 8.8544¢° 07
80 62.8877 | 4.0132¢% 23.0589 | 8.8885¢ "7

Si se observan los valores de la diagonal en la tabla, se ve como el valor del error cometido va
reduciéndose por dos a medida que dividimos por la mitad % y k; lo cual es debido a que el orden de
convergencia del método es O(h* +k).

3.1.3. Ecuacion de Fisher-Kolmogorov

Un segundo objetivo es aplicar el método de diferencias finitas explicito a otras ecuaciones, como
por ejemplo a la ecuacién de Fisher-Kolmogorov y estudiar el comportamiento de las soluciones para
distintos valores de los pardmetros de difusién y proliferacion.

Como se ha visto en el primer capitulo, la ecuacién de Fisher-Kolmogorov (FK) se utiliza en
la modelizacién de tumores cerebrales (gliomas), describiendo el comportamiento de una densidad
P = P(x,t) de células cancerigenas que pueden migrar y proliferar, y la cual viene definida por:

oP 2P P
_—= —_ _— = >
3 afax2 + (1 P)P, X € [a,b], t>0,

donde d, p y P son constantes que representan el coeficiente de difusién (migracién) celular, la tasa
de proliferacién y la densidad tisular mdxima, respectivamente. Notar que las unidades de P y P
son nimero de células/longitud, d se mide en longitud?/tiempo y p es inversamente proporcional al
tiempo.

El intervalo espacial donde se resuelve es [a,b], escogiendo a y b de manera adecuada y recordar
que la ecuacién de FK se suplementaba normalmente con condiciones de frontera del tipo Neumann.

La ecuacién de FK se puede simplificar si definimos una nueva variable u(x,) = P(x,1)/P , de
manera que 0 < u(x,t) < 1 para todo x € [a,b] y t > 0. De esta manera, se considera en nuestra
simulacién la EDP normalizada:

X € [a,b], t>0,

Uy = duge +p (1 —u)u, (3.4)

la cual coincide con la estudiada previamente.

El intervalo donde se integra es [—L/2,L/2], tomando L = 6 cm y se utiliza como condicién inicial

la siguiente funcidn:
2

up(x) = Uge o2,

lo cual supone que las células cancerigenas se distribuyen en el tejido mediante una distribucion de
tipo gaussiana y donde la constante (amplitud) 0 < Uy < 1 se toma en el rango de valores Uy €
[1073,107']. Los pardmetros de difusién y proliferacion se supone que cumplen d € [1,103]mm? /aiio
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y p € [107",10%] afio ~!. El intervalo de tiempo que se quiere explorar es t € [0,T] con T € [10~!,10]
afios.

El pardmetro restante o, se elige de manera que la distribucién espacial inicial del tumor esté
confinada en una regién suficientemente pequeiia del intervalo [—L/2,L/2].

Se pretende ver como la solucidn de nuestro problema varia en funcién de los parametros d y p. Se
ha implementado en Matlab el método explicito de diferencias finitas para la resolucién del problema
(3.4) y se llama a la siguiente funcién?:

u = FKi(Nx, Mt, L, T, D, Rho, UO, sigma)

En todos los casos se usan los siguientes valores para el resto de argumentos: Nx = 10, U0 = 0.1,
T=1,L =1, sigma = 0.1 y Mt el necesario en cada caso para que converja.

En primer lugar se supone fijo el parametro de proliferacién, p = 10 y se compara qué diferencias
hay si el pardmetro de difusién es muy pequefio, es decir, d = 1 o comienza a ser significativo como
por ejemplo d = 10.

space =0 time space time

Figura 3.4: Solucién para un pardmetro de difusion muy pequefia en la izquierda y una difusién grande
en la derecha

Se observa por un lado, como para un pardmetro no excesivamente grande de proliferacién, in-
dependientemente de lo que el tumor se difunda, en un periodo de un aflo, ambos tumores llegan a
ocupar el maximo del tejido (suponiendo que este sea u = 1 con la ecuacién normalizada).

