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Abstract

This thesis proposes novel Discrete Event System (DES)-based frameworks under Petri net
formalism that provide planning solutions for homogeneous and heterogeneous multi-robot
systems and ensure high-level missions. These missions are commonly described using
formal specifications such as Linear Temporal Logic (LTL), which capture complex temporal
and spatial requirements. Alternative high-level formalisms, such as Metric Interval Temporal
Logic (MITL), extend the LTL capabilities by incorporating time intervals.

The first contribution of this thesis is a task decomposition method that reduces the
complexity of LTL global missions by dividing them into smaller, independent tasks.

Secondly, a planning strategy aims to compute trajectories for a robotic team satisfying
a temporal logic mission, by providing a global view of the robotic team’s state. The planning
solutions are obtained through both dynamical programming and model-checking approaches.
Specifically, two representations are joined into a single Petri net denoted Composed Petri
net, considering the robotic, respectively mission models united through an intermediate
layer of places associated with a set of regions of interest that the robots should reach and/or
avoid according to the high-level specification. The versatility of the proposed joined model
captures both spatial and temporal constraints of the multi-robot system concerning the
workspace, considering LTL and MITL specifications. The latter specification is incorporated
into a model denoted Composed Time Petri net.

The third contribution enhances the planning method by enabling parallel robot
movement based on precomputed mission trajectories. It considers the free space as shared
resources and applies the Banker’s algorithm to prevent deadlocks. This approach improves
efficiency, ensures coordinated, collision-free motion, and fulfills global missions even in
resource-constrained scenarios like narrow passages.

Finally, a motion planning solution addressing the coordination of a heterogeneous
robotic system ensuring an LTL mission is developed on the Nets-within-Nets (NwN)
paradigm. The newly proposed framework, namely the High-Level robotic team Petri net,
examines a hierarchical Petri net structure capturing both local robot behaviors and global
mission constraints. Furthermore, a proposed synchronization function enables the movement
of robots with different capabilities. Hence, this solution enables an easier grip on the multi-
robot systems where heterogeneity can introduce additional complexity, and conventional
approaches may struggle to ensure coordination and scalability.





Rezumat 

Această teză propune cadre noi bazate pe Sistemele de Evenimente Discrete (SED), utilizând 
formalismul re ,telelor Petri, care oferă solu ,tii de planificare p entru s isteme multi-robot 
omogene s, i eterogene s, i asigură îndeplinirea unor misiuni de nivel înalt. Aceste misiuni sunt, 
de obicei, descrise utilizând specifica ,tii formale precum Logica Temporală Liniară (LTL), 
care captează eficient cerin ,te complexe temporale s, i spa ,tiale. Formalisme alternative de nivel 
înalt, precum Logica Temporală Metrică pe Interval (MITL), extind capacită ,tile LTL prin 
integrarea intervalelor de timp explicite.

Prima contribut, ie a acestei teze este reprezentată de o metodă de decompozi ,tie a 
sarcinilor care reduce complexitatea misiunilor globale LTL prin împăr ,tirea acestora în 
sarcini mai mici ,si independente.

În al doilea rând, o strategie de planificare are ca scop calcularea traiectoriilor pentru
o echipă robotică, satisfăcând o misiune descrisă prin logică temporală, oferind o viziune
globală asupra stării echipei robotice. Solut,iile de planificare sunt obt,inute prin abordări
bazate pe programare dinamică s, i verificarea modelelor. Mai exact, două reprezentări sunt
unite într-o singură ret,ea Petri, denumită Ret,ea Petri Compusă, luând în considerare modelele
robotice s, i de misiune, unite printr-un strat intermediar de locuri asociate cu un set de regiuni
de interes pe care robot,ii trebuie să le atingă s, i/sau să le evite, conform specificat,iilor de nivel
înalt. Versatilitatea modelului compozit propus captează atât constrângerile spat,iale, cât s, i
cele temporale ale sistemului multi-robot în raport cu spat,iul de lucru, luând în considerare
specificat,iile LTL s, i MITL. Specificat,ia MITL este încorporată într-un model denumit Ret,ea
Petri Compusă cu Timp.

A treia contribut, ie îmbunătăt,es, te metoda de planificare prin permiterea mis, cării par-
alele a robot,ilor pe baza traiectoriilor de misiune precompute. Se consideră spat,iul liber
ca resursă partajată s, i se aplică algoritmul Bancherului pentru a preveni blocajele. Această
abordare îmbunătăt,es, te eficient,a, asigură o mis, care coordonată, fără coliziuni, s, i îndeplines, te
misiunile globale chiar s, i în scenarii cu resurse limitate, cum ar fi pasaje înguste.

În cele din urmă, o solut,ie de planificare a mis, cării care abordează coordonarea unui
sistem robotic eterogen s, i asigură o misiune LTL este dezvoltată pe baza paradigmeiNets-
within-Nets (NwN). Noul cadru propus, denumit Ret,ea Petri de Nivel Înalt pentru o echipă
robotică, examinează o structură ierarhică a ret,elelor Petri, care captează atât comporta-
mentele locale ale robot,ilor, cât s, i constrângerile globale ale misiunii. În plus, o funct,ie
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de sincronizare propusă permite mis, carea robot,ilor cu capacităt,i diferite. Astfel, această
solut,ie facilitează gestionarea sistemelor multi-robot, unde eterogenitatea poate introduce
o complexitate suplimentară, iar abordările convent,ionale pot avea dificultăt,i în asigurarea
coordonării s, i scalabilităt,ii.



Resumen

Esta tesis propone nuevos marcos basados en Sistemas de Eventos Discretos (SED) bajo el 
formalismo de redes de Petri, que ofrecen soluciones de planificación para sistemas multi-
robot homogéneos y heterogéneos y garantizan misiones de alto nivel. Estas misiones suelen 
describirse utilizando especificaciones formales como la Lógica Temporal Lineal (LTL), 
que captura de manera efectiva requisitos temporales y espaciales complejos. Formalismos 
alternativos de alto nivel, como la Lógica Temporal de Intervalos Métricos (MITL), amplían 
las capacidades de la LTL al incorporar intervalos de tiempo explícitos.

La primera contribución de esta tesis está representada por un método de descom-
posición de tareas que reduce la complejidad de las misiones globales descritas en LTL al 
dividirlas en tareas más pequeñas e independientes.

En segundo lugar, se presenta una estrategia de planificación que tiene como objetivo 
calcular trayectorias para un equipo robótico que satisfagan una misión descrita en lógica 
temporal, proporcionando una visión global del estado del equipo robótico. Las soluciones 
de planificación se obtienen mediante enfoques de programación dinámica y verificación 
de modelos. Específicamente, se combinan dos representaciones en una única red de Petri 
denominada Red de Petri Compuesta, que considera los modelos robóticos y de misión 
unidos a través de una capa intermedia de lugares asociados a un conjunto de regiones de 
interés que los robots deben alcanzar y/o evitar según las especificaciones de alto nivel. La 
versatilidad del modelo combinado propuesto captura tanto las restricciones espaciales como 
las temporales del sistema multi-robot en relación con el espacio de trabajo, considerando es-
pecificaciones LTL y MITL. La especificación MITL se incorpora en un modelo denominado 
Red de Petri Compuesta con Tiempo.

La tercera contribución mejora el método de planificación al permitir el movimiento 
paralelo de los robots basado en trayectorias de misión precomputadas. Considera el espacio 
libre como un recurso compartido y aplica el algoritmo del Banquero para prevenir bloqueos. 
Este enfoque mejora la eficiencia, garantiza un movimiento coordinado y libre de colisiones, 
y cumple con las misiones globales incluso en escenarios con recursos limitados, como 
pasajes estrechos.

Finalmente, se desarrolla una solución de planificación de movimiento que aborda la 
coordinación de un sistema robótico heterogéneo, garantizando una misión LTL basada en el 
paradigma de Nets-within-Nets (NwN). El nuevo marco propuesto, denominado Red de Petri
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de Equipo Robótico de Alto Nivel, examina una estructura jerárquica de redes de Petri que
captura tanto los comportamientos locales de los robots como las restricciones globales de
la misión. Además, se propone una función de sincronización que habilita el movimiento
de robots con diferentes capacidades. Por lo tanto, esta solución facilita el manejo de
sistemas multi-robot donde la heterogeneidad puede introducir una complejidad adicional, y
los enfoques convencionales pueden tener dificultades para garantizar la coordinación y la
escalabilidad.
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Chapter 1

Introduction

The evolution of path planning in robotics began with the fundamental problem of guiding a
robot from a starting point to a final destination while avoiding obstacles. This known issue,
known as classical navigation problem, has significantly advanced over the years, especially
with the introduction of multi-robot systems (also known as a team of robots). As robotics
systems became more sophisticated, motion planning evolved to address more complex
scenarios, such as coordinating the movements of multiple robots in static and/or dynamic
environments. Since a set of robots represents a robotic system, their routes are designed
in terms of a single mission that should be accomplished, including synchronization and
sequencing regarding the set of tasks that should be ensured. The solution to this problem
is commonly established as path planning. Through task, it is understood as an objective
(such as an action, e.g., visiting a region of interest, picking a package) that at least one robot
should fulfill autonomously, considering the workspace that the robots evolve. Throughout
the thesis, most tasks are represented by the visit and/or avoidance of regions of interest
included in the workspace.

In multi-robot systems, motion planning must consider the physical obstacles and
the interactions between robots. This is particularly critical in scenarios where the robots
may need to navigate either in known or unknown environments, such as warehouses. For
example, the robots must efficiently plan an optimal path based on prior knowledge of the
space, while also adapting to new obstacles and avoiding them, such as other robots or the
workers operating in the same space. In industrial scenarios, teams of robots may work
collaboratively to map unknown spaces, coordinating their efforts to ensure full coverage
while avoiding any collision that might occur. The ability to plan collision-free paths for
multiple robots, even in unpredictable workspaces, has become critical.
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1.1 Context

The importance of planning trajectories and task assignment for multi-robotic systems lies
in its ability to optimize performance and ensure successful mission completion in various
complex applications, such as search and rescue operations [5], autonomous transportation
[6], and industrial manufacturing [7]. Both 2D and 3D workspaces benefit from various
planning solutions improving the tasks that should be ensured, considering teams of mobile
robots, respectively Unmanned Aerial Vehicles (UAVs), also known as drones. For example,
in the agriculture domain, the relevance of UAVs includes domains such as using spray
systems [8], crop data acquisition, and examination [9]. Besides these applications among
others [10], several activities can be improved based on automated UAVs, having a beneficial
impact on human safety.

For easier visualization of the applications that strengthen the use of autonomous
robots, Figure 1.1 includes several illustrative examples, such as: (a) monitoring an indoor
environment by using an autonomous vacuum cleaner robot which includes several sensors
for humidity, gas, and temperature, (b) drone surveillance in search and rescue problems, by
scanning and identifying the location of the people that should be rescued, (c) autonomous
package delivery in order to prevent the spread of the COVID-19 virus, and (d) acquiring
images of the tomatoes for training purposes leading to automatic handling of the fruits.

Motion planning for mobile robots initially focused on single-robot trajectory compu-
tation, as detailed in [15], and gradually extended to multi-robot systems. Throughout this
thesis, the robot shall also be referred also as an agent to highlight that the presented methods
and solution are not restricted to particular types of robots such as mobile robots, industrial
robots, or drones. Effective coordination of agents can significantly enhance efficiency,
reduce mission time, and minimize human intervention, which is particularly crucial in
time-sensitive and hazardous environments [16]. The planning methods in the literature aim
to ensure that a given mission, often expressed through high-level formal specifications, is
accomplished efficiently and safely. Formal methods play a significant role in multi-robot
trajectory planning, specifying global missions that the team must collectively achieve [17].

One of the simplest missions formally described could include specifications requiring
the visit and/or avoidance of a set of regions of interest for the team of robots. In other
words, the mission states that a set of regions should be reached by the robotic team, e.g.,
for picking up a package while avoiding the obstacles present in the working space. An
intuitive approach to expressing this type of mission is presented in [18], considering the
Boolean operators. For example, a mission formulated as ”visit region A and avoid region
B” could be formally defined as a Boolean expression using conjunctions and negations.
Once the mission progresses towards a more complex scenario, involving sequencing or
parallelism, the Boolean operators are not rich enough to encode such specifications, e.g.,
”visit region A, then region C, while always avoiding region B”. One structured formalism
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(a) Autonomous vacuum cleaner [11] (b) UAV for search and rescue [12]

(c) Autonomous package delivery [13] (d) Mobile robot for agriculture [14]

Fig. 1.1. Various applications for autonomous robots
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suitable to express these missions is known under the name Linear Temporal Logic (LTL), in
which Boolean operators are combined with temporal ones [19, 4]. This formalism is widely
used in literature due to its advantages [20] in checking the compatibility through model
checking tools [21], intuitive expression of missions, and easy-to-handle representation such
as Büchi automaton that benefit of mature algorithms. Several works have adapted these
high-level specifications for both local (addressing individual missions to each agent) and
global (addressing specification for the entire team) missions within multi-robot systems
[22, 23].

The LTL formalism is a complex language that allows various fragments to be part
of, such as Generalized Reactivity(1) (GR(1)) [24] and co-safe LTL [25]. Moreover, the
LTL itself represents a fragment from full Computation Tree Logic (CTL*), a language that
contains not only the Boolean and temporal operators but also path quantifiers, which are
part of the CTL formalism (also a fragment from CTL*) [26, 27]. The difference between
these two formalisms is that LTL defines a single timeline in which the mission could be
fulfilled, while CTL considers multiple potential futures, i.e., ”when region A is reached,
then all future paths should reach region C”. As stated in [27], the CTL* language is used in
the development and checking of the correctness of complex systems, since an automata can
be associated with the formula.

Despite the stated benefits, several challenges are brought by the previously mentioned
formalisms, i.e., LTL [28], from which it can be enumerated the absence of time constraints,
e.g., ”visiting region A in 5-time units” or expressing uncertainty, e.g., ”the probability of
visiting region B within 5-time units is at least 95%”. Considering the fact that various
specifications can be applied to different planning scenarios, the researchers have explored
a variety of specification languages allowing for complex missions with both spatial and
temporal dependencies. Some formalisms convey the mission by the use of Boolean pred-
icates evaluated through discrete or continuous time: (i) Metric Temporal Logic (MTL)
expressing explicit time intervals, e.g., ”reach region A in exact 3-time units” [29], (ii) Metric
Interval Temporal Logic (MITL) considering permissive time intervals, e.g., ”eventually
visit region A within the next three-time units while always avoiding region B” [30], (iii)
Probabilistic Computation Tree Logic (PCTL), e.g., ”the probability of reaching region A
is at least 90%” [31], (iv) Time Window Temporal Logic (TWTL), e.g., ”stay in region A
for 3-time units within the time frame [0,5]” [32]. Other formalisms tackle the continuous
time with predicates over real-value, such as signal Temporal Logic (STL), e.g., ”always
in the time interval [0,4], the error on the x-position of the robot shall be under 0.1[m]”
[33], Continuous Stochastic Logic (CSL), e.g., ”the probability of avoiding obstacles in time
interval [0,8] is at least 90%”.

Among the multitude of formalisms that are being defined in the literature, only a part
of them are listed above, out of which some of them are used actively in planning trajectories
for the robots: LTL, MTL, MITL, STL, and TWTL. One example can be inspected in [34],
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where the vehicle routing problem is solved by a multi-UAV team ensuring an optimal path
for MTL specifications. The planning strategies might differ, depending on the complexity of
the problem. For instance, in centralized approaches a single global mission is provided to the
entire robotic system, e.g., in the form of LTL [35], where the agents should work together to
ensure the totality of the spatial and temporal constraints. The distributed approach relies
on imposing individual tasks on each robot while having access to local information only
e.g., tasks under TWTL [36], LTL, or STL [37] formalisms. The last enumerated strategy is
based on the fact that the agents share information if they are near each other, useful in tasks
requiring coordination.

Recent works, such as [38], propose integrating high- and low-level path planning
strategies to handle MITL tasks, and in [37] a solution incorporating both LTL and STL tasks
is presented. Cooperation among team agents is also tackled in literature, considering either
individual MITL missions [39], either individual LTL missions [40].

The relevance of temporal logic formalism in the motion planning robotic field is
emphasized in Figure 1.2, portraying an increased trend of research papers while searching
(a) ”path planning robots” and the combination between (b) ”path planning robots” and
”temporal logic”. Particularly, in the last 20 years, the number of works published on the
platform Web of Science has grown, since there are still many problems to be solved in
the field of multi-agent system motion planning, such as collision avoidance in dynamic
and uncertain environments, coordination of heterogeneous robotic teams and handling
complexity when the number of robots increases in the team [41, 42]. Note that Figure 1.2
(b) illustrates the number of papers containing the exact phrases ”path planning robots” and
”temporal logic”, without adding the total number of papers that explore a particular research
idea expressed through other standard formulation in the title, e.g., motion planning under
STL specification, high-level planning.

The complexity of a planning strategy involving a multi-robot system has two-folded
reasons: the richness of the given global mission and the robotic model. Firstly, depending
on the application, a complex global mission given for a multi-robot system can provide an
efficient solution only if the tasks are decomposed and assigned independently to the robots.
Numerous methods have been proposed for decomposing global LTL missions enabling
scalable planning for large teams of robots, but most rely on simplifying assumptions or
specific LTL sub-classes [23, 43, 44]. Since the simplification of the problem space is relevant
in motion planning strategies involving multi-robotic systems, in this thesis, a decomposition
algorithm is proposed resulting in a set of individual smaller tasks allocated to the robots,
considering a global LTL mission. Thus, the state space is significantly reduced compared
with the centralized approaches.

Secondly, the chosen robotic model that outputs the paths influences the complexity
of the planning strategy, directed towards the increase of the agents in the robotic team.
Diverse representations under the Discrete Event Systems (DES) concept such as Transition
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(a) Publication years graphic for ”path planning robots”

(b) Publication years graphic for ”path planning robots” and ”temporal logic”

Fig. 1.2. Analyze search results based on Web of Science database

Systems (TS) and Petri nets (PN) are employed to represent robots’ movements and facilitate
trajectory planning in complex environments since these representations are graph-based
approaches [1, 44–46]. Due to a clear mathematical understanding of this formalism, as
presented here [47], the DES representations enable the investigation of several planning
problems, such as industrial manufacturing. Several papers focused on modeling TS or PN
to facilitate the evaluation of the formal frameworks [48, 49].

Let us now discuss the use of these two main representations. In the case of TS, the
planning strategy usually considers the modeling of each agent through an automata, while
the global state of the robotic system is visualized through a product automata resulting from
the combination of each robot’s dynamic concerning its working space. In this scenario,
challenges such as the exponential growth of state spaces, often referred to as the state
explosion problem, remain a central issue [50].

In contrast, most Petri net-based planning strategies use a single model for the entire
team’s movements, regardless of the number of robots but dependent on the environment [4].
Therefore, the Petri net-based approaches offer a stable topology independent of the number
of robots, as seen in [51] and [52], where changes in the environment and task planning are
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incorporated into the Petri net model. This representation could also lead to state explosion
if the reachability state-space is generated and the solution is searched among all the states
of the robotic team. To avoid this problem, most researchers use structural approaches based
on mathematical programming methods leading to a path planning solution.

Other papers extend the use of the Petri net model for the robotic model by adopting
different classes of nets to encode additional information about the robotic system and/or
about the workspace. For example, in [53] a Colored Petri net representation is used for a
flexible manufacturing system, focusing on the deadlock avoidance problem and exploiting
the properties of colored tokens to differentiate between processes. In [54] the authors
associate a Timed Petri net modeling the environment by adding time constraints regarding
the moving time of a robot from a region of interest to an adjacent one. The planning method
solves an optimization problem by minimizing the time the robots should reach the regions
of interest. Another approach for the use of the Time Petri net is observed in [55], where
clinical pathways are optimized, considering the motivation from the COVID-19 pandemic.

The time requirements representation for a robotic system are studied in [56], where a
Timed Colored Petri net model has been explored since the Colored Petri net allows the use
of methods that reduce the complexity of the robotic model, where the robots have different
capabilities (heterogeneous team). Particularly, in this paper, the authors propose a planning
strategy for a robotic team that should fulfill three types of tasks: common (ensured by any
type of robot), exclusive (required to be ensured by a fixed type of robot), and collaborative
(ensured by multiple types of robots). The planning solution is returned by an optimization
problem which includes all these types of tasks.

The motion planning field considering the high-level planning, supports both the se-
quential and parallel execution of different models, considering a model for the robotic team,
and another one for the given mission. Through sequential planning, it is understood that
one of the models is handled first, e.g., the mission model, computing a solution that ensures
the requirements of the mission, followed by the manipulation of the second model, e.g., the
robotic one, such that the robotic movements ensures the solution returned by the mission
model.

When the mission is formally given under a high-level specification that relies on a
mathematical background, as presented previously, then the planning strategies benefit from
the advantages of two types of models (robotic system and the mission). Let us consider the
sequential planning method proposed in [4], where a Petri net model represents the robotic
team, while the LTL mission is modeled by a Büchi automaton. The planning solution of the
robotic team implies that the robots follow a generated run from the automaton. Therefore,
the approach considers first the automaton of the mission for which a finite number of runs
ensure the mission is computed. Secondly, the robots attempt to follow a run throughout the
robotic Petri net model. The entire procedure is iterative. This method is optimal but is not
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complete, since the finite number of runs cannot guarantee that the robotic trajectories can
fulfill the mission.

On the other hand, a parallel planning approach considers that both models, the robotic
and the mission ones, are handled together, such that any of the robotic movements are
synchronized with each constraint expressed by the mission model. Thus, this planning
strategy is tackled throughout this thesis, considering a single composed model out of the
Petri net representation of the robotic team and the Büchi automaton of the LTL mission. In
both cases, the robotic trajectories are returned by solving mixed-integer linear programming
(MILP) problems. The aim is to reduce the computational time to return a solution that
ensures the given mission is fulfilled. This composed model is also extended towards time
constraints, by integrating in the same model a Time Petri net model of the robotic team
and a Timed automata associated with an MITL specification. In this scenario where time
restrictions are included in the model, the motion solution is returned by model-checking
approaches. The proposed strategy of joining two models into one has the benefit of taking
into account the movement of heterogeneous robots, in contrast with [4] which is directed
towards homogeneous robotic teams. Generally, the methods addressing solutions towards
identical robots represent in some cases a limitation to the planning solutions that could be
solved.

Another path planning strategy involves different classes of Petri net models, exploit-
ing their advantages. Hence, hierarchical Petri net models, such as the Nets-within-Nets
paradigm, have been proposed to handle the complexity of heterogeneous robotic teams
by allowing tokens to represent other Petri nets, thus enabling a more flexible planning
process [57, 58]. Since this paradigm has not been explored for motion planning solutions,
improvements in the robotic representation design and computational efficiency remain a
key focus of current research. To slightly close the gap, the Nets-within-Nets paradigm is
investigated in this thesis for robotic planning, considering a proposed framework that is
further evaluated on heterogeneous robotic team scenarios, respectively on homogeneous
robotic teams. The latter case is compared also with other relevant DES methods from the
literature.

Research in this field is continually advancing, with emerging solutions aimed the
enabling robotic teams to efficiently and reliably execute complex tasks in both known
and unknown environments. The planning strategies focus on two primary challenges: (i)
mitigating the state explosion problem and (ii) developing solutions for heterogeneous robotic
teams. In addressing these issues, the solutions proposed in this thesis are regarding Discrete
Event Systems and high-level symbolic representations within the framework of temporal
logic.
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1.2 Problem description and contributions

The aim of the thesis can be summarized by the following problem statement:
Given a multi-agent system that should ensure a complex and rich mission under the

temporal logic formalism, provide framework solutions based on Discrete Event Systems
representations that allow for task assignment and collision-free trajectories.

The contributions of this PhD thesis tackle the identified challenges in the field of
robotics, particularly focusing on advanced high-level planning methodologies, as mentioned
in the problem statement. By addressing these complex issues, the proposed solutions offer
innovative strategies to enhance autonomy, scalability, and versatility in robotic systems.
Specifically, the contributions include:

• Task decomposition approach suitable for scenarios in which the team of robots is re-
quired to satisfy a complex mission which often tends to be computationally expensive
[59]. Thus, decomposing a global mission into smaller independent tasks allows for
easier handling of the problem and reduces the complexity by elevating properties such
as modularity and adaptability. As far as it is presented in the literature, there is no
automated technique that decomposes a high-level specification into independent tasks.
Therefore, this gap is narrowed down by the proposed solution.

• Novel Petri net model based on the composition of two representations: one associated
with the movement of the robotic team and one associated with the requirements that
the robotic team should fulfill [35, 30, 60]. One downside of the sequential approach
presented in the literature is represented by the iterative procedure since the robotic
movement should follow a run guaranteeing the fulfillment of the mission. Therefore,
the proposed framework allows to access the global state of the robots with respect to
the mission. The proposed solutions enable the use of optimization problems, as well
as model-checking methods.

• Introducing a framework under the Nets-within-Nets paradigm for motion planning
a team of heterogeneous robots satisfying a global mission [61]. The novelty of
this contribution lies in the defined formalism based on a hierarchical structure of
Petri nets that encapsulates both local information about the states of the robots, as
well as global information concerning the state of the robotic system with regards to
the given high-level mission. The planning solution is returned through simulations,
avoiding the state explosion problem present in the discrete event-based approaches.
For this contribution, object-oriented properties are analyzed and incorporated into the
proposed framework, leveraging the synchronization between the local and global data
to fulfill the mission.

All the stated contributions aim to reduce the state explosion problem which was
previously enunciated as being present in several planning strategies involving robotic teams.
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In addition, the robotic movement solves the task assignments problem produced by the
fact that in most cases, the robotic team ensures a global mission assigned to the entire
team. Moreover, the latter contribution is directed towards exploring a particular class of
Discrete Event Systems for the navigation problem of a heterogeneous multi-robot system,
incorporating robots with different spatial capabilities when evolving in the workspace.

1.3 Thesis structure

The structure of this thesis is organized into several chapters, each addressing key components
of the research. Illustrative examples accompany the theoretical formalism that addresses
the motion planning problem as stated in the problem definition. Moreover, the proposed
solutions detailed in this thesis are disseminated through scientific articles, as mentioned
below. Thus, the remainder of the thesis details the following outline.

Chapter 2 introduces the fundamental concepts used throughout the thesis under the
topic of Discrete event systems. These notions include the problem hypotheses considering
the notations of robots, environments, and other key mathematical essential ideas. Afterward,
a set of discrete event representations is defined, modeling the motion of the robotic team, as
stated in the literature: Transition systems (TS), Petri net (PN), and Time Petri net (TPN).
Additionally, various formalisms under temporal logic are defined for the high-level mission,
such as Linear Temporal Logic (LTL) and Metric Interval Temporal Logic (MITL). In the
end, a list of metrics and methods are described, which are considered in the comparison
evaluation process between the proposed solutions and state-of-the-art.

Chapter 3 presents one planning approach including a task decomposition technique
of the mission for a multi-robot system. The method decomposes a global Linear Temporal
Logic mission, returning individual tasks that are assigned further to the robots, thus enhanc-
ing the autonomous behavior while reducing the synchronizations. The proposed method
is evaluated through simulations in 3D environments, considering the motion of a team of
drones, where the robotic model is based on a proposed 3D space partitioning algorithm,
described formally in Chapter 2. This solution is published in:

• Sofia Hustiu, Ioana Hustiu, Marius Kloetzer, and Cristian Mahulea. LTL task de-
composition for 3D high-level path planning. In Journal of Control Engineering and
Applied Informatics, 23(3), pp.76-87, 2021.

Chapter 4 aims to provide a novel framework under the Petri net model, where the
benefits of two representations are composed with the help of an intermediate layer. The
representation encodes the behavior of the robotic team with respect to the workspace,
respectively the global mission given to the team. Two composed models are defined. The
framework is denoted Composed Petri net model and incorporates the motion of the robots
ensuring spacial constraints given by the Linear Temporal Logic specification. The planning
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strategy is based on solving optimization problems. In addition, this chapter proposes also an
algorithm that ensures the robotic path execution through a parallel movement. The solution
is evaluated in situations where the team of robots should pass through a narrowed free
passage. The planning solution could lead also to a reallocation of tasks without interfering
with the fulfillment of the mission. The work presented in this chapter includes results
published in:

• Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, and Jean-Jacques Lesage. On
multi-robot path planning based on Petri net models and LTL specifications. In IEEE
Transactions on Automatic Control, vol. 69, no. 9, pp. 6373-6380, 2024.

• Sofia Hustiu, Cristian Mahulea, and Marius Kloetzer. Parallel motion execution and
path rerouting for a team of mobile robots. In IFAC-PapersOnLine, 55(28), 73–78. In
16th IFAC Workshop on Discrete Event Systems WODES, 2022.

Chapter 5 proposes an extension to the Composed Petri net model from the previous
chapter, by adding time constraints in both models: the Petri net model of the agent and
the individual mission given as a Metric Interval Temporal Logic (MTIL) formula. Thus,
the new framework is denoted Composed Time Petri net and it builds not only the spacial
constraints but also temporal requirements with respect to the actions that the robots should
ensure. This framework is flexible, being suitable to homogeneous robotic teams, respectively
heterogeneous robotic teams, by incorporating the spatial capabilities of different robots
ensuring individual missions, while the solution is provided by model-checking approaches.
The proposed framework is published in two papers, as follows:

• Sofia Hustiu, Dimos V. Dimarogonas, Cristian Mahulea, and Marius Kloetzer. Multi-
robot Motion Planning under MITL Specifications based on Time Petri Nets. In 2023
European Control Conference (ECC) (pp. 1-8). IEEE, 2023.

• Sofia Hustiu, Alexandru-Florian Brasoveanu, and Andrei-Iulian Iancu. Integration
of MITL for Cobots Workflow in a Manipulating Application. In 2024 IEEE 29th
International Conference on Emerging Technologies and Factory Automation (ETFA),
1–8, 2024.

Chapter 6 explores the advantages of a particular model denoted High-Level robot
team Petri net, embracing a hierarchical structure of Petri nets models, known under the
name of Nets within Nets paradigm. Both the local and global states of each robot concerning
the given global temporal logic mission are included in the same model. Moreover, this
paradigm allows the use of object-oriented properties, making the model more versatile,
since heterogeneous robots are modeled by the independent nets. The novelty of this work
lies in the defined framework used for the motion planning problem, based on an established
synchronization function that ensures the fulfillment of the mission when the robots have
different spatial capabilities. The entire chapter is based on the following paper:
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• Sofia Hustiu, Eva Robillard, Joaquín Ezpeleta, Cristian Mahulea, and Marius Kloetzer.
Multi-robot Motion Planning based on Nets-within-Nets Modeling and Simulation.
Under review. Available in [Online]: https://arxiv.org/abs/2304.08772, 2023.

Chapter 7 examines the results considering both numerical simulations and real appli-
cations. The evaluation of the proposed frameworks is compared with other Discrete Event
Systems models present in the state-of-the-art, while the metrics include running time and
length of the robotic trajectories ensuring the mission. The simulation captures scenarios with
real-life use such as the automated whitening of greenhouses’ roofs by a team of UAVs and
assisting multi-robot systems in a hospital scenario, considering a team of both homogeneous
and heterogeneous robots. The real experiments include the integration of individual MITL
specifications for a manufacturing application. The results are present in three published
papers, out of which two of them appear in the contributions of Chapter 5 (second paper) and
6.1:

• Sofia Hustiu, Marius Kloetzer, Eva Robillard, Alejandro López-Martínez, and Cristian
Mahulea. Whitening of greenhouse’s roof using drones and Petri net models. In
2022 IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8, 2022.

https://arxiv.org/abs/2304.08772


Chapter 2

Discrete event systems for multi-agent
path planning solutions

This chapter introduces the fundamental concepts underlying the representations used in the
proposed path planning solutions for a multi-agent system tasked with completing a specific
mission. Initially, a set of basic notions is defined to familiarize the reader with the context
of a multi-robot system operating within a given workspace. Following this, two models
are formally presented within the framework of discrete event systems, characterizing the
high-level motion of a robotic team in relation to the spatial constraints of the environment.
Finally, several approaches to mission description are detailed, incorporating theoretical
notations that impose spatial and temporal restrictions on the team’s movement. Additionally,
these formalisms facilitate the sequencing and synchronization of actions. Each concept is
illustrated with examples, demonstrating the relationship between theory and its practical
application.