Por otro lado, se ve como para un mismo valor del pardmetro de proliferacion, con una difusién
significativa (figura de la derecha) el nimero de células se expande en un periodo muy breve de
tiempo cubriendo toda la linea de integracion y sin embargo, con una difusiéon muy pequefia (figura
de la izquierda) no la cubre ni siquiera cuando u = 1, es decir cuando alzanca el mdximo posible, al
cabo de un afio.

3Ver Anexo-Seccién 3.1.3 (pdgina 34).
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24 Capitulo 3. Simulacién numérica

Se supone ahora fija la difusién d = 10, y se compara qué sucede para distintos valores de proli-
feracién, uno apenas inexistente con p =0.1 y otro muy elevado como por ejemplo p = 100.

space time

Figura 3.5: Solucién para un pardmetro de proliferaciéon muy pequefio en la izquierda y una prolifera-
cién elevada en la derecha

En este caso, lo primero que se observa es que debido al alto valor del pardmetro de difusion,
ambos tumores cubren toda la linea de integracion casi instantdneamente al comienzo del afio.

En cuanto a la proliferacién, en este ejemplo se ve clara la diferencia entre ambos tumores para
un mismo pardmetro de difusién. Con un valor de proliferacion casi inexistente (figura de la derecha),
a pesar de que el tumor se difunde muy rdpido, apenas cubre la capacidad del tejido, queddndose
a lo largo de todo el ano en u = 0.007 aproximadamente. Sin embargo, con un valor muy alto de
proliferacion (figura de la izquierda), no sélo se difunde rdpidamente, sino que ademds en apenas un
mes y medio el tumor ya ha cubierto el maximo del tejido siendo éste u = 1.

3.2. Solucion numérica: método IMEX en dos dimensiones

3.2.1. Ecuacion de Fisher-Kolmogorov

En esta seccidn, se va a considerar el problema de Fisher-Kolmogorov en dos dimensiones. Para
aproximar la solucién de dicho problema se va a usar el método IMEX explicado en el capitulo 2.

Se ha implementado en Matlab el método IMEX para resolver numéricamente la ecuacion:

ur = d (e + ttyy) + pu(l —u). (3.5)
Se llama a la funcién®:

u = Fk2d(Nx, Mt, L, T, D, Rho, UO, sigma)

y se fijan todos los argumentos. Se tiene como objetivo ver la evolucién de un tinico tumor a lo
largo de un afio con un valor de proliferacion p = 10 y de difusién d = 1.

Los valores de los argumentos que se usan son: Nx = 40, Mt = 30, D = 1, Rho = 10, U0 = 0.1,
sigma=0.1,L=6yT=1.

Se parte de la misma distribucién inicial que en el apartado anterior, donde al comienzo del afio
las células estdn muy concentradas en un punto, cubriendo aproximadamente el 5 % del tejido.

4Ver Anexo-Seccién 3.2.1 (pagina 35).
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3 3

Figura 3.6: Distribucién inicial de las células tumorales

Se observa la evolucion en cuatro periodos de tiempo distintos, de 3 meses de longitud cada uno.

P

"
W

40 :“‘\
/ \
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07 77/ *
04 ///Il ' X ‘J ‘ \\\ 06- /'//////;;;II,"”’" X “““
02 g//// ‘ N SN ¢ ": \

Figura 3.7: Evolucién del tumor al cabo de 3, 6, 9 y 12 meses

Se observa que en los primeros tres meses apenas ha proliferado (cubre un 6 % del tejido aproxi-
madamente) y sin embargo ya empieza a difundirse. Al cabo de medio afio, se empiezan a notar los
efectos de la proliferacion (cubre un 20 % del tejido aproximadamente) y continua difundiéndose.