2.1 Problem hypotheses

This section introduces several notions to facilitate understanding of the subsequent theoret-
ical definitions. These foundational concepts are crucial for the reader to comprehend the
modeling of a robotic team and its assigned mission.

2.1.1 Workspace of the robotic system

Let us consider a set of mobile robots, often referred to as agents to broaden the applicability
of the proposed method across different domains, denoted by R = {r1,r2, . . . ,r|R|}. This set
symbolizes robots that are assumed to be punctiform and omnidirectional, evolving in either
2D, as well as 3D spaces (for example, modeling UAVs, known also as drones). These robots
operate within a known environment E, which contains several regions of interest (ROIs)
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(a) 2D environment (b) 3D environment

Fig. 2.1. Example of a workspace with four regions of interest for a team of three robots

defined by the set Y = {y1,y2, . . .y|Y |}. These regions are further of interest for the robotic
team, as they can represent both regions that should be reached, e.g., a room in a building, or
regions that should be avoided, e.g., a tree in a forest. Considering various applications for
robotic systems, the regions are assumed to be either disjoint or partially overlapped. Figure
2.1 illustrates two examples of working spaces containing 4 regions of interest (purple color),
and a team of 3 robots, illustrated with colored bullets: r1-red, r2-blue, and r3-green. Figure
2.1(a) exemplifies a 2D environment, where regions y2 and y3 are overlapped, while Figure
2.1(b) shows a 3D environment with all 4 regions, which do not overlap to provide a clearer
picture. As observed, the regions can have different shapes. For the 3D environment, all
regions have a flat base surface.

The environment E can be represented through a discrete space representation associated
with the continuous space for easier manipulation of the working space in which the robots
evolve. The partitioning methods presented in the literature associate a discrete set of
elements with the relevant features inside E, such as the free space or the set of regions
of interest, i.e., Y . Figure 2.2 presents a classification of the mapping techniques, also
encountered in 3D spaces based on the extension of existing 2D methods.

The information sensed by a robot in the environment is represented in a map, to
facilitate an easier deployment in free space. Considering the classification of the mapping
techniques illustrated in Figure 2.2, the first three algorithms (light blue color) output a
discrete space representation which can be further handled via a graph or an automata model.
Therefore, a path planning method applied to a robot moving in a continuous environment can
be returned by graph search-based algorithms such as Dijkstra, A*, or others [62] addressed
to the graph representation. These techniques are suitable for offline planning, providing
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Fig. 2.2. Classification of mapping techniques (blue - mapping, green - mapping and localizing)

a clear picture of the free space, especially for static environments. On the other hand, the
SLAM (Simultaneous Localization and Mapping) [63] algorithm generates an online map as
a result of the surrounding sensing capabilities of a robot, e.g., through the on-board cameras
or radars.

The challenges of a mapping technique remain the accuracy of the map, real-time
localization of the robot, and the scalability of the mapping technique, especially in new
scenarios such as dynamic environments. The mentioned techniques map the free space
using discrete approaches (cell decomposition, road map), stochastic approaches (occupancy
grid), or real-time approaches (SLAM).

2.1.2 Cell decomposition techniques for Discrete Event Systems

In this thesis, the mapping method that associates a discrete space representation of the
continuous working space is based on the cell decomposition approach. By employing this
method in either 2D, either 3D environments, the visualization of the partitioned workspace
is enhanced. Moreover, this partitioning method allows for an easier manipulation of the
environment concerning also the number of robots in the team and their dynamics. The main
idea is to divide the working space into a set of disjoint polytopes (polygons, respectively
cuboids for 2D, respectively 3D environments). Depending on the mapping techniques,
this space discretization can be precise (capturing the entire free space) or approximately
(capturing almost all the entire free space). Let us denote with C = {c1,c2, . . .c|C |} the set
of cells represented by the disjoint polytopes. A brief introduction to these decomposition
techniques is presented in the following, considering the 2D environments. A detailed
description of these algorithms can be examined in [1, 15]. The 3D partitioning method is
denoted 3D rectangular cuboid decomposition and it is further detailed, since the algorithm
represents a personal contribution for this thesis.
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(a) Triangular decomposition - This method uses triangular cells formed by a specific
triangulation technique, not Delaunay triangulation. Particularly, no edge of any cell
does not crosses the regions of interest, as it would happen through a classic Delaunay
triangulation. Thus, the environment is composed of non-overlapping triangles avoid-
ing intersecting obstacles by using predefined line segments from obstacle facets and
the environment’s vertices [64].

(b) Trapezoidal decomposition - Trapezoidal cells are formed by extending vertical lines
from each vertex to the facets in both directions (up and down). When these lines
intersect facets or the environment boundary, new trapezoids are defined [65].

(c) Polynomial decomposition - This decomposition forms polytope-shaped cells with
varying vertices by extending each obstacle facet to the environment’s border. The
convex polygon cells collectively cover the entire free space.

(d) Rectangular decomposition - This decomposition, inspired by quad-trees, uses nodes
that are either leaves or have four children. The main idea is to recursively divide each
cell containing an obstacle by splitting each ax in half until a given precision is reached.
The precision indicates the smallest cell that can be derived, considering that all cells
maintain the length and width ratio with the workspace [66].

Figure 2.3 portrays the previously described partitioning approaches. Considering
the examples and the short description of these methods from [1], the regions of interest
visualized with the black color represent obstacles for the robotic team. Therefore, the cell
decomposition method maps fully or partially the free space. The cells are numbered in the
order they appear, with the number displayed at the centroid of each cell, e.g., c1. Throughout
the thesis, the partitioning techniques are applied to the entire environment, and the regions
of interest are divided into cells. The following algorithm for the 3D cell decomposition is
accompanied by explanations and illustrative examples considering this scenario.

3D rectangular cuboid decomposition
Some decomposition methods are extended to 3D environments. The (a) triangular

decomposition presents several alternatives for 3D spaces as presented in [67]. The (d)
rectangular decomposition can be extrapolated towards three axes, known under the name of
rectangular cuboid decomposition [68, 69], which can be divided into two approaches:

(i) Grid cell decomposition - the resulting partitioned workspace E is based on a division
of rectangular cuboids which are equal. Therefore, a precision ε is required to be given,
computing the number of equal cuboids (cells). For example, for ε = 8, the whole
environment is divided into 83 equal rectangular cuboids.

(ii) Oct-tree based decomposition - the imposed precision ε is used to recursively divide
the environment E space into rectangular cuboid of different sizes. Thus, the cells
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(a) Triangular decomposition (b) Trapezoidal decomposition

(c) Polytopal decomposition (d) Rectangular decomposition

Fig. 2.3. Various methods of cell decompositions [1]

maintain the same width, length, and height as the given environment. Generally,
this method is used when an increased resolution (smaller cells) is needed since the
partitioned workspace returns fewer cells than in the previous method.

The rectangular decomposition of Figure 2.3 is particularized for the scenario in which
the partitioning method maps almost the entire free space of the environment since the edges
of the cells do not overlap with the edges of the black regions. As mentioned previously,
both the 2D and the 3D partitioning methods are generally applied for the entire working
space, dividing also the regions of interest into cells. This principle is also applied to the 3D
rectangular decomposition. An example of enabling this decomposition technique is in [70],
a paper that addresses a planning strategy for a drone in a dynamic environment.

The Algorithm 1 presents one of the contributions of this thesis, detailing the recursive
procedure of partitioning the 3D working space into rectangular cuboid decomposition. The
3D decomposition from the approach in [69] aims to integrate the sensor’s reading into
the algorithm based on probabilistic occupancy estimation in order to provide flexibility
towards the mapping technique. Compared with this work, the current decomposition method
provides a generalized step-by-step algorithm that divides the environment recursively into
cells. Moreover, these cells are labeled into: occupied if all points within it lie entirely within
a single or a combination of multiple regions of interest within the set Y , that the multi-agent
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Fig. 2.4. Enlarged part of the 3D partition obtained by Algorithm 1, showing a free cell (black), a
mixed cell yellow, and an occupied one (red).

system should reach or avoid, free if none of its points are encompassed by any obstacle;
mixed if it contains points that are within a region as well as points that are not within the
region.

Before introducing a labeling function necessary for the formal notation used in the
thesis, let us first introduce the notion of atomic proposition. An atomic proposition bi ∈ B

represents a variable with Boolean values: True (⊤) or False (⊥), with B being the set of
atomic propositions. In the following, let us refer to an atomic proposition with observation,
that can be active (if is evaluated as True), or inactive (if is evaluated as False). Each atomic
proposition is assigned to each region of interest, the mapping relation being one-to-one.
Thus, a labeling function can be defined: h : C → 2B, with C being the set of cells resulting
from the decomposition method, 2B being the power set of the set B, associated further
with the set Y . The notation /0 ∈ 2B represents the label for the elements included in the
free space.

Example 2.1.1 Figure 2.4 represents an enlarged part of a 3D rectangular cuboid decom-
position, showing a free cuboid with a black color, a mixed cell with a yellow color, and
an occupied one with red color (this being completely included in the region y1). For the
entire environment, the partitioning method considered a precision of ε = 16 (the maximum
number of divisions for each ax). ■

Remark 2.1 Since two cells might indicate towards the same region of interest yi, one
of the cells being occupied, while the second one being mixed, the Algorithm 1 necessitates
additional information to differentiate between these two cells. Therefore, a function α :
C → {−1,0,1} is added for all the cells, with the values assigned in order of the cells
mixed, free, occupied. The standalone value assigned through function h is not sufficient to
differentiate these two mentioned labels.
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(a) 2D polytopal decomposition (b) 3D rectangular cuboid decomposition

Fig. 2.5. Examples of cells labeled as region of interest

First, the entire environment is considered as the current cell RC (line 1). The next line
computes several volumes: of the current cuboid RC, of the environment, and Vi considering
the intersection between RC and every region of interest yi ∈ Y . For the intersection volume,
the half-space (H-) representation is used, [71] (lines 2-3). The test from line 5 is fulfilled
only for free cells, which are added to set C . For example, if no region of interest is in the
environment, then the environment is composed of only one free cell. Otherwise, if the current
cell RC partially intersects at least one region from Y and the cell is bigger than the imposed
precision ε (test on line 10), then RC should be divided into smaller cells. Specifically, RC
is divided into 8 smaller cuboids based on the procedure recursive_partitioning follows
(lines 10-18). Once the precision is reached, the cells are labeled as mixed if the cell is
partially included in at least one region of interest (lines 25-27), occupied if the cell is fully
included in at least one region of interest (lines 29-30), and free otherwise (lines 32-33). In
this thesis, the algorithms applied to partition the environment are the 2D polynomial and
rectangular decomposition methods, respectively the 3D rectangular cuboid decomposition.
The following chapters highlight the applicability of the mixed and occupied cell type to be a
region of interest for the team of robot, that shall be reached.

Example 2.1.2 To enhance the understanding of the fundamental concepts discussed in this
chapter, let us examine a simple example illustrated in Figure 2.5. The left side of the figure
demonstrates a polytopal decomposition of the environment, resulting in a total of 12 cells.
Conversely, the right side of the figure depicts a partial 3D rectangular cuboid decomposition
consisting of 4 cells.

In the polytopal partitioning, the edges of the region y1 (highlighted in magenta)
are utilized as the edges for the cells. Consequently, it can be observed that three cells are
designated as regions of interest: h(c5) = h(c6) = h(c10) = b1 and mixed(c5) = mixed(c6) =

mixed(c10) = 1, with b1 being the atomic proposition for y1, whereas the remaining cells are
designated as free, e.g., h(c1) = /0. As previously mentioned, in the 3D rectangular cuboid
method, cells labeled as regions of interest can either be mixed or occupied cells. In this
example, the mixed cuboids are labeled with b1 (region y1 (indicated in gray), specifically
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Algorithm 1: 3D rectangular cuboid decomposition
Input :Environment E, regions of interest Y , set of atomic propositions B,

precision ε

Output :Set of cells C , labeling function h and α function
1 Denote RC = [xmin,xmax]× [ymin,ymax]× [zmin,zmax] modeling E as the current

rectangular cuboid
2 VRC =Volume(RC),VE =Volume(E),Vi =Volume(RC∩ yi),∀i = 1, . . . , |Y |
3 Vint = ∑

|Y |
i=1Vi

4 (C ,h,α) = recursive_partitioning(RC,C ,h,α,ε,Y )
5 if Vint = 0 then
6 /* the current rectangular cuboid RC is free */
7 C = C ∪RC, h(RC) = /0, α(RC) = 0
8 else
9 if VRC >VE/ε3 then

10 /* RC is bigger than the imposed ε and overlaps at least one region yi ∈ Y */
11 (C ,h,α) = recursive_partitioning([xmin,

xmin+xmax
2 ]× [ymin,

ymin+ymax
2 ]×

[zmin,
zmin+zmax

2 ],C ,h,α,ε,Y )

12 (C ,h,α) = recursive_partitioning([xmin,
xmin+xmax

2 ]× [ymin+ymax
2 ,ymax]×

[zmin,
zmin+zmax

2 ],C ,h,α,ε,Y )

13 (C ,h,α) = recursive_partitioning([xmin,
xmin+xmax

2 ]× [ymin,
ymin+ymax

2 ]×
[ zmin+zmax

2 ,zmax],C ,h,α,ε,Y )

14 (C ,h,α) = recursive_partitioning([xmin,
xmin+xmax

2 ]× [ymin+ymax
2 ,ymax]×

[ zmin+zmax
2 ,zmax],C ,h,α,ε,Y )

15 (C ,h,α) = recursive_partitioning([xmin+xmax
2 ,xmax]× [ymin,

ymin+ymax
2 ]×

[zmin,
zmin+zmax

2 ],C ,h,α,ε,Y )

16 (C ,h,α) = recursive_partitioning([xmin+xmax
2 ,xmax]× [ymin+ymax

2 ,ymax]×
[zmin,

zmin+zmax
2 ],C ,h,α,ε,Y )

17 (C ,h,α) = recursive_partitioning([xmin+xmax
2 ,xmax]× [ymin,

ymin+ymax
2 ]×

[ zmin+zmax
2 ,zmax],C ,h,α,ε,Y )

18 (C ,h,α) = recursive_partitioning([xmin+xmax
2 ,xmax]× [ymin+ymax

2 ,ymax]×
[ zmin+zmax

2 ,zmax],C ,h,α,ε,Y )
19 else
20 /* the current cuboid RC reached the imposed precision ε */
21 C = C ∪RC, Vi =Volume(RC∩ yi),∀yi ∈ Y
22 h(RC) = {bi ∈ B |Vi > 0} OR h(RC) = { /0 |Vi = 0}
23 if yi ∈ h(RC) then
24 /* region yi overlaps with RC */
25 if Vi <VRC then
26 /* RC is labeled as mixed */
27 α(RC) =−1
28 else
29 /* RC is labeled as occupied */
30 α(RC) = 1

31 else
32 /* RC is labeled as free */
33 α(RC) = 0
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h(c1) = h(c2) = b1, and mixed(c1) = mixed(c2) = −1, while mixed(c3) = mixed(c4) = 0.
■

In order to provide a comprehensive overview of the environment and the notations
used throughout this thesis, it is essential to also introduce the following definitions ([72]),
required for the representations of the robotic team and the mission.

• An infinite word over a set B is an infinite sequence r = b1b2 . . ., where bi ∈ B is the
i-th element of the sequence.

• A time sequence is an infinite sequence of time, denoted by τ = τ0τ1 . . . , where τi ∈R+

and has the following properties: monotonicity: τi < τi+1 for all i ≥ 0; progress: for
all t ∈ R+, there exists i ≥ 1 such that τi > t.

• A timed word over a set B is defined as an infinite sequence wt = (b1,τ0)(b2,τ1) . . . ,
where b1b2 . . . is an infinite word and τ0τ1 . . . is a time sequence.

Remark 2.2 The set B of atomic propositions is associated with the regions of interest
Y that the robotic team should reach and/or avoid as stated in the global mission. Throughout
this thesis, the set of atomic propositions will be also represented as the set of actions to be
executed in those regions, such as picking up an object or cleaning a room, i.e., an atomic
proposition bi corresponds to the action i (Chapter 5). Let us consider a subset A ∈ B. For
this subset, let us define A∧ =

∧
{bi ∈ B as being the characteristic conjunction formula of A.

For example, for A = {b1,b2,b3}, A∧ = b1 ∧b2 ∧b3, using the set of atomic propositions B.
As a short overview of the notions defined previously, let us resume the key ideas. A

2D, respectively a 3D environment including a continuous space can be associated with a
discrete space representation based on a cell decomposition technique. Thus, the partitioned
environment is represented by a set of discrete elements C , denoted cells. These cells capture
both the free space of the environment as well as the regions of interest Y that the team of
robots should reach and/or avoid as part of their plan. Multiple cells can map a single region
of interest, e.g., cells c1 and c2 are part of the same region of interest yi. The labeling of the
cells is based upon the set of atomic propositions B through function h, having a one-to-one
relation to the regions of interest from set Y .

2.2 Discrete event agent representations

This subsection aims to provide the elementary notions considered for modeling the high-
level motion of the robotic team under the class of discrete event systems (DES). These
systems offer insights into where a state change occurs in discrete time triggered by events.
These systems are characterized by a sequence of instantaneous events rather than continuous
flows of time [73]. Several examples include robotic control [1] and manufacturing [74]
systems.
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In the context of robot path planning, DES can be used to model the sequences of
actions and decisions robots must make to move through an environment. Each event in the
DES corresponds to a specific action or decision point for the robot, such as moving to a new
location, picking up an object, or avoiding an obstacle. By using DES, the path planning
process can be structured as a series of continuous and/or discrete steps, making it easier to
manage complex tasks. This approach helps in designing algorithms for robot movement and
task execution. In essence, the continuous space in which the robots evolve is first partitioned
into a set of elements capturing the free space and the regions that should be reached or
avoided. This set can be abstracted as one discrete event system model for the robotic team
afterward. Throughout the thesis, the representation of the robotic model is based on Petri net
models, with or without time (as it will be formally defined in the following). The model’s
topology is built upon the discrete space representation in which the robotic team evolves,
while tokens represent the robots. One advantage of the Petri net representations consider the
update in its structure to encapsulate constraints, e.g., collision avoidance, one solution being
to impose a maximum capacity (how many robots) that can be located in a particular space
from the workspace [75]. The following illustrative examples accompany the theoretical
fundamental notion defined, to enhance the benefits of the Petri net representations in the
robotic path planning strategies.

Example 2.2.1 Figure 2.6 illustrates an example of a partitioned workspace in 9 cells. The
working space consists of three regions of interest: y1 representing the trees, y2 representing
the hydrant, and y3 defining the fire. An atomic proposition is defined for each region: b1

for y1, b2 for y2, and b3 for y3. The observation function h assigns to each cell an atomic
proposition, for easier manipulation of the partitioned space: h(c2) = h(c3) = b1,h(c7) =

b2,h(c3) = b3, while the rest of the places model the free space h(c1) = h(c4) = h(c6) =

h(c8) = h(c9) = /0. ■

Considering the partitioned environment into cells, the following definition presents
the components of an agent’s representation, including the analogy between each element in
the definition and the physical workspace where the agent evolves. The introduced models
include several basic concepts detailed in [1, 76].

2.2.1 Petri net model

Other DES representations are defined below to facilitate easier model manipulation for a
multi-agent system.

Definition 2.2.2 [1] A Robot Motion Petri Net system (RMPN) is characterized by the tuple
Q = ⟨N ,m0,B,h⟩, where:

• N = ⟨P,T,Post,Pre⟩ is a Petri net composed of:
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Fig. 2.6. Workspace of a partitioned environment with a team of two robots

– A set of places P (each place representing a cell in the set C );

– A set of transitions T , each signifying a robot’s movement between neighboring
cells;

– Post ∈ {0,1}|P|×|T |, the post-incidence matrix, detailing the connections from
transitions to places. Specifically, Post[p, t] = 1 if transition t ∈ T is connected
to place p ∈ P, and Post[p, t] = 0 otherwise;

– Pre ∈ {0,1}|P|×|T |, the pre-incidence matrix, outlining the connections from
places to transitions. Specifically, Pre[p, t] = 1 if place p ∈ P is connected to
transition t ∈ T , and Pre[p, t] = 0 otherwise;

• m0 is the initial marking vector, where m0[p] denotes the number of robots initially
located in cell c ∈ C ;

• B∪{ /0} represents the set of output symbols represented by the atomic propositions
and associated with the set of regions if interest Y ;

• h : P → 2B is the observation function. If place pi contains at least one token (indicat-
ing the presence of at least one robot in cell ci), then the region(s) of interest associated
with the atomic propositions of set B is (are) considered as visited and marked in
h(pi).

Note that the observation function h has been previously defined on the set of elements
C (h : C → 2B). Since the discrete space representation is further represented by the RMPN
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model, where each place p ∈ P denotes a cell c ∈ C , the function h will be defined on the set
P throughout this thesis.

The total number of tokens of the RMPN model is equal to |R|. Notably, this ensures
that the model’s structure (comprising the number of places, transitions, and arcs) remains
invariant even when robots are added to or removed from the team. Only the marking (state)
of the RMPN is altered. Notice that a difference between the robots cannot be determined, as
a token is associated with one robot. Thus, this representation is suitable for homogeneous
robotic teams.

By definition, the RMPN systems addressed in this thesis belong to the class of state
machines, where each transition has one input and one output place. For a given transition
t j ∈ T , •t represents its input place, and t• denotes its output place. Formally, the notations
are defined as •t j = {pi ∈ P|Pre[pi, t j] = 1} and t j

• = {pi ∈ P|Post[pi, t j] = 1}. Transition
t j ∈ T is enabled at marking m if its input place contains at least one token i.e., m[pi]≥ 1,
where pi =

•t j.
In the RMPN, all arcs have a weight equal to one. In a general PN (with arc weights

greater than one), a transition is enabled if the number of tokens in its input place is greater
than or equal to the weight of the arc that connects the place with the transition.

When an enabled transition t j fires, the RMPN reach a new marking m̃ = m+C[·, t j],
where m is the initial marking, and C = Post −Pre is the token flow matrix, with C[·, t j]

denotes the column corresponding to t j. In the RMPN context, firing a transition t j corre-
sponds to a robot moving from cell •t j to cell t j

•. For the moving robot, transition t j involves
executing a control law that directs the robot from cell •t j to t j

•, and there are established
methodologies for developing such continuous control laws in specific scenarios [77, 78].

Example 2.2.3 The RMPN model associated with the environment described in Example
2.2.1 is present in Figure 2.7. The model contains 9 places and 24 transitions, representing the
discrete space representation illustrated in Figure 2.6. The adjacency relation between two
cells resulted from the cell decomposition methods, ci,c j with i, j = 1,9, i ̸= j is represented
by two transitions in the RMPN model: one indicating the movement of the robot from ci to
c j, while the second one indicating the movement from c j to ci, i.e., the pair t1 and t2 for
places p1 and p2. The Pre and Post matrices for this RMPN model are expressed as follows:
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Pre =



1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0



Post =



0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1


Visually, places p2, p5 have the green edge color since these two places model the

region y1: h(p2) = h(p5) = b1. Respectively, place p7 portrays the region y2 (blue color):
h(p7) = b2, while place p3 is associated with region y3 (red color): h(p3) = b3. The color
coding is similar to the one portrayed in Figure 2.6

The initial position of the identical robots is expressed by the marking vector m0[p1] =

m0[p9] = 1, since the robots are initially in cells c1 and c9, modeled here by tokens included
in the places p1, p9. The marking for the rest of the places is equal to 0, i.e., m0[p4] = 0. ■

The goal is to identify sequences of transitions that need to be fired to ensure the
team meets a desired configuration in the workspace, translated into a desired marking.
If the desired marking m̃ can be reached from a marking m through a finite sequence of
transitions σ , the firing count vector is denoted by σ ∈ N|T |

≥0, where the jth element indicates
the cumulative number of firings of t j. In this context, the state (or fundamental) equation is
expressed as:

m̃ = m+C ·σ (2.1)
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Fig. 2.7. The RMPN model associated with the robotic team for the given environment from Example
2.2.1

A firing vector σ with a minimal number of transitions can be determined to drive the
live1 RMPN to the desired marking m̃ by solving an optimization problem with the cost
function 1T ·σ . The details specifying the methodology of converting a firing vector into a
sequence of robot movements are described in [1].

As stated in [1], the equation (2.1) is only a necessary condition for the reachability of
a marking. The marking solutions that are not reachable are referred to as spurious markings.
In general, determining whether a marking m is reachable or not, is challenging due to these
spurious markings. Another issue that can appear by searching the minimum sequence of
transition of reaching a desired marking m̃, is to avoid the looping procedure.

An intuitive scenario for this situation can be described by recalling the Example 2.2.3.
The marking m̃[p1] = m̃[p8] = 1, with m̃[pi] = 0 for i ̸= 1, i ̸= 8, can be reached: (i) by firing
one time transition t22, i.e., σ [t22] = 1, with σ [ti] = 0, i ̸= 22; (ii) by firing twice the transition
t22 and one time transition t21, i.e., σ [t22] = 2, σ [t21] = 1 with σ [ti] = 0, i ̸= 22, i ̸= 21. The
later situation generates a loop sequence for the robot, which can also be repeated multiple
times.

1A Petri net is considered live if, regardless of the currently reachable marking, all transitions can eventually
fire.
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2.2.2 Time Petri net model

The succeeding representation allows the robotic team to incorporate time constraints directly
into the motion planning, by specifying timing requirements to move from one cell to
another. This characteristic is essential for coordinating the movements of robots. The formal
definition of Time Petri net model is based upon the theoretical notions from [79–81] but
extends the mathematical notation used for RMPN.

Definition 2.2.4 A Time Petri net (TPN) model is defined as a tuple T PN = ⟨Q, I⟩, where:

• Q = ⟨N ,m0,B,h⟩ denotes the previously defined RMPN model (Definition 2.2.2);

• I : T → [Q+ →Q+∪{∞}] maps a static interval to each transition. The time interval
for a transition is represented by a tuple I(t) = [α,β ] for all t ∈ T , where 0 ≤ α < ∞

denotes the earliest firing time, 0 ≤ β ≤ ∞ denotes the latest firing time, and α ≤ β if
β ̸= ∞, or α < β if β = ∞.

Simply put, the Time Petri net representation is built upon the RMPN model, by adding
a time duration to the set of transitions, related to the motion of the robots throughout
the environments. As stated in [81], this representation can be expressed as an RMPN,
where a clock is assigned for each transition. Since the Time Petri net model includes the
time dimension, a particularity of this model in contrast with the RMPN is that a state is
characterized by a pair given by the marking m as defined previously, and another function
that expresses the clock for each transition [81]. Thus, the state of the Time Petri net is
triggered by elapsing a time that, if is smaller than a time upper bound of the enabled
transitions, could fire one of them. This action updates both the marking of the net, as well
as time that passed. The detailed procedure of enabling transitions, firing them, and updating
the state of the Time Petri net is formally defined in [81], and illustrative examples are given
in [82].

To understand better how the firing of transitions is conducted, let us consider a small
example, based on Figure 2.8. Considering the marking in m[p9] = 1, then the transition t22

is enabled. This transition fires when the time elapsed is between the boundaries δ 22
min and

δ 22
max. Hypothetically, let us assume that another transition t23 is connected to the input place

p9 and an output place p6. Therefore, two scenarios could be described: (i) δ 23
max > δ 22

max
and (ii) δ 23

max < δ 22
max. Let us first consider that a time ∆1 elapsed, with ∆1 < δ 22

max,∆1 < δ 23
max.

Thus, both transitions t22, t23 are enabled. Moreover, the state of the Time Petri net updates
with time ∆1, for the same marking m[p9] = 1. Specifically, the current lower bound for t22

could be now considered equal with δ 22
min +∆1, respectively δ 23

min −∆1 for t23. In this case,
any of the transitions could be fired, updating also the marking in the new state of the model.
Note that ∆ represents a time elapsed with respect to the global time, while the time interval
associated with each transition considers a local clock.
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Fig. 2.8. Representation of a discrete workspace into a time Petri net model

If another time ∆2 passes, with ∆2 +∆1 ≥ δ 22
max and ∆2 +∆1 < δ 23

max, then the first
scenario (i) occurs, and transition t22 is forced to fire. This action leads to a new state, with a
new marking m[p8] = 1. Moreover, the local clock for t23 restarts, considering again the lower
bound δ 23

min. Contrary, if ∆2+∆1 ≥ δ 23
max and ∆2+∆1 < δ 22

max, then the second scenario occurs
(ii), and transition t23 is forced to fire, updating the state with the new marking m[p6] = 1
and restarting the local clock for t22.

In both scenarios, the enabled transitions are not enabled anymore due to a change in
the marking that enabled those transitions, and then the local clock restarts. Moreover, if
the transitions are enabled, and another transition fired, e.g., considering also a token in
m[p7] = 1 and firing the transition t17, then transitions t22, t23 are further enabled as long as
the time is not greater than the upper bound, case in which a transition is forced to fire. If a
robot should stop in a cell, meaning to not force a transition to fire from the respective place
where a token is present, then the upper bound of the output transitions should be equal with
∞. This modification allows for the robot to not be required to depart from its current cell.

Remark 2.3 This model differs from another temporized Petri net representation, par-
ticularly Timed Petri net [83, 84], where the time expresses a deterministic value associated
with the transition. Thus, a token is consumed in a fixed time instead of a time interval, as
explained previously.

The TPN model serves two objectives, as follows:

1. Representation of the robotic team: by maintaining the same idea as in Chapter2.2.1,
the notation N defines the topology of the discrete event system of the workspace for
the robotic team, considering the weighted arcs to be unitary. Moreover, the marking
symbolizes the number of robots in a place p∈ P. The novelty of this model is captured
in the function I that expresses the time interval for a robot to cross from one cell to an
adjacent cell.

2. Representation of the robotic mission: the space constraints that should be guaranteed
by the robotic system in a given time interval, can be translated into a TPN model.
This approach is covered in the following section, where the purpose of the labeling
function Λ will be elaborated.
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Example 2.2.5 Figure 2.8 illustrates a Time Petri net model associated with a fragment of
the partitioned workspace mentioned in Example 2.2.5, directed towards cells c7,c8 and c9.
The addition of this representation ensures a time interval of reaching a cell from an adjacent
cell. For example, the token (robot) initially placed in p9, moves to place p8 by firing the
transition t22. The time interval [δ 22

min,δ
22
max] describes the minimum and the maximum motion

time of the robot, by considering for example, the maximum and the minimum speed based
on its dynamic. If the robot should wait an unlimited or unknown time in its current cell, then
the upper bound changes to δ 22

max = ∞. The entry into a cell from the adjacent preceding one
is managed by a control procedure that can be defined by the user. ■

Since this chapter is responsible for introducing the fundamental notions required
throughout the thesis, let us define a labeling function (necessary for Chapter 5) Λ : T → B′

ε

that assigns each transition t ∈ T a label from the alphabet set B′
ε = B∪{ε}. The label

ε may be repeated, while the other labels are unique to each t ∈ T . Note that the time is
considered throughout the thesis in the set Q+.

2.3 Agents’ missions

The origins of mobile robot path planning focused on exploring various techniques for
proceeding from an initial point to a designated destination, primarily in single-robot sce-
narios [15]. Over time, the goal of reaching multiple points of interest has expanded to
include scenarios where a group of agents collaborates on missions that require visiting
a set of regions of interest sequentially and/or synchronously. In addition to the visiting
constraints, the agents should also avoid the regions that could express obstacles. Real-life
applications of autonomous agents [85] present various situations where are required to reach
synchronously in a region, e.g., monitoring an area or picking up a package by multiple
robots; or sequentially reaching a set of regions, e.g., picking up and delivery a package.