A los nueve meses, duplica casi su valor cubriendo aproximadamente la mitad del tejido y ya se
ha difundido por casi toda la malla. Finalmente, se ve como tras un afio estd completamente difundido
y su valor es aproximadamente u = 0.75 siendo 1 el maximo valor que puede alcanzar.

Autora: Marta Gomez Gomez



26 Capitulo 3. Simulacién numérica

3.3. Radioterapia y casos practicos

Por dltimo, se hace un estudio practico en modelos de efectos de radiacion con recrecimiento del
tumor, donde poder aplicar en parte los capitulos previos. Se introduce en primer lugar el concepto de
radioterapia. Para més informacién ver [JV].

Definicion 3.3.1. La radioterapia es una forma de tratamiento oncoldgico basada en el empleo de
radiaciones ionizantes (rayos X o radiactividad, la cual incluye rayos gamma y particulas alfa). Su
unidad de medida es el Grey (Gy).

El objetivo de la radioterapia es destruir las células cancerosas, sin dafiar el tejido sano cercano. A
diferencia de la quimioterapia, en la cual se expone a todo el cuerpo, la radioterapia es un tratamiento
de aplicacién local, la cual sélo afecta a la parte del cuerpo tratada.

Mais de la mitad de los pacientes con cdncer reciben algun tipo de radioterapia. Para algunos tipos
de céancer, la radioterapia sola resulta un tratamiento eficaz; sin embargo, la mayoria de los cinceres
responden mejor a enfoques de tratamiento combinados, los cuales pueden incluir radiacién mas ci-
rugia o quimioterapia.

En esta seccién no vamos a tener en cuenta el efecto espacial.

Por otro lado y como ya se ha adelantado en capitulos previos, se supone también que se trata
de tumores cerebrales, debido a su simplificacion a la hora de modelarlos, entre otras cosas, por su
ausencia generalmente de metastasis.

Se parte de un tumor que crece segin la siguiente ecuacién diferencial ordinaria:
dN
“ —pN
dt p )

con N el nimero de células y p el pardmetro de proliferacion.

Resolviendo mediante variables separadas, se obtiene que:
N(r) = N(to)eP =",

con fy el tiempo inicial.
Se puede calcular p en funcién del tiempo de duplicacion de las células tumorales, Ty,,, partiendo
de 1y = 0;

ZN(IO) = N([O)ep(Tdup_to) ,
2N(0) frmd N(O)epTdup’
log2
Tdup = 7g,
P
log2
po= .
dup

Sin embargo, los tumores no crecen exponencialmente, debido a que en la vida real, hay limita-
ciones fisicas, de nutrientes, etc.
Por lo tanto, hay que afiadir un término que frene el crecimiento del tumor, lo que lleva a:

dN N
= —_HoN[1- 2
dt P ( Nmax>’

es decir, la ecuacién logistica hallada en el Capitulo 2, y cuya solucién era:

N(zo)eP(’—fo)

1+ Qo) (ep(’_’o) - 1)

N(t) =
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Asi pues, si t es pequeio, crece como una exponencial y para t grande se alcanza N,y

Esta solucién dice cuanto crece el tumor en un tiempo t partiendo de f#, es decir, el nime-
ro de células al cabo de M dias sin ser tratado, sin mds que sustituir los datos correspondientes
(Nmax; Taup,t0,N(t0),p), y siendo t = M.

Se introduce ahora la accion de la radioterapia (Sy), la cual va matando un porcentaje de las
células. Se supone que las dosis se dan en los tiempos t1,,...,t,. De esta manera, justo antes se
irradiar, se tiene:

N(to)ep(flfto)

1+ Qo) <ep(t1fo> - 1)

siendo el nimero de células que quedan tras la irradiacién:

N() =

N(1g)eP10)

f .
1+ Rl <ep<t1fo> - 1)

Se supone que las células muertas desaparecen (hecho que no es real) y que el tiempo de radiacién
es muy pequeflo, siendo aproximadamente de 10 minutos.
Denotamos por N; y Nj:

Nj EN(IT),

Nji1 =S¢

Njep('f“ )

)
14+ e"<’j+1’./>—1>
N’ﬂax

(3.6)

para j=0,...,n—1.