A natural translation of reaching and/or avoiding a set of regions of interest Y from a
natural language to a systematic formulation that can be further interpreted and analyzed is
through Boolean operators: ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒ (implication),
and ⇔ (equivalence). For example, let us consider that the multi-agent system evolves in a
workspace with three regions of interest: y1,y2, and y3. For all these regions, a set of atomic
proposition B is defined, with b1 associated with y1, b2 to y2, respectively b3 to y3. If the
team of robots should reach either region y1, either region y2, and avoid region y3, then the
mission can be expressed through the set B as (b1 ∨b2)∧¬b3. Note that the specifications
are under the set of atomic propositions B. The avoidance and reachability properties should
be ensured in the final state of the robotic system. Additional characteristics can indicate if
there is the need to reach/avoid a region during the trajectory (through capital letters, e.g.,
B3) or at the end of the trajectory (through lowercase letters, e.g., b1) [18]. The mission is
accomplished only if the entire Boolean expression is evaluated as True.
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The global Boolean-based formula (the mission assigned towards the entire robotic
system) is expressed as a Conjunctive Normal Form (CNF) [86], by ϕ = ϕi ∧·· ·∧ϕn, where
each term ϕi is a disjunction of terms e.g., formula ϕ = b1 ∧¬b2 indicates the visit of region
y1 and the avoidance of region y2.

The high-level languages defined in this section allow for specifying complex spatial
and temporal constraints for the team of agents, that cannot be covered only by the use of
Boolean operators.

2.3.1 Linear Temporal Logic

Bringing back to the workspace illustrated in Figure 2.8(a), let us consider the following
scenario: the agents should connect to the hydrant (associated with the place p7) in order to
extinguish the fire (associated with the place p3) while avoiding the obstacles represented
by the trees (places p2, p5). In other words, the robotic team should first visit the region y2,
implying that immediately after the team should reach region y3, avoiding the region y3 all
the time. Note that the objective here is to convey the order of reaching these regions of
interest, which cannot be done only by using Boolean operators. Currently, the interpretation
of the mission is not in focus, since critical constraints should be further considered, such
as ensuring that the same robot that reached the hydrant should move afterward to the fire.
In the case of a robotic system, where the robots cooperate to fulfill a mission, it may be
possible for one robot to go to the hydrant and another one to go to the firing region.

Rich language expressions involving actions that are sequential or synchronous are
enhanced by the addition of another set of symbols, denoted temporal operators, such
as: until U , eventually ♢, always □, and next ⃝. This high-level language is known as
Linear Temporal Logic (LTL) [26, 87], which are recursively defined over a set of atomic
propositions B.

Definition 2.3.1 The syntax of LTL specifications over the set of atomic propositions B is
defined as follows [88]:

ϕ := bk |¬ϕ |ϕ1 ∨ϕ2 |ϕ1UIϕ2, (2.2)

with bk ∈ B. This formalism allows also to use Boolean operators such as conjunctions ∧,
implication => and equivalence
<=>, since these operators can be defined with negation ¬ and disjunction ∨.

The tuple (r, i) denotes the formula ϕ which is satisfied for the run r and state i, expressed
as (r, i) |= ϕ . Considering bk ∈ B an atomic proposition, and two LTL formulae ϕ1,ϕ2, then
the semantics can be recursively defined as follows:
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(r, i) |= bk ⇔ bk |= r
(r, i) |= ¬ϕ ⇔ (r, i) ⊭ ϕ

(r, i) |= ϕ1 ∨ϕ2 ⇔ (r, i) |= ϕ1 or (r, i) |= ϕ2

(r, i) |= ϕ1U ϕ2 ⇔∃ j ≥ i,s.t.(r, j) |= ϕ2, and ∀i,k ≤ i < j : (r,k) |= ϕ1

The full class of LTL includes also the next operator ⃝ in the set of temporal operators.
Since this operator is not suitable in the context of the discrete event system modeling the
continuous robotic system [89, 90, 87], the LTL specifications used throughout the thesis are
part of a subclass, as defined in Definition 2.3.1.

LTL specifications can be modeled as a discrete event system, namely a Streett or a
Rabin automaton [19, 91] or a Büchi automaton [4]. In this thesis, it is considered a translation
of the LTL mission into a non-deterministic Büchi automaton [92]. A deeper introduction of
the procedure that associates this automaton with any LTL formula is presented in [92].

Definition 2.3.2 The Büchi automaton for an LTL formula over the set B is defined as
B = (S,S0,ΣB,→B,F), where:

• S is a finite set of states;

• S0 ⊆ S is the set of initial states;

• ΣB is the finite set of inputs;

• →B⊆ S×ΣB ×S is the transition relation;

• F ⊆ S is the set of final states. ■

As B is non-deterministic, it allows multiple transitions from a single state with the
same input, e.g., (s,τ,s′) ∈→B and (s,τ,s′′) ∈→B, with s′ ̸= s′′. Thus, an input sequence can
produce more than one sequence of states. The set of inputs that enable a transition from si

to s j, denoted by π(si,s j), is expressed as a Boolean formula over B in Disjunctive Normal
Form (DNF). The inputs can also be represented as a combination of active observations
over the power set 2B. Through active observation, the True value of an atomic proposition
b ∈ B is understood.

An infinite input word (a sequence with elements from ΣB) is accepted by B if it
generates at least one sequence of states (referred to as a run) in B that visits the set F
infinitely often. Concomitantly, a run of B that infinitely often visits set F is called accepted,
and if B has at least one accepted (infinite) run that it has at least one run with a finite
prefix-suffix representation [92]. This means that the accepted run (and the corresponding
input word) can be stored on finite memory in terms of two finite-length strings: (i) prefix -
leading to a final state in set F , and (ii) suffix - returning to the same final state reached by the
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Fig. 2.9. Büchi automaton for the LTL formula in equation (2.3)

prefix. The run of B is formed by the prefix followed by infinite repetitions of the suffix, i.e.
it is written as prefix, suffix, suffix, . . . using the sequence of elements from ΣB. Automatic
translation from an LTL formula to a Büchi automaton can be achieved using various tools,
including those discussed in [21, 93, 94].

Considering the motion planning field, where the robots should fulfill a mission related
to the environment, particularly to reach and/or avoid a set of regions of interest, the set of
atomic propositions B is directly related to the set Y . An input in the Büchi automaton
associated with a transition from one state to an adjacent one is expressed through a Boolean
formula, e.g., bi ∧b j, with bi,b j ∈ B. This formula translates afterward into an action that
the multi-robot system is required to ensure regarding the mission. Specifically, bi represents
the atomic proposition for region yi, being True when the region yi is visited, respectively b j

represents the region y j. Therefore, the transition in the automaton is enabled only when the
robots reach simultaneously the regions of interest yi,y j.

The relation between the robotic RMPN model and the Büchi automaton representation
is established through the set B, connecting the movements of the robots with the LTL
mission. Later on, in Chapter 4.2, a translation between the automaton and a Petri net model
is investigated, taking into account the relevance of set B.

Example 2.3.3 As mentioned previously, the mission that is of interest for Figure 2.2(a)
specifies to ”Eventually reach region y2 (the hydrant), as well as y3 (the fire), yet y2 should
be visited before y3 and always avoiding the obstacles y1 (the trees)”. This mission expressed
in the LTL formalism can be written as in equation (2.3), based on the set B.

ϕ =♢b2 ∧♢b3 ∧¬b3U b2 ∧□¬b1 (2.3)

The Büchi automaton for this LTL mission is visualized in Figure 2.9. The initial state is
s0 and the final state is represented by s2 (emphasized by the double edge). One possibility to
fulfill the mission is to reach the final state s2 through the accepted run s0,s1,s2,s2, . . . with
the prefix s0,s1 and the suffix s2. The avoidance of the region y1 is observed throughout the
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entire state space of the Büchi automaton. As long as b1 (related to y1) is evaluated as False,
then the final state is visited infinitely often.

The mentioned run is not unique, as the state s1 can be visited multiple times, e.g., the
prefix is s0,s1,s1, . . . . Another run for ensuring the mission ϕ is represented by the sequence
s0,s2,s2, . . . . Notice that this run can only be achieved if the robotic team consists of a
minimum of two robots, as both regions should be visited simultaneously y2 and y3.

Although this run satisfies the LTL formula, it does not solve the request of reaching first
the hydrant before reaching the area with the fire. This occurs since the formula is verified
from a logical point of view. This scenario can be avoided if the formula includes also the
expression □¬(b2 ∧ b3). Remark that even if this modification over the formula is made,
there is no requirement that the same agent reaches the region y2 before reaching region y3.
This hindrance can be resolved either by defining a set of atomic propositions suitable for the
problem rather than associating the set B with the set Y , either by adding constraints when
applying the motion planning strategy for the robotic team and the given LTL specification.
■

2.3.2 Metric Interval Temporal Logic

In contrast with the Linear Temporal Logic that embodies spatial and temporal constraints for
the multi-agent system, in terms of synchronization and sequencing of the regions of interest,
the Metric Interval Temporal Logic (MITL) provides time-related constraints expressing a
time interval in which a region should be reached.

Definition 2.3.4 The syntax of MITL specifications over the set of atomic propositions B is
defined as follows [95]:

ϕ := bk |¬ϕ |ϕ1 ∧ϕ2 |⃝I ϕ |♢Iϕ |□Iϕ |ϕ1UIϕ2, (2.4)

where bk ∈ B, I is a non-empty time interval [i1, i2] or (i1, i2), with i1 < i2, i1 ∈ N, and
i2 ∈ N∪{∞}. The intervals [0, i2] and [0, i2) are denoted by ≤ i2 and < i2, respectively.
MITL uses Boolean operators such as negation ¬, and ∧, as well as temporal operators such
as next ⃝, eventually ♢, always □, and until U .
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The tuple (wt , i) defines the MITL formula ϕ over B with the timed word wt =

(w0,τ0)(w1,τ1) . . . and is recursively satisfied as follows:

(wt , i) |= bk ⇔ bk ∈ wi

(wt , i) |= ¬ϕ ⇔ (wt , i) ⊭ ϕ

(wt , i) |= ϕ1 ∧ϕ2 ⇔ (wt , i) |= ϕ1 and (wt , i) |= ϕ2

(wt , i) |=⃝Iϕ ⇔ (wt , i+1) |= ϕ and τi+1 − τi ∈ I
(wt , i) |=♢Iϕ ⇔∃ j ≥ i,s.t.(wt , j) |= ϕ,τ j − τi ∈ I
(wt , i) |=□Iϕ ⇔∀ j ≥ i,τ j − τi ∈ I ⇒ (wt , j) |= ϕ

(wt , i) |= ϕ1UIϕ2 ⇔∃ j ≥ i,s.t.(wt , j) |= ϕ2,

τ j − τi ∈ I and (wt ,k) |= ϕ1,∀i ≤ k < j

Similar to the translation of an LTL formula into a Büchi automata, fragments of MITL
formula benefit from a representation denoted Timed Büchi automata (TBA), as encountered
in literature [95–97]. The chosen method employed in this thesis follows the approach
presented in [95] and detailed applied in [98].

The time units used in the bounded time limit of these specifications are user-defined,
e.g., seconds, or minutes. As mentioned in [99], the MITL formulae are expressible in both
continuous and point-wise. For an easier understanding of the meaning of an MITL mission
ϕ , the following missions are expressed.

• The MITL formula ϕ =□[0,20]¬b1 specifies that region y1 is always avoided for the
first 20 time units;

• The MITL formula ϕ =♢[0,∞]b2 ∧♢[2,2]b3 requires the visit of region y2 at any time
and the visit of region y3 after exactly 2 time units.

Let X = {x1,x2, . . . ,x|X |} denote a finite set of clocks. this notion is required to be
explained to understand the Timed Büchi automata definition. The set of clock constraints,
Φ(X), is defined by the following grammar [72]:

φ :=⊤ |¬φ |φ1 ∧φ2 |x ▷◁ ψ, (2.5)

where x ∈ X is a clock, ψ ∈Q+ is a constant, and ▷◁∈ {<,>,≤,≥,=}. A clock valuation ν

is a function ν : X →Q+ assigning a non-negative rational value to each clock. The operation
ν +δ increments every clock by δ ∈N+, i.e., (ν +δ )(x) = ν(x)+δ . The satisfaction of the
clock constraint φ by the valuation ν is denoted by ν |= φ .

The Timed Büchi Automaton model adheres to the definition in [72], following notations
from [100], with the note that this work does not distinguish between final and repeated
locations. Moreover, these notations are relevant in Chapter 4, where a method of path
planning for a robotic team requires the translation from a TBA model to a Time Petri net
one. Note that the automata used in this thesis is considered to be deterministic.
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Definition 2.3.5 A Timed Büchi Automaton (TBA) A = ⟨Q,q0,X ,Φ(X),Σ,E, Inv,F⟩ is de-
fined as follows:

• Q is the finite set of locations;

• q0 ∈ Q represents the initial location;

• X if the finite set of clocks;

• Φ(X) represents the clock constraints;

• Inv : Q → Φ(X): is the invariant function;

• Σ denotes the alphabet set;

• E ⊆ Q×Φ(X)×Σ×2X ×Q is the set of edges, where an edge e = (q,γ,λ ,R,q′) has
guard γ ∈ Φ(X), label λ ∈ Σ, and reset set R ⊆ X;

• F ⊆ Q is the set of accepting locations.

A state of the automata A is a pair (q,ν) with q ∈ Q and ν |= Inv(q). The initial
state is (q0,0), where 0 maps every clock to 0. There are two types of transitions: (i)
discrete transition (q,ν) e−→ (q′,ν ′) exists if ν |= γ and ν ′ |= Inv(q′), with the clocks in R are

reset to 0, while others remain unchanged; (ii) time transition (q,ν) δ−→ (q′,ν ′) for δ ∈Q+

exists if q = q′, ν ′ = ν + δ , and ν ′ |= Inv(q). Due to the time-additivity property [101],

(q,ν) δ−→ (q′,ν ′) and (q′,ν ′)
e−→ (q′′,ν ′′) can be combined as (q,ν) δ−→ e−→ (q′′,ν ′′).

Clock reset is not mandatory for a single instance, for example using one temporal
operator eventually ♢. However, clock reset becomes essential in nested MITL specifications
[102], where the temporal operators are nested and the time interval of one operator depends
on the previous one, e.g., □[0,7](♢[1,2]b1 →♢[3,6]b2) requiring that in the time interval [0,7],
if region y1 is visited within [1,2], then the region y2 should be visited within [3,6] time units.
The work presented in this thesis do not make use of nested MITL operators.

The satisfaction of an MITL formula is similar to the satisfaction of an LTL formula:
by finding an infinite accepted run in the associated automata. In the TBA A , this run is

a sequence of time and discrete transitions (q0,ν0)
δ0−→ (q′0,ν

′
0)

e0−→ (q1,ν1)
δ1−→ (q′1,ν

′
1) . . .

that starts from an initial state and reaches a final one in F . The final state should be visited
infinitely often.

Example 2.3.6 This example illustrates the modality of expressing the sequential visit of the
robotic team for regions y2 (hydrant) and y3 (fire) from Figure 2.2(a), as an MITL formula.
Specifically, the equation (2.6) states that the visit of the region y2 should be reached in
5-time units, and this visit implies an eventual visit of the region y3 in the next 10 time units.
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Fig. 2.10. Timed Büchi automaton for the MITL formula in equation (2.6)

ϕ =♢[0,5]b2 ∧ (b2 →♢[0,10]b3) (2.6)

Figure 2.10 portrays the TBA model associated with the MITL mission previously
described, based on the algorithm explained in [98]. This modeling is based on the fact
that the conjunction operator is not commutative, in the sense that the clock of a temporal
operator resets with respect to the first temporal operator. The automata contains 4 states,
with the initial q0 and final q3 (visualized through double edge) states. The states q2 and q3

are considered to be sink states [103] denoting either an error, respectively an accepting
state, from which the run sequence remains in that state [104]. The continuous loop is
observed by the output arc from these states that is evaluated as True (T ), for any time.

The edges between the states include both space and time requirements, such that the
following reached state respects the imposed constraints, e.g., the state q1 is reached only
if the atomic proposition y2 is true while the clock constraint is less than the upper bound
5; otherwise, the error state q2 can be reached if the clock does not act according with the
imposed limit of 5-time units. Throughout the representation of the automata A, each state
resets the clock x = 0. Moreover, there is no need of using multiple clocks, since no nested
formulae are part of the MITL mission. ■

Remark 2.4. The benefit of adopting a set of actions of the robots as the set of atomic
propositions is captured in Chapters 4 and 7, for specifications under MITL formalism.

2.4 Comparison criteria for planning strategies of multi-
agent systems

This section covers the chosen metrics considered for in the evaluation comparison between
the proposed methods and other DES planning solutions. Their purpose is to assess the
quality of the results through a comparison analysis procedure.
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• (a) Model size. This metric is computed in two scenarios depending on the methods
that are compared: the model size includes all the places and transitions of a composed
model under the Petri net representation, capturing both the robotic model and the
given specification [35]; the model size includes only the places and transitions of the
robotic model under the Transition System representation when the methods have a
sequential approach for the models of the team and the mission [4].

• (b) Run time to return a solution such that a given LTL mission is ensured by the
robotic team. This metric excludes the time needed to build the model.

• (c) Trajectory length for the whole robotic team obtained, expressed as the total
number of fired transitions in the robotic model. This metric is associated with the
number of cells that are being crossed by the robotic team, in the partitioned workspace.

Two planning solutions for robotic teams ensuring their global mission are described
as follows. These methods serve as comparison approaches when validating the proposed
techniques as part of this thesis.

(i) FB [4] - this method (following Büchi (WB)) aims for a sequential approach of com-
puting trajectories of the robotic team by following a run (a path from the initial state
towards one final state) in the Büchi automaton. First, the PN model is assigned to the
team, based on the partitioned workspace. Secondly, an optimization MILP problem
is solved in the search for a sequence of markings that can generate the necessary
observations that fulfill the LTL mission based on a set of feasible runs computed
in the Büchi automaton. The approach is iterative until the team can act under the
accepted run in the automaton, producing a sub-optimal solution that cannot ensure
collision-free trajectories.

(ii) TS [50] - this approach (Transition Systems (TS)) is subject to represent the motion
of each robot as a Transition System model versus the previous approaches where
one single model is assigned for the entire robotic team based on a product automata
procedure. Thus, the state of the entire robotic team is provided through this single
model. In addition to this, the automaton modeling the mission is also joined with the
robotic model. Robots’ trajectories are computed by a graph-search-based algorithm
for the built-composed model.

The FB method is based on a sequential approach of using two representations as-
sociated with the robotic team and the given LTL mission. Since the following chapter
introduces a framework directed towards a parallel use of these two representations, the
detailed description of the FB method is presented in Chapter4.1.





Chapter 3

Task decomposition approach for
multi-agent systems

This chapter presents an approach for task allocation in a multi-robotic system, where both
path planning and collision avoidance problems are taken into account. The proposed method
involves task decomposition for a global co-safe linear temporal logic (LTL) specification,
where independent tasks are assigned to each robot. The results of this method are evaluated
in a 3D workspace which is partitioned into a set of cells returned by a personal 3D cell
decomposition technique. The simulations include the motion of a team of UAVs ensuring
the global LTL mission.

The main contribution of this chapter is represented by a solution for task decompo-
sition of global formalism expressed as co-safe LTL specifications, leading to independent
trajectories for each robot without the need to communicate or synchronize between them.
Decomposing tasks in a multi-robot system is crucial when addressing complex global mis-
sions, as it allows for a scalable and efficient solution that leverages the capabilities of each
robot. A global mission, typically specified for the entire team, can often be too complex or
computationally demanding for centralized approaches, particularly as the number of agents
increases. By breaking down the mission into smaller, independent tasks, each robot can
operate autonomously, reducing the need for continuous communication and synchronization.
This decomposition is especially valuable when the mission is expressed using the Linear
Temporal Logic (LTL) formalism, which enables the specification of intricate temporal
behaviors, such as ordered sequences of tasks, or synchronization, as defined in Section
2.3.1.

In decentralized systems, task decomposition ensures that each robot’s trajectory can
be synthesized to locally satisfy parts of the global LTL formula, reducing computational
overhead [43]. Moreover, independent task execution mitigates the risk of communication
failures, a common issue in centralized systems, while still guaranteeing the global mission’s
correctness through the satisfaction of the co-safe LTL specifications [105, 106]. Thus,
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decomposing tasks not only simplifies mission execution but also enhances the system’s
robustness and scalability.

This approach focuses on developing a planning strategy for a multi-robot system based
on a high-level specification in the formalism of Linear Temporal Logic (LTL). The proposed
solution provides the foundation for future path-following controllers, to distribute tasks
encapsulated in a global mission. By decomposing the global task into independent tasks, the
need for intermediate coordination or synchronization among robots is eliminated, except for
the application of local collision-avoidance rules when robots are in close proximity. The
primary objective is to generate independent trajectories for each robot, ensuring that their
collective movement satisfies the specification given for the entire team. The term "indepen-
dent" implies that each robot can execute its motion without requiring communication or
synchronization with other robots, distinguishing this approach from centralized methods like
those presented in [107]. The global specification is expressed as a co-safe LTLX formula
over a set of regions of interest Y .

In this context, each robot is modeled as Transition System (TS). This model abstracts
the robot’s potential motions within the environment E, enabling seamless integration with
the Büchi automaton corresponding to the LTL formula over the set of atomic propositions
B related to the set Y .

Example 3.0.1 Starting with this example, other illustrative ones are included throughout
the thesis, to provide a clearer image of the theoretical notions. In Figure 3.1(a) there
is represented a 3D environment E including four disjoint regions of interest. The initial
location of the two robots is highlighted with colors red (for r1) and blue (for r2) circles. The
imposed specification is

ϕ =♢b1 ∧¬b2U (b3 ∨b4) , (3.1)

requiring for (1) region y1 to be eventually reached, while (2) region y2 is avoided until of the
y3 and y4 regions is eventually reached. Intuitively, if a robot ensures part (1) while it avoids
y2 and the other robot ensures part (2) of ϕ , then the robots can do this in a distributed
manner, for example without any synchronization or communication. On the contrary, if
the last parenthesis is changed to (b3 ∧b4), then both robots are needed to cooperate in
satisfying the mission. One situation is if one robot reaches y3, it should wait until the second
robot visits the disjoint region y4.

Figure 3.1(b) reveals a visual representation of the partitioning of the environment, with
precision ε = 16. ■

3.1 Task decomposition

To distribute a given LTL mission ϕ among robots in a team, this section focuses on automat-
ically decomposing ϕ into a set of sub-formulas, referred to as tasks, which satisfy certain
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(a) Environment with four regions of interest and initial positions of two robots ( r1 - red, r2 - blue)

(b) 3D decomposition in rectangular cuboids considering a precision ε = 16

Fig. 3.1. 3D workspace with four regions of interest and the discrete representation of the partitioned
environment.
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properties. Each task is designed to be executed independently by a single robot, and the
decomposition must meet two key requirements: independence and fullness. Independence
implies that tasks are non-conflicting and can be accomplished without synchronization be-
tween robots. Specifically, a task ϕi in the decomposition {ϕ1, . . . ,ϕ|R|} should not interfere
with another task ϕ j, where j ̸= i. Fullness ensures that the global mission ϕ is achieved
when all tasks are completed.

The proposed method, outlined in Algorithm 2, begins by converting the LTL formula
ϕ into a Büchi automaton B using existing tools from [93]. In addition to B, the algorithm
requires two inputs: a set C representing the partitioned environment and an observation
map h, which associates partition cells with regions of interest Y . For simplicity, the set OS

(line 1 of the algorithm) is used to represent all observations from the atomic proposition set
B, corresponding to regions in Y , that can be generated by a single robot.

The algorithm starts by trimming the Büchi automaton (lines 1–3) to ensure that all
transitions in B can be enabled by a single robot. This trimming step is adapted from [107],
which originally addressed cooperative robots, to suit independent task execution. The goal
is to decompose ϕ into tasks associated with elements of ΣB (the input set of B), guaranteeing
that each task can be performed by a single robot. Without trimming, certain transitions
might require collaboration between robots.

Next, all loopless accepted runs of B are computed (lines 4–11) using the k-shortest
path algorithm [108]. For each pair of initial and final states (s0,s f ), paths are iteratively
computed, increasing k as needed, until all loopless paths are included. The resulting set
Runs contains all such accepted runs.

The decomposition process continues by selecting a run ρ ∈Runs (line 13) and verifying
whether all permutations of its transitions correspond to valid runs in B. If this condition
is satisfied, the transitions of ρ define a decomposition set Decompρ , where each task
corresponds to an observation set realizable by a single robot. These tasks ensure the fullness
property, as ρ represents an accepted run of B.

To ensure independence, the algorithm processes self-loops of states in B (lines 23–25).
Self-loops with the same output transitions are replaced by their intersection, preventing
any task from violating the global mission ϕ . Finally, the algorithm removes ρ and its
permutations from Runs (lines 14 and 21) to avoid redundant iterations.

By iteratively applying this procedure, the algorithm generates a decomposition of ϕ

into independent and complete tasks that can be executed by individual robots, achieving the
global mission.

Algorithm 2 involves a significant number of iterations, as suggested by its pseudo-code.
The trimming of the Büchi automaton has a linear complexity with respect to the number
of transitions in →B, while the size of B is determined by the imposed LTL specification.
The k-shortest path algorithm is repeatedly executed in lines 5–11 for an initially unknown
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Algorithm 2: Mission decomposition
Input :Büchi automaton B, partition C and observation map h
Output :Feasible decompositions TaskSet

1 Compute OS =
⋃

c∈C h(c)
2 for

(
si,ρ(si,s j),s j

)
∈→B do

3 ρ(si,s j) = ρ(si,s j)∩OS
4 Initialize Runs = /0
5 for s0 ∈ S0 and s f ∈ F do
6 k = 0
7 repeat
8 k = k+ |S|
9 Let Runss0→s f = k_shortest_path(k,s0,s f )

10 until |Runss0→s f |< k;
11 Runs := Runs∪Runss0→s f

12 while Runs ̸= /0 do
13 Choose a run ρ ∈ Runs
14 Runs = Runs\{ρ}
15 Compute Decompρ =

⋃|ρ|−1
i=1 {ρB(ρ(i),ρ(i+1))}

16 Set counter = 1
17 for γ ∈ Runs do
18 if (|γ|= |ρ|) then
19 Compute Decompγ =

⋃|γ|−1
i=1 {ρB(γ(i),γ(i+1))}

20 if ((Decompρ \Decompγ) = /0) then
21 Runs = Runs\{γ}
22 counter = counter+1
23 for ρ(i) ∈ ρ and γ( j) ∈ γ such that sets ρB(ρ(i),ρ(i+1)) and

ρB(γ( j),γ( j+1)) are identical do
24 Set ρB(ρ(i),ρ(i)) = ρB(ρ(i),ρ(i))∩ρB(γ( j),γ( j))
25 Set ρB(γ( j),γ( j)) = ρB(ρ(i),ρ(i))∩ρB(γ( j),γ( j))

26 if (counter = (|ρ|!)) then
27 Decompρ is a feasible decomposition; append it to TaskSet

28 if TaskSet is empty then
29 Mission cannot be decomposed
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number of iterations, dictated by the structure of B. However, each of these executions has a
pseudo-polynomial complexity [108].

While lines 12 and 17 impose up to |Runs|2 iterations, these involve relatively simple
set operations, and the cardinality of Runs is significantly reduced by trimming B, which
simplifies the automaton’s structure. This trimming step is essential not only for ensuring
task independence but also for reducing computational overhead. Importantly, the complexity
of Algorithm 2 is independent of the number of robots |R|.

However, the algorithm is not complete in terms of generating all possible decomposi-
tion sets. It does not consider sequences of multiple tasks that could be assigned to a single
agent while still ensuring the independence and fullness properties.

Example 3.1.1 Consider the LTL formula from Equation (3.1), ϕ =♢b1 ∧¬b2U (b3 ∨b4).
The Büchi automaton corresponding to this formula is shown in Figure 3.2(a). The mission
described by ϕ requires that region y1 is eventually reached while region y2 is avoided until
one of the regions y3 or y4 is eventually visited. Intuitively, this mission can be distributed
among robots without requiring processes such as synchronization or communication. For
example, one robot can reach y1 while avoiding y2, and another can fulfill the second part of
the formula.

However, if the last parenthesis in ϕ is modified to (b3 ∧b4), implying both regions y3

and y4 must be visited simultaneously, cooperation would be required. In this case, a robot
reaching y3 would need to wait until another robot visits the disjoint region y4.

Before applying the task decomposition algorithm, the Büchi automaton B needs to be
trimmed. Observations such as b1 ∧b3 or b1 ∧b4 are redundant because regions y1, y3, and
y4 are disjoint, meaning a robot cannot simultaneously occupy these regions. Similarly, the
observation enabling the transition from s0 to s2 becomes b1, as regions y1 and y2 are also
disjoint. Figure 3.2(b) illustrates the trimmed Büchi automaton obtained after executing
lines 1–3 of Algorithm 2. The resulting set of accepted runs after line 11 is Runs = {ρ1 =

s0,s2,s3;ρ2 = s0,s1,s3}. Considering the implementation process, constructing B, trimming
it, and computing the set Runs is less than 0.22 seconds.

During the first iteration of Algorithm 2, ρ1 is selected (line 13), yielding the decom-
position Decompρ1 = {{b1},{b3 ∨b4}} (line 15). After ρ1 is removed, only ρ2 remains for
the iteration starting at line 17. For ρ2, the decomposition Decompρ2 = {{b3 ∨b4},{b1}} is
computed (line 19). Since the decomposition sets are identical (line 20), the condition in line
26 is satisfied, and the final decomposition outputs {{b1},{b3 ∨b4}}.

To ensure that tasks do not violate the mission during independent execution, the self-
loops of states are adjusted as described earlier. For example, the self-loop of s1 is updated
to ¬b2, similar to that of s2, ensuring that region y2 is not visited in any trajectory. In this
simple example, Algorithm 2 returned the formula decomposition in approximately 0.04
seconds. ■
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(a) Original Büchi automaton (b) Trimmed Büchi automaton

Fig. 3.2. Büchi automaton corresponding to the LTL formula ϕ =♢b1 ∧¬b2U (b3 ∨b4) (a) and the
trimmed automaton after running Algorithm 2 which tailors the self-loop of s1 to ¬b2

3.2 Solution for task allocation

If Algorithm 2 returns a nonempty TaskSet, it indicates that the formula can be decomposed
into independent tasks, which can then be assigned to the |R| robots. Any decomposition
from TaskSet may be selected, denoted generically as

⋃|ρ|−1
i=1 {ρB(ρ(i),ρ(i+1))}. As previ-

ously discussed, this decomposition consists of elements of ΣB that enable transitions along
the run ρ of B.

For simplicity, let us denote each task ρB(ρ(i),ρ(i+1)), where i = 1, . . . , |ρ|−1, by ϕi.
Each task ϕi comprises the inputs of B that trigger a transition from state ρ(i) to ρ(i+1). To
accomplish a task ϕi, a robot must generate any observation belonging to ϕi (i.e., an element
of 2B).

Since B was trimmed prior to computing its accepted runs, it is guaranteed that any
element of ϕi can be produced by the proper positioning of a single robot. For instance,
ϕi cannot represent a conjunction of observations from two disjoint regions. Furthermore,
the independence and fullness properties ensure that the original LTL formula is satisfied
if all tasks ϕi are independently completed by the robots. This eliminates the need for
synchronization or a specific order in visiting the regions.

Therefore, the |ρ|−1 tasks ϕi should be allocated to the |R| robots, by following the
steps:

(i) Construct W ∈ R(|ρ|−1)×|R|, where W represents a cost matrix, with W (i,r) being the
cost incurred if the task ϕi is satisfied by the robot r.

(ii) Computing matrix W to assign all tasks to agents such that a desired cost function for
the whole team is minimized.