Se parte pues de un tumor al que se le ha de dar una dosis de radiacién G (Gy) y del cual sobrevi-
ve una fraccion de células tumorales S, las cuales contribuyen al recrecimiento del nimero total de
células del tumor.

Como se ha dicho anteriormente, en un tratamiento con radioterapia de un tumor, se realiza una
aplicacion repetida de una cierta dosis total de radiacién G repartida en fracciones g.

Mediante esta simulacién numérica, se pretende estudiar con un modelo muy simple, el uso de la
radiacién como estrategia terapéutica en varios escenarios distintos.

Como datos iniciales, en t = 0, se supone que el nimero inicial de células en el tumor, en el
momento en que empieza el tratamiento es N = 10° y el nimero méximo que soporta el tejido es
Nyax = 3-10°. El tratamiento empieza 7 dias después de la deteccién del tumor y se acepta que el
paciente sobrevive mientras que el tumor no llegue al 70 % de su tamafio maximo.

1. En primer lugar, se estudian tumores radiosensibles, con una fraccién de supervivencia después
de cada dosis del 48 % de las células tumorales. Se hace en dos casos: el primero siendo un
tumor agresivo (es decir, con un tiempo de duplicacion celular medio del orden de 20 dias); y el
segundo, siendo un tumor de crecimiento lento (tiempo de duplicacion celular medio del orden
de 80 dias). Se compara en ambos casos cual es la respuesta del tumor y se discute si es posible
eliminarlo haciendo el tratamiento cada dos dias en relacién con el tratamiento diario.

2. En segundo lugar, se estudian tumores poco radiosensibles, con una fraccién de superviven-
cia celular después de cada dosis del 85 % de las células tumorales. En este caso, el objetivo
es unicamente maximizar la supervivencia del paciente. Se consideran nuevamente los casos
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28 Capitulo 3. Simulacién numérica

por separado de un tumor con crecimiento rdpido y un tumor con crecimiento mds lento y se
compararan las mismas posibilidades de dar las dosis.

3.3.1. Tumores radiosensibles

Definicion 3.3.2. Se llaman tumores radiosensibles a aquellos que responden considerablemente

bien al efecto de la radioterapia, matando gran porcentaje de células cancerigenas tras cada radia-
cion.

En primer lugar, se supone un tumor radiosensible agresivo, es decir, con un tiempo de duplicacién
de las células cancerigenas pequeilo, en particular, de 20 dias.

Se implementa en Matlab’ el problema (3.6) y se estudia qué sucede graficamente, si por ejemplo,
al paciente se le suministran las dosis de radioterapia diariamente.

| | | |
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Figura 3.8: Dosis diaria

Puesto que la diferencia entre el nimero de células cancerigenas en el punto de partida y tras el
tratamiento con radioterapia es notablemente diferente, no se puede apreciar bien qué sucede exacta-
mente en la grafica. Se toma escala logaritmica en el dibujo y se obtiene:

] 100 200

300 400 500 600 700 00 900 1000

Figura 3.9: Dosis diaria-Escala logaritmica

5Ver Anexo-Seccién 3.3 (pagina 37).
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Se puede observar como en este caso, el tratamiento diario con radioterapia logra eliminar todas
o casi todas las células cancerigenas dejando tras la dltima sesién un nimero despreciable de ellas.
Aunque matemadticamente y por la forma que tiene el programa que se ha utilizado se observa un
crecimiento exponencial tras el tratamiento (debido a que el ndimero final de células en ese momento
es positivo y no nulo), biolégicamente carece de importancia, puesto que el paciente virtual que se
estd considerando sobrevive y el tumor es eliminado con la radioterapia.