For fulfilling the first step, let us iterate a procedure that drives each robot r ∈ R from
initial deployment to a position that satisfies a task ϕi, i = 1, . . . , |ρ|− 1. This procedure
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is a graph search, but instead of considering the entire set C which can be associated with
the model of a single robot evolving in the workspace, a reduced model is considered as
follows. Robot r should reach a place where where an element of ρB(ρ(i),ρ(i+ 1)) is
evaluated as True (for satisfying ϕi), hence the set of possible destination nodes for r is
represented by D = {c ∈ C | h(c) ⊆ ρB(ρ(i),ρ(i+ 1))andmixed(c) = 0}. Note that cells
labeled with mixed are avoided since there is the need to generate the True value of an atomic
proposition which cannot be guaranteed by a cell including partially a region of interest.
As the robot r moves toward any state in the set D, it should generate observations from
the set ρB(ρ(i),ρ(i)) at every intermediate position. This ensures that the state ρ(i) of B is
maintained until the transition to ρ(i+1) is enabled. Consequently, r is permitted to traverse
only through intermediate nodes in the set I = {c ∈ C | h(c)⊆ ρB(ρ(i),ρ(i))}.

Thus, from the entire representation of the environment, a reduced discrete representa-
tion is obtained, having as nodes the cells from the reunion of sets: D, I, particularly D∪ I
and the adjacency relation between these cells. Afterward, a shortest path search algorithm is
computed on the latter model, since the set of cells can be represented by a graph. Thus, a
run from the initial node pS0 to any node from set D can be computed. The used algorithm is
Dijkstra [109], and the cost of the returned path is the value to be saved in W (i,r).

The procedure detailed before is captured by lines 7-15 from the overall algorithmic
solution provided in Algorithm 3.

Remark 3.1 In some cases, the graph search algorithm may fail to find a solution for a
given pair (ϕi,r), specifically when cS0 is not part of or is disconnected from the set D∪ I.
This indicates that robot r cannot reach a position where ϕi evaluates as True while ensuring
that the observations along its path remain within ρB(ρ(i),ρ(i)). In such situations, a large
value N (representing the infinite cost) is stored in W (i,r).

If the resulting matrix W contains at least one row with all entries equal to N, it implies
that the current task distribution is infeasible. In this case, an alternative distribution from
those generated by Algorithm 2 should be chosen, or a centralized approach, as described in
[107], should be applied. The condition in line 16 of Algorithm 3 accounts for such cases by
switching to the centralized planning method from [107].

The following observations summarize the explanation provided earlier:

1. The graph search approach used here differs from the methods in [23, 107], where two
versions of a Mixed Integer Linear Programming (MILP) problem were employed to
compute W (i,r). In [107], the MILP approach was necessary for centralized planning
of the entire robot team using a Petri net model, while in [23], the MILP formulation
was adapted for a single robot. Compared to MILP optimization, which belongs to the
NP-hard class, the current approach benefits from lower computational complexity, as
the Dijkstra graph search algorithm has a complexity of O(|PS|2).

2. The costs in W are calculated as the sum of transition weights in the graph, allowing
them to represent metrics like expected time or energy required for moving between
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adjacent cells in the environment. In this work, unitary transition costs are assumed,
minimizing the number of direction changes during robot movement across cells.

3. Each cost W (i,r) is computed assuming that robot r starts from its initial position cS0 .
However, when multiple tasks are assigned to a single robot, the total cost incurred
will differ slightly from the simple sum of the corresponding costs in W .

Step (ii) represents an optimal task allocation method, where |ρ| − 1 tasks must be
independently assigned to |R| agents, minimizing a cost derived from W . This step is
formalized as the MILP problem in Equation (3.2) [23], with the following details:

• The decision variables are a binary matrix Z ∈ {0,1}|R|×(|ρ|−1) and a real variable λ .

• The solution Z specifies the tasks assigned to each robot, where Z(r,ϕi) = 1 indicates
that robot r is responsible for task ϕi.

• The variable λ facilitates the minimax optimization, aiming to minimize the maximum
cost incurred by any robot.

• The cost function includes a term that minimizes the number of cells visited (via λ )
and another term that discourages unnecessary movements of faster robots.

• Constraints ensure that all tasks from the chosen decomposition are accomplished and
that the cost for each robot does not exceed λ .

min N ·λ +∑
|R|
r=1 Z(r, :) ·W (:,r)

s.t. ∑
|R|
r=1 Z(i,r) = 1, ∀i = 1, . . . , |ρ|−1

Z(r, :) ·W (:,r)≤ λ , ∀r = 1, . . . , |R|
Z ∈ {0,1}|R|×|ρ|−1, λ ∈ R≥0

(3.2)

MILP (3.2) can be solved using tools such as [110]. Its feasibility is guaranteed because
the MILP is only invoked when all tasks are achievable, as stated in Remark 3.2. The solution
Z specifies the task allocation but does not dictate their order. To avoid computational
overhead, tasks for each robot are ordered based on their cost in W , with lower-cost tasks
prioritized (line 22).

The pseudo-code for the entire method is presented in Algorithm 3, building the
trajectories (sequences of cells) to be individually followed by each robot. The approach
assumes that an individual robot cannot solve the problem in two scenarios: when the mission
cannot be decomposed or when the selected decomposition is infeasible, as mentioned in
the previous remark. In either case, the centralized method from [107] can be employed to
generate a solution, requiring the robots to communicate and synchronize along their paths
(lines 5 and 17 of Algorithm 3).
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If a feasible decomposition is identified, MILP (3.2) is utilized to assign individual
tasks to robots. For each robot r, the sequence of cells Seqr is constructed such that the robot
sequentially completes its assigned tasks in ascending order of expected cost from matrix W
(determined on line 22). To accomplish a task ϕi, a graph search is used, iterating from the
robot’s current position to determine the element W (i,r) (lines 23 and 29).

The robot then follows the defined sequence of cells by connecting waypoints (the
centroids of shared facets between successive cells in Seqr), resulting in a piecewise linear
trajectory suitable for an omnidirectional robot. Additionally, to ensure that each task ϕi is
satisfied, the robot’s trajectory is adjusted to include the centroid of every visited cell cnr,
ensuring full entry into the cell rather than reaching its facets (line 27).

Each robot individually follows its trajectory Tra jectoryr, collectively achieving the
global mission ϕ in a distributed manner. Algorithm 3 provides a centralized path-planning
framework that serves as a foundation for trajectory-following routines while enabling
decentralized execution of robot movements.

Remark 3.2 Individual robot trajectories may intersect. In practical scenarios, collision-
avoidance mechanisms, such as priority-based waiting rules or resource allocation techniques
[111], should be implemented.

The complexity of Algorithm 3 is influenced by the complexities of Algorithms 2 and
1, each of which is executed once. Additionally, there is a single invocation of MILP (3.2).
The number of iterations is determined by the number of robots, R, and the number of tasks,
|ρ|−1 (as seen in lines 7, 19, and 22). In each iteration, the Dijkstra graph search represents
the most computationally intensive part, making its relatively low complexity favorable for
scalability with respect to the number of robots.

However, Algorithm 3 is not fully optimized for ensuring independence among robots.
As a result, it may sometimes resort to the centralized solution from [107], even when the
current formula contains independent tasks. This occurs because the algorithm considers
only one decomposition from the TaskSet (rather than exploring all possibilities). Moreover,
Algorithm 2 does not account for specific task sequences that may need to be assigned to the
same robot.

Example 3.2.1 Let us consider the following cost matrix W =

[
11 3
4 12

]
for the Example

3.0.1. By solving MILP (3.2) in step (ii), the allocation result assigns task ϕ1 = b1 to the
first robot (red) and ϕ2 = b3 ∨b4 to robot r2 (blue). Consequently, robot r1 must move to a
cell within the region y1 (set D for ϕ1 containing all cells with observation b1) and should
traverse only through cells that do not intersect with region y2 (according to set I, which
includes all cells with observations other than y2). Meanwhile, robot r2 independently moves
to a cell with an observation belonging to the set {b3,b4}, while avoiding b2 (region y2). As
a result, the sequence Seqr1 consists of 4 cells, and Seqr2 contains 3 cells, as determined
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Algorithm 3: Overall solution
Input :Environment (sets R with their initial position of robots and Y ), LTL

specification ϕ

Output :Individual trajectories in Tra jectoryr
1 Obtain model for set R by executing Algorithm 1
2 Build Büchi automaton B for ϕ

3 Obtain TaskSet (the plausible decompositions of ϕ) by executing Algorithm 2
4 if TaskSet = /0 then
5 Obtain (synchronized) movement plans by using the from [107]

6 Select a decomposition
⋃|ρ|−1

i=1 {ρB(ρ(i),ρ(i+1))} from TaskSet,
7 for i = 1, . . . , |ρ|−1 and r = 1, . . . , |R| do
8 Di = {c ∈ C | h(a)⊆ ρB(ρ(i),ρ(i+1)) and mixed(c) = 0}
9 Ii = {c ∈ C | h(c)⊆ ρB(ρ(i),ρ(i))}

10 Build a graph based on the nodes Di ∪ Ii
11 Perform graph search with Dijkstra from cS0 to set Di to return Solution
12 if Solution ̸= /0 then
13 W (i,r) = min cost of Solution
14 else
15 W (i,r) = N

16 if ∃i ∈ {1, . . . , |ρ|−1} such that W (i, :) ·1 = N · |R| then
17 Obtain (synchronized) movement plans by using the from [107]

18 Compute Z (robot-to-task(s) allocations) by MILP (3.2) solution
19 for r = 1, . . . , |R| do
20 Seqr = cS0

21 Tra jectoryr = xS0

22 for i ∈ {1, . . . , |ρ|−1} such that Z(r, i) = 1 and
W (i,r)≤W ( j,r),∀ j ∈ {1, . . . , |ρ|−1}, j ̸= i do

23 Perform graph search with Dijkstra from cS0 to set Di to return Solution
24 Let cS0 ,cS1, ...,cnr be the minimum cost path
25 Seqr = Seqr ∪{c1,c2, ...,cn}
26 Tra jectoryr = Tra jectoryr ∪Waypoint(p(k)r,c(k+1)r), k = 1, . . . ,n
27 Tra jectoryr = Tra jectoryr ∪ cnr
28 Z(r, i) = 0 (task ϕi is solved)
29 Update cS0 = cnr

30 Compute individual paths Tra jectoryr, for setR
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by Algorithm 3. Figure 3.3 illustrates the trajectories by connecting the corresponding
waypoints.. ■

Fig. 3.3. Independent trajectories of the two agents, giving a solution to Example 3.1.1.

3.3 Numerical evaluation

Let us presents a numerical evaluation of the proposed solution for task decomposition and
allocation in a multi-agent system. The algorithms are developed and executed in MATLAB
on a laptop with an i7 - 8th gen CPU @ 2.20 GHz and 8GB RAM.

As noted at the beginning of the chapter, a 3D environment is considered, simulating
motion planning for a team of UAVs (drones). Figure 3.4 illustrates the 3D workspace, which
is divided into six regions of interest, Y = {y1,y2,y3,y4,y5,y6}. Each region is a convex
polyhedron with flat bases (z = 0), characterized by distinct shapes and heights. The regions
are disjoint, except for y2 and y3, which intersect. The LTL specification, given in (3.3),
requires that the robot team must eventually visit regions y1, y4, y5, y6, and the intersection
of y2 and y3.

ϕ =♢b1 ∧♢(b2 ∧b3)∧♢b4 ∧♢b5 ∧♢b6. (3.3)

The two types of partitions described in Chapter 2.1 are referred to here as Grid and
OctTree, respectively. The decomposition precision used is ε = 16. The model sizes and
computational times for the two approaches are as follows: the OctTree method results in
a model with 1849 nodes and 13081 transitions, computed in 6.7 seconds. In contrast, the
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Fig. 3.4. Environment E with 6 regions of interest Y .

Grid approach yields a model with 4096 nodes and 27136 transitions, requiring 19 seconds
for computation.

Additionally, the simulations evaluate the proposed algorithm based on 100 experiments.
In each experiment, the initial positions of the robots generate different sequences of cells
and trajectory lengths, with small variations in computation times. For this reason, Figure
3.4 does not show the initial robot deployments. The results reported are the average values
computed across the 100 experiments.

Table. 3.1. Average lengths of the trajectory for each agent, OctTree and Grid decompositions
(Chapter2.1).

Average trajectory length OctTree Grid

r1 [lu] 76.84 68.55
r2 [lu] 86.02 69.56
r3 [lu] 79.44 71.54

First, let us examine the execution times of various phases of the proposed method.
The time required for trimming the Büchi automaton and decomposing the mission into
independent tasks, as outlined in Algorithm 2, was 17.58 seconds. This execution time is
independent of the environment partitioning method. The computation of the cost matrix
W (averaged over 100 different initial robot deployments) took 6.84 seconds for the Grid
method and 1.51 seconds for the OctTree method. As anticipated, the Grid approach took
longer, as computing each cost involves a graph search over a subset of states from PS.
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Solving the MILP allocation took approximately 0.03 seconds, with this formulation being
independent of the graph’s size.

The second part of the comparison focuses on the performance of the resulting trajecto-
ries for the robotic team. Table 3.1 presents the average trajectory length for each agent. It is
important to note that the trajectory length is influenced by the size of each traversed cell
from Seqr (Algorithm 3), with the optimization problem aiming to minimize the number of
traversed cells, referred to as lu (length unit). The OctTree partition typically includes larger
cells, which might lead to longer trajectories compared to the Grid approach, but with the
advantage of reduced computation times.

Table. 3.2. Average values for the maximum, respectively total costs.

Average cost OctTree Grid

Maximum cost 11.31 19.13
Total cost 27.52 47.10

Table 3.2 provides information on both the maximum cost and the total cost, as derived
from the elements of W . The cost is defined as the number of cells traversed by the robot,
which corresponds to the number of direction changes. The maximum cost in the first row
represents the highest number of cells traversed by any of the three robots, with each robot
completing all of its assigned tasks. The total cost refers to the cumulative number of places
visited by all robots until the specification ϕ is completed. The fewer states in the OctTree
partition result in fewer direction changes during robot movement, even though the actual
trajectory length might be longer.

For a clearer visualization of the trajectories, a video is available at [112], showcasing
the movement of the robotic team in the 3D workspace. The simulations feature a team of
three robots and five independent tasks, designed to highlight a scenario in which at least
one robot is tasked with performing multiple tasks. More complex scenarios with a larger
number of robots would produce trajectories that are more difficult to visualize.

A significant contribution of the LTL decomposition method is the implemented algo-
rithm itself. To illustrate this, the cost of completing the mission from (3.3) is computed
assuming only one drone is tasked with the entire mission, rather than distributing the tasks
among the robots. For the OctTree partition, a single drone would need to traverse an average
of 34.6 cells, whereas for the Grid partition, it would need to traverse 68.74 cells. Compar-
ing these values to those in Table 3.2, we can conclude that the decomposition method is
beneficial in terms of both reducing the total number of traversed cells and enabling parallel
execution of independent tasks, with the completion time reflected by the maximum cost in
Table 3.2.



Chapter 4

Path planning with LTL specifications
and path optimizing for multirobot
systems

This chapter aims to provide an insightful description of a proposed framework based on the
composition of the robotic team and the given mission. The main idea is to build a single
model under the Petri net formalism, capturing both the motion of the robots. At the same
time, their movement ensures the satisfaction of a given high-level mission. Particularly,
this chapter establishes the foundation of a newly defined framework, denoted Composed
Petri net. This representation models the high-level behavior of a homogeneous team
fulfilling a global LTL specification requiring the reaching/avoiding of a set of regions of
interest. A description of the theoretical formalism shall be given for each introduced model,
accompanied by illustrative examples, for a better understanding of the proposed Petri net
framework.

In the second part of this chapter, an efficient motion planning approach is included. The
planning strategy is built upon a set of robotic trajectories and it ensures the motion execution
while improving the quality of the paths. One contribution brought by this planning method
is the parallel movement of the robots while maintaining the fulfillment of the mission, even
in cases where the paths are rerouted. The planning is inspired by the Banker’s algorithms,
known for resource allocation and deadlock avoidance, associated here with the free space
that the robots should share throughout their movement. Illustrative examples guide both
the theoretically defined notions and numerical simulations validating the proposed solution.
The evaluation of results considers comparison with a method from literature, for a scenario
of a workspace where the robots should cross through a narrowed passage.

Based on the presented state of the art, this composition of a discrete event system
associated with the motion of a robotic team with an automaton associated with high-level
specification was never done before to solve such path planning problems. In addition, the
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motion execution approach based on a known resource allocation algorithm represents a
novelty in the robotic field. Thus, this chapter includes the following contributions:

• Novel framework combining the advantages of a Petri net modeling the motion of
the robotic team, with the advantages of an automaton, respectively time automaton
modeling a given specification under the LTL formalism.