Veamos que sucede si al mismo paciente con las mismas condiciones se le suministran dosis de
radioterapia de forma semanal. Se observa directamente la grafica en escala logaritmica.

1B ]
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Figura 3.10: Dosis semanal

Es clara la diferencia en cuanto al efecto que tiene la radioterapia repartiendo las dosis semanal-
mente. Se observa como ahora tras el tratamiento, el nimero de células cancerigenas sigue siendo
muy elevado y por tanto no se puede afirmar biolégicamente que el tumor sea eliminado. Mds atn,
en el momento en que finaliza el tratamiento, el tumor vuelve a crecer de forma exponencial, dando
lugar a la muerte del paciente en un periodo de aproximadamente 700 dias (entre 1 y dos afios).

Se pueden suponer también tumores radiosensibles pero de crecimiento més lento, por ejemplo
con un tiempo de duplicacién de las células cancerigenas de 80 dias.

Se cambia en Matlab el pardmetro de tiempo de duplicacidn, y se obtiene la misma situacién que
en el caso anterior para tumores agresivos.

Asi pues, se puede afirmar que en el caso de tumores radiosensibles, que reaccionan bien ante el
efecto de la radioterapia, ya sean muy agresivos o no, la forma mas éptima de dar al paciente las dosis
de radioterapia es diaria. La explicacion es clara, al ser tumores que se pueden eliminar y por tanto
asegurar la supervivencia del paciente, cuanto mds rapido se logren eliminar las células cancerigenas,
menos tiempo se les da para duplicarse.

3.3.2. Tumores poco radiosensibles

Definicion 3.3.3. Se llaman tumores poco radiosensibles a aquellos que apenas tienen respuesta al

efecto de la radioterapia, matando un porcentaje de células cancerigenas muy pequerio tras cada
radiacion.

Como en el apartado anterior, en primer lugar se supone un tumor poco radiosensible agresivo, es
decir, con un tiempo de duplicacién de las células cancerigenas pequefio, en particular, de 20 dias.
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Basta con cambiar en Matlab el parametro Sy, para estudiar qué sucede graficamente si por ejem-

plo al paciente se le suministran las dosis de radioterapia diariamente. Se sigue trabajando en escala
logaritmica.
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Figura 3.11: Dosis diaria

Se observa claramente, que el nimero de células cancerigenas tras el tratamiento sigue siendo
muy elevado, esto es debido a que la fraccidn se supervivencia en este tipo de tumores impide que se
eliminen de forma notable. Por lo tanto, en este caso al paciente virtual se le logrard eliminar parte del

tumor, pero tras la radioterapia, éste volverd a crecer de forma exponencial y en un periodo de menos
de un afio morir4.

Veamos qué sucede si al mismo paciente con las mismas condiciones se le suministran las dosis
de radioterapia semanalmente.
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Figura 3.12: Dosis semanal

Se observa ahora como el nimero de células cancerigenas tras el tratamiento no sélo sigue siendo
muy elevado, sino que es incluso mayor que en el caso anterior. Sin embargo, al paciente se le con-
sigue alargar el tiempo de vida aproximadamente dos meses. Esto es debido a que el tumor vuelve a
crecer de forma exponencial una vez finalizado el tratamiento. Por lo tanto, si se retrasa ese momento

alargando la radioterapia dando las dosis mds espaciadas en el tiempo, también se retrasa la muerte
del paciente.

En el caso de tumores poco radiosensibles de crecimiento mds lento, con un tiempo de duplica-
cion, de las células cancerigenas de 80 dias se obtiene un resultado semejante al cambiar en Matlab el
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pardmetro de tiempo de duplicacidn; con la diferencia de que al tardar mds en duplicarse las células el
paciente tiene un tiempo de supervivencia mayor. No obstante, tampoco es posible eliminar el tumor
y el paciente muere al cabo de aproximadamente 2 afios.

Asi pues, se puede afirmar ahora que para tumores poco radiosensibles, agresivos o no, los cua-
les no se puede lograr la supervivencia del paciente, ya que no se puede eliminar el tumor mediante
radioterapia, la forma mds 6ptima de darle las dosis de radioterapia es semanalmente. Esto se debe a
que no se busca la supervivencia del paciente, sino alargar su tiempo de vida y por lo tanto, cuanto
mads tiempo se mantenga la terapia, mds tiempo evitaremos que el tumor crezca exponencialmente.

Se puede exagerar el espacio entre las dosis de radioterapia para ver mds claro este efecto en el
caso de tumores poco radiosensibles y agresivos (tiempo de duplicacién de 20 difas). Se supone por
ejemplo que el tiempo entre cada dosis es de 15 dias, lo cual significa que el paciente estaria mas de
un afio en tratamiento (450 dias) y se obtiene la siguiente grafica.

£50000000000000000000
o
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Figura 3.13: Dosis cada 15 dias

Es clara la diferencia de tiempo que se logra alargar la vida del paciente, duplicando casi el tiempo
obtenido dando las dosis semanalmente. No obstante, remarcar que no se puede aumentar el tiempo
entre cada dosis aleatoriamente, ya que si las células cancerigenas se duplican cada 20 dias, no se
puede dar las dosis con una diferencia de tiempo mayor, o se obtendria el efecto contrario y crecerian
mads rdpido de lo que se controlan con la radioterapia. Sucede lo mismo en el caso de tumores de
crecimiento lento (tiempo de duplicacién de 80 dias).
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Anexo

Simulacion numérica

Seccion 3.1.1.a

En primer lugar, se ha programado el método de diferencias finitas explicito para la resolucién de
la ecuacién del calor, con el fin de comparar graficamente la solucién exacta con la numérica.

function u = ecalorexpll(Nx, Mt, L, T)

hx = L/(Nx-1);  ’Paso espacial en x

ht = T/(Mt-1); YPaso temporal

s = ht/hx"2;

%#Inicializamos la matriz solucion y vectores posicion y tiempo
u=zeros (Nx, Mt);

x=zeros (1,Nx);

t=zeros(1,Mt);

for j=1:Nx

x(j) = (j-1)*hx;
end
for m=1:Mt

t(m) = (m-1)*ht;
end

%Imponemos la condicion inicial u(x,0)
for j=1:Nx

u(j,1) = sin(2*pi*x(j));
end
%Condiciones de contorno
u(l,1:Mt)=u(1,1);
u(Nx,1:Mt)=u(Nx,1);

#Formula de recurrencia explicita
for m=1:Mt-1
for j=2:Nx-1
u(j,m+)=u(j,m) + sx(u(j+1,m) - 2*xu(j,m) + u(j-1,m))
end
end
%Solucion exacta

33



34 Capitulo 3. Anexo

for i=1:101
Xx(i)=(i-1)/100;
Z(i)=exp(-4*pi*pi*0.1)*sin(2*pi*Xx(i));
end

%Dibujamos ambas soluciones

hold on

grid on

plot(x,u(:,Mt), ’m--’,’linewidth’, 2)
plot (Xx, Z, ’linewidth’, 2)
xlabel(Pu(x,t)’)

end %Final del programa

Seccion 3.1.1.b

Se calcula también el error cometido con el método para los casos estudiados grificamente, sin
mas que afiadir al programa anterior el cdlculo del error y definir la solucién exacta en todos los nodos.

Xe = zeros(1,Nx);

for i=1:Nx
Xe(i) = exp(-4*pixpix*0.1)*sin(2xpixx(i));
end

error = max(abs(Xe’ - u(:,Mt)))

Seccion 3.1.3

Posteriormente, se modifica ligeramente el programa, para resolver ahora la ecuacion de Fisher
mediante un método nuevamente explicito. En este caso no se puede calcular la solucién exacta, luego
no podemos compararlas. Se trata de cambiar los valores de la difusién y la proliferacién para ver
como cambian distintos tumores a lo largo del tiempo en funcién de qué caracteristicas tengan.

function u = FKi(Nx, Mt, L, T, D, Rho, UO, sigma)

hx
ht

L/(Nx-1); Ypaso espacial en x
T/(Mt-1); Y%paso temporal

s = D*ht/hx"2;
%Inicializamos la matriz solucion y vectores posicion y tiempo
u=zeros (Nx,Mt) ;
x=zeros (1,Nx);
t=zeros(1,Mt);

for j=1:Nx
x(j) = -(L/2) + (j-1)*hx;
end

for m=1:Mt
t(m) = (m—-1)*ht;
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end

%Imponemos la condicion inicial u(x,0)
for j=1:Nx

u(j,1) = UO*exp(-x(j)*x(j)/sigma);
end

%Formula de recurrencia explicita
for m=1:Mt-1
for j=2:Nx-1
u(j,m+1)=u(j,m) + sx(u(j+1,m) - 2*u(j,m) + u(j-1,m))+ ht*Rhox(1-u(j,m))*u(j,m);
end
u(l,m+1) = u(1l,m) + s*x(2¥u(2,m)-2*u(1,m)) + ht*Rho*x(1-u(l,m))*u(l,m);
u(Nx,m+1) = u(Nx,m) + s*x(2*xu(Nx-1,m)-2%u(Nx,m)) + ht*Rho*(1-u(Nx,m))*u(Nx,m);
end

%Dibujar

surf (t,x,u)

xlabel(’t’, ’fontname’, ’Times new Roman’, ’fontsize’, 20) %Eje t
ylabel(’x’, ’fontname’, ’Times new Roman’, ’fontsize’, 20) J%Eje x

xlabel(’u(x,t)’, ’fontname’, ’Times new Roman’, ’fontsize’, 20)
colormap hsv

colorbar

end %Final del programa

Seccion 3.2.1

Por otra parte, se ha programado un método IMEX en dos dimensiones para la resolucién de nuevo
de la ecuacién de Fisher-Kolmogorov.

El objetivo en este caso, es observar la evolucién de un tinico tumor a lo largo de un afio con todos
los valores de los parametros fijos.

function u = Fk2d(Nx, Mt, L, T, D, Rho, UO, sigma)

hx
ht

L/(Nx-1); Ypaso espacial en x
T/(Mt-1); Y%paso temporal

s = Dxht/hx"2;

%Inicializamos la matriz solucion y vectores posicion y tiempo
u=zeros (Nx*Nx,Mt) ;

x=zeros (1,Nx*Nx) ;

t=zeros(1,Mt);

x1=-L/2:hx:L/2;
y1=-L/2:hx:L/2;
[X Y]=meshgrid(x1,yl);

for j=1:Nx
for i=1:Nx

x(i,j)=-L/2+(i-1)*hx;
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y(i,j)=-L/2+(j-1)*hx;
end
end

for m=1:Mt
t(m) = (m—-1)*ht;
end

%Imponemos la condicion inicial u(x,0)
for j=1:Nx
for i=1:Nx
ind=(j-1) *Nx+i;
u(ind,1) = UO*exp(-(x(i,j)*x(i,j)+y(i,j)*y(i,j))/sigma);
end
end

#Definicion de los nodos en la malla (suponemos una malla cuadrada)
A=sparse (Nx*Nx, Nx*Nx);

i=1;
A(1,1) = 4%xs + 1;
A(1,2) = -2xs;

A(1,1+Nx) = -2x%s;

for i=2:Nx-1
A(i,i) = 4*s + 1;
A(i,i+1) = -s;
A(i, i-1) = -s;
A(di, i+Nx) = -2x%s;

end

i = Nx;

A(Nx,Nx) = 4*s + 1;
A(Nx, Nx-1) = -2xs;
A(Nx, 2%Nx) = —2%s;

for j = 2: (Nx-1)
i=i+1;
A(i,i) = 4%s + 1;
A(i,i+1) = -2xs;
A(i,i+Nx) = -s;
A(i,i-Nx) = -s;
for k = 2: (Nx-1)
i=i+1;
A(i,i) = 4xs + 1;
A(i,i+1) = -s;
A(i,i-1) = -s;

A(i,i+Nx) = -s;
A(i,i-Nx) = -s;
end
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i=i+1;

A(i,i)= 4d%s + 1;

A(i,i-1)= -2%s;

A(i,i+Nx)= -s;

A(i,i-Nx)= -s;
end

i=1i+1;

A(i,i) = 4xs + 1;
A(i,i+1) = -2xs;
A(i,i-Nx) = -2xs;

for k = 2:Nx-1
i=i+1;
A(i,i) = 4%s + 1;
A(i,i+1) = -s;
A(i, i-1) = -s;
A(i, i-Nx) = -2x%s;
end
i=i+1;
A(i,i1) = 4*xs + 1;
A(i,i-1) = -2x%s;
A(i,i-Nx) = -2x%s;

%Resolucion del sistema
for m=1:Mt-1
for j=1:Nx*Nx
b(j) = u(j,m)+ ht*Rho*u(j,m)*(1-u(j,m));
end
u(:,m+1) = A\b’

end
%Dibujar
for i=1:Mt
um=reshape (u(:,i) ,Nx,Nx)
surf (X,Y,um)
end
end %Final del programa

Radioterapia y casos practicos

Seccion 3.3

Por ultimo, se ha programado la ecuacion que nos da el crecimiento del niimero de células cance-
rosas de un tejido en un periodo de tiempo cuando un paciente se somete a radioterapia y posterior-
mente.

El objetivo es comparar en funcién de las caracteristicas de un tumor, cual es la forma mds 6ptima
de distribuirle al paciente las dosis de radioterapia.
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%DATOS INICIALES NECESARIOS PARA EL PROGRAMA

%En primer lugar Sf nos indica la fraccion de supervivencia de las celulas
%tumorales tras cada sesion de radioterapia, pudiendo valer 0.48 o 0.85 en
%funcion de como de sensible sea el tumor a las radiaciones.

Sf = 0.85;

%St = 0.48;

%Por otro lado, definimos rho, el parametro de proliferacion de las celulas
%tumorales, el cual hemos deducido que viene dado por rho = log(2) / Tdupl,
%pudiendo ser el tiempo de duplicacion 20 o 80, en funcion de como de
%agresivo es el tumor.

Jrho = log(2)/20;

rho = log(2)/80;

%En cuanto al numero de celulas tumores, conocemos el numero de celulas
%tumorales en el instante inicial y el numero maximo de celulas tumorales
%que soporta nuestro tejido.

N(1) 1e9;

Nmax 3e9;

%#Realizaremos la simulacion durante 1000 dias y con un reparto de las 30 dosis
%de radioterapia continuo o semanalmente
Tend = 1000;

t = [7:37]; %Continuo
%t = [0 7:7:210]; % Cada semana

%PROGRAMA PRINCIPAL

length(t)

for j=1:length(t)-1
N(j+1) = SExN(j)*exp(rho*x(t(j+1)-t(j)))/(1+(N(j)/Nmax)* (exp(rho*x(t(j+1)-t(j)))-1));
Tn = t(j+1);
Nn = N(j+1);

end;

time = [t(end):0.1:Tend];

Number = Nn*exp(rho*(time-Tn)) ./ (1+(Nn/Nmax)* (exp(rho*(time-Tn))-1));
DL = 0.7+*Nmax;

size(N)

size(t)

N

%REPRESENTACION GRAFICA DEL VALOR DE N A LO LARGO DE LOS 1000 DIAS
plot(t,log(N),’0’,time,log(Number),’-’, [0 Tend], [log(DL) log(DL)],’--r’);
N(end)
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