• Introducing the concept of the intermediate layer to join two models, used in building
scalable representations with respect to the number of agents through its fixed topology.
The size of these models is represented by a sum of places rather than a product, e.g.,
as for automaton product [50].

• Defining an algorithm for parallel motion based on a predefined set of trajectories
inspired by the Banker’s Algorithm (BA), to navigate the robots in a constrained space
efficiently, ensuring the global mission without deadlock.

4.1 Concept of an intermediate layer

The main idea of connecting two models into one model is driven by the joining the advan-
tages of (i) the Petri net model of a team of agents, represented by a single model with a
fixed topology when the number of identical agents is increasing or decreasing, with (ii) the
automata model of a high-level mission capturing the space requirements, such as Linear
Temporal Logic mission. The proposed framework builds a single Petri net model, an aspect
that triggers the modeling of an automata into a Petri net.

Handling a single Petri net model for the path planning strategy of a multi-agent system
is motivated also by a previous work [4], introduced in Chapter 2.4 under the abbreviation FB.
Specifically, the planning method presents a motion planning strategy that utilizes the models
of the robots, respectively of the mission, in a sequential manner. The method involves
computing a set of k runs, represented as prefix and suffix components in the Büchi automaton
of the given LTL specification, using the k-shortest path algorithm. Let us recollect that an
LTL mission is satisfied only if there is an accepted run in the Büchi automaton, formed out of
prefix and suffix. The solution to the planning problem consists of an algorithm that attempts
to execute one of these runs following the Petri net model structure of the robots. There are
situations in which the run in Büchi automata cannot be followed. One scenario is represented
by the fact that the robots cannot generate the required observations, i.e., the disjoint regions
of interest yi,y j, i ̸= j should be reached simultaneously (the atomic propositions bi,b j are
evaluated as True), but there is only one robot in the environment. In another scenario, the
observations triggered by the movement of the robots lead to other transitions being generated
in the Büchi automata, without respecting the given run. Remember that this behavior might
happen since the automata is nondeterministic. When these situations appear, the planning
procedure is reiterated by selecting another run to be followed by the team.
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(a) Workflow from previous work [4] (b) Representation of the composed framework

Fig. 4.1. Comparison of procedures motivating the composed framework

Figure 4.1 (a) illustrates a concise workflow of the work that was previously mentioned.
One advantage that the current method brings is the use of the Petri net model for the
robotic team, which is invariant with respect to the number of robots. Thus, the method
offers an enhancement over the centralized approach based on transition system models that
could increase exponentially in the state space as the number of robots grows. A significant
limitation of this method is that the planning algorithm is incomplete; it cannot guarantee a
solution even if one exists, due to its sequential approach. Moreover, the algorithm requires
the computation of a set of k runs.

A solution for this hindrance is to have a more parallel approach compared with the
previous work. The work [113] introduces a Petri Net (PN)-based approach within a "high-
level" framework that ensures parallel execution of transitions in both the workspace Petri net
and the Büchi Automaton corresponding to the Linear Temporal Logic (LTL) formula. This
approach constructs a novel PN supervisor model, wherein a transition in the environmental
PN is triggered only when a corresponding transition in the Büchi Automaton is satisfied.

The solution proposed in this thesis dwells on handling the Petri net model of the team
and the Büchi automata of the LTL as one model. The composition is achieved through
the commonalities of the models, which are represented by the set of atomic propositions
addressing the spatial requirements of the robots. As visualized in Figure 4.1 (b), a set
of places modeling the active and inactive observations. This composition facilitates the
behavior of the robots such that their movements in the environment concerning the atomic
propositions B, e.g., regions of interest that should be reached, trigger a transition in the
model of the mission. One benefit added by this solution is represented by collision-free
trajectories, a characteristic that is not accounted for in the previous work [4].

One prerequisite that needs to be considered for the proposed framework based on
composition, resides in the model of the robotic team, such that the places modeling the
discrete space where the robotic team evolves are each labeled uniquely. This Petri net model
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is denoted as Quotient model of the RMPN which is presented in [114] and is obtained by
aggregating adjacent cells (represented by places) with identical observations.

For this, let us remember the observation function h : P → 2B, assigning a label to
each place based on the power-set 2B, e.g., h(pi) = /0,h(p j) = b1, pi, p j ∈ P representing the
free space, respectively the region y1. The unique values of the assigned labels ensure the
activation of a new observation triggered by firing a transition. This aspect is essential in the
synergy of the robotic team’s model and the mission’s model, considering their composition
through the intermediate layer of places based on the active and inactive observations.
Chapter4.2 presents in detail the explanation of this prerequisite, assisted by an algorithm
and visual representation.

The proposed framework is under the Petri net formalism, denoted Composed Petri
net and it concerns an LTL mission. Chapter4.2 describes the modeling workflow including
also the algorithm to link a Petri net model to the Büchi automata, where the automata is
translated into a Petri net model. Furthermore, the solution for motion planning is expressed
by two Mixed Integer Linear Programming (MILP) optimization problems, showcasing an
intuitive example in the results part. Fragments of this planning approach are published in
[35].

4.2 Composed Petri net model

The first representation that is presented in this chapter is denoted Composed Petri net,
capturing in one model both the space movements of the multi-agent team (defined previously
by a reduced model of the full RMPN model of the environment) and the given global LTL
mission. Firstly, the modeling workflow is introduced step-by-step supported by a visual
representation of an easy-to-follow example. Afterward, the solution (in terms of robots’
trajectories) is defined as a result of two proposed MILP optimization problems. The earliest
MILP provides a solution in the reduced Quotient RMPN model, while the second MILP
projects the solution into the full RMPN model. Lastly, a numerical example is presented
considering the proposed framework, being also compared with the previous work [4].

Problem 1 For a global LTL mission under the set of atomic propositions B and a robotic
model represented as a Robot Motion Petri net (RMPN) (Definition 2.2.2), compute automat-
ically trajectories of the robotic team such as the mission is ensured.

For an easier understanding of this concept, let us provide a visualization of an environ-
ment that shall be used as an example throughout the explanations provided for the Composed
Petri net. In addition, let us exemplify an LTL mission for this purpose, considering the
defined workspace.



4.2 Composed Petri net model 57

Fig. 4.2. Environment with three regions of interest and two robots

Example 4.2.1 Let us consider the environment in Figure 4.2, containing three regions of
interest (Y = {y1,y2,y3}) and two robots r1,r2.

The workspace is divided into 26 cells, using the triangular decomposition previously
defined in Chapter 2. The robots are initially placed in p2 and p20. Let us remember
that a partitioned space can be represented by a RMPN model. This model consists of
26 places and 74 transitions, with the initial marking m0[p2] = m0[p20] = 1, the rest of
the elements up to 26 being equal with zero. The observation function h highlights the
cells that are associated with the regions of interest through the set of atomic propositions
B: h(c11) = h(c23) = b1, h(c17) = h(c18) = h(c24) = h(c26) = b2, h(c4) = h(c10) = b3,
h(c13) = {b1,b2}, and h(ci) = /0 otherwise.

The given global LTL mission from equation (4.1) convey to eventually visiting regions
y1, y2 and y3 while reaching y1 and y2 simultaneously.

ϕ =♢(b1 ∧b2 ∧b3)∧¬(b1 ∨b2)U (b1 ∧b2) (4.1)

■

4.2.1 Modeling workflow

The core idea of the proposed solution can be broken down into two steps for clarity. In the
first step, we derive a Petri net model that integrates an abstraction (Quotient) of the RMPN
with the Büchi automaton, referred to as the Composed Petri net model. In the second step, a
feasible run is identified within this new representation, producing a sequence of outputs that
are accepted by the automaton. This run is then projected onto the original RMPN, and the
robot trajectories are computed accordingly.

Various notations are used throughout the description of the proposed algorithm, which
is divided into several steps. These symbols are essential when expressing the tuple Q for
the RMPN and its components. Table 4.1 provides a summarized description to offer a clear
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overview. In this context, we introduce a general notation for all components denoted as
< ·>, with distinct symbols assigned to different topics.

Notation Description

< ·M > Denotes the variables used for Quotient RMPN (Sub-step 1.1)

< ·B > Denotes the variables used for Büchi RMPN (Sub-step 1.2)

< ·C > Denotes the variables used for Composed Petri net (Sub-step 1.3)

Table. 4.1. Notations for various PNs to be used

Figure 4.3 illustrates the steps and sub-steps of the proposed method for computing
robot trajectories in a given environment to fulfill a global LTL mission. The first phase
generates the Complete Petri Net model. Specifically, two Petri net models are utilized: (i)
one for the environment (Sub-step 1.1), which uses a simplified abstraction of the entire
space known as the Quotient RMPN, and (ii) one for the LTL specification (Sub-step 1.2),
based on the Büchi automaton, which is represented as a Büchi Petri net. These models
are then combined (Sub-step 1.3) into a compact representation that incorporates active
observations through an intermediate layer, ensuring that the robots’ movements adhere to
the given specification.

The second phase focuses on producing the final solution. It involves two main actions:
Sub-step 2.1, which generates the solution based on the Composed Petri net model, and Sub-
step 2.2, which translates this solution into a sequence of robot trajectories. In Sub-step 2.2,
the projection of the solution takes advantage of the fact that LTL is closed under stuttering
[115], meaning that repeating the same input does not affect the truth value of the input string.
Throughout the procedure, each step is supported by pseudo-code, MILP formulations, and a
thorough depiction of the sound algorithm. The selected models in the approach combine
the benefits of Petri net representation and the Büchi automaton, enabling a comprehensive
solution for robot movements.

The Quotient RMPN net model, as described in [114], is used by aggregating adjacent
cells that have identical observations. This model is then integrated with the Büchi automaton,
which is converted into a Büchi Petri net to compute a feasible run. It is assumed that there
are no active observations in the initial state, meaning that the robots start in free space,
denoted as /0.

Sub-Step 1.1. Quotient of the RMPN in Definition 2.2.2. Given an RMPN system
Q as defined in Definition 2.2.2, the Quotient QM is derived by iteratively merging places
pi and p j from P that satisfy the condition p j ∈ (pi

•)• and h(pi) = h(p j). This reduction
method is detailed in Algorithm 4, and the reduced RMPN model QM is updated whenever a
transition is triggered. As a result, when a transition occurs in QM, a corresponding transition
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Fig. 4.3. Diagram of the global algorithm

in the Büchi automaton must also fire. Furthermore, since a transition in QM represents a set
of trajectories in Q, any sequence of transitions in QM can be mapped to a run in Q.

The first four lines of Algorithm 4 initialize the elements of tuple QM based on those
from tuple Q. The main loop (lines 5 - 14) continues until no adjacent places with identical
observations remain. In each iteration, for any pair of adjacent places ⟨pM

i , pM
j ⟩ with the

same observation, the transitions tM
k and tM

l representing the robot’s movement from pM
i to

pM
j and vice versa are removed (lines 6 - 8). Subsequently, the places pM

i and pM
j are merged

into pM
i , with updates made to the marking vector, the incidence matrices (lines 9 - 12), and

the projection matrix Pr (computed in the lines 13 - 14).

Example 4.2.2 Figure 4.4 portrays the discrete event system representations for the environ-
ment mentioned in Example 4.2.1: the top illustration is the full RMPN Q model based on
the divided workspace with 26 cells, and the bottom picture is the reduced model Quotient
RMPN QM, as a result of aggregating states with the same observation (Algorithm 4).

This updated PN model is also an RMPN, as defined in Definition 2.2.2, where each
place represents a set of regions from the original RMPN system. It is important to note that
Algorithm 4 also generates the projection matrix Pr, which in this case is a 5×26 matrix
with all elements being zero, except for the following:

• Pr[pM
1 , p4] = Pr[pM

1 , p10] = 1, indicating that place pM
1 combines p4 and p10.

• Pr[pM
3 , p11] = Pr[pM

3 , p23] = 1.

• Pr[pM
5 , p17] = Pr[pM

5 , p18] = Pr[pM
5 , p24] = Pr[pM

5 , p26] = 1.

• Pr[pM
2 , p13] = 1.

• Pr[pM
4 , pi] = 1 for all pi ∈ P with h(pi) = /0.



60 Path planning with LTL specifications and path optimizing for multirobot systems

Fig. 4.4. Associated RMPN models of environment defined in Figure 4.2: (a) full RMPN Q - top, (b)
Quotient RMPN QM - bottom
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Algorithm 4: Quotient of RMPN system
Input :Q = ⟨⟨P,T,Pre,Post⟩,m0,B,h⟩
Output :QM = ⟨⟨PM,T M,PreM,PostM⟩,mM

0 ,B,h⟩, Pr
1 PM = P; T M = T ;
2 PreM = Pre; PostM = Post;
3 mM

0 = m0;
4 Pr = I|P|×|P| /* Pr is the projection matrix */

5 while ∃pM
i , pM

j ∈ PM such that pM
j ∈

(
pM

i
•)• and h(pM

i ) = h(pM
j ) do

6 Let tM
k = pM

i
•∩ •pM

j and tM
l = •pM

i ∩ pM
j
•;

7 Eliminate the columns associated with tM
k and tM

l from PreM and PostM;
8 T M = T M \{tM

k , tM
l };

9 mM
0 [pM

i ] = mM
0 [pM

i ]+mM
0 [pM

j ];
10 Remove the row pM

j from PreM and PostM;
11 Remove the element pM

j from mM
0 ;

12 PM = PM \{pM
j };

13 Pr[pM
i , ·] = Pr[pM

i , ·]+Pr[pM
j , ·];

14 Remove the row pM
j from Pr;

■

Sub-Step 1.2: Büchi Petri net. Starting from the Büchi automaton B = ⟨S,S0,ΣB,→B

,F⟩ as defined in Definition 2.3.2, Algorithm 5 constructs the corresponding Büchi Petri net
system QB. For each state si ∈ S, a new place pB

i is added to the Petri net (line 1).
The first loop (lines 3–8) processes each transition from si to s j in the Büchi automaton.

The second loop (lines 4–8) iterates over each conjunctive element αk in π(si,s j) and adds
a new transition tτk to the Büchi Petri net, connecting pB

i to pB
j . Notably, all transitions

corresponding to the conjunctive elements in π(si,s j) share the same input and output places
in the Büchi Petri net.

In line 9, the marking vector is initialized and subsequently updated in line 10. Specifi-
cally, one token is added to the place pB

0 associated with the initial state s ∈ S0 of the Büchi
automaton. Since |S0|= 1, a single token in the Büchi Petri net is sufficient to represent the
current state of the automaton B.

Algorithm 5 also returns virtual transitions TV , along with their relationship to the final
states, which is encoded in PreV and PostV . These transitions are essential for maintaining
the Büchi Petri net in its final state, as required by the MILP in Equation (4.2) (discussed in
the next section). One virtual transition is associated with each final state s f of the Büchi
Petri net (lines 11–15).
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Algorithm 5: Büchi Petri net
Input :B = ⟨S,S0,ΣB,→B,F⟩
Output :QB = ⟨⟨PB,T B ∪TV , [PreB PreV ], [PostB PostV ]⟩,mB

0 ,B,h⟩
1 Let PB = {pB

1 , pB
2 , . . . , pB

|S|} be the set of |S| places;
2 Let T B = /0 and TV = /0;
3 forall

(
si,τ,s j

)
∈→B do

4 forall conjunctive element αk of π(si,s j) do
5 T B = T B ∪ tτk /* add a new transition to T B

*/
6 Insert a new column into PreB and PostB associated with tτk ;
7 PreB[pB

i , tτk ] = 1;
8 PostB[pB

j , tτk ] = 1;

9 Let mB
0 = 0|S|×1;

10 mB
0 [p

B
0 ] = 1;

11 forall s f ∈ F do
12 TV = TV ∪ ts f /* add a new virtual transition to TV

*/

13 Insert a new column into PreV and to PostV associated with ts f ;
14 PreV [pB

f , ts f ] = 1;
15 PostV [pB

f , ts f ] = 1;

Example 4.2.3 Let us revisit the LTL mission from Example 4.2.1. The corresponding Büchi
automaton for this task is shown in Figure 4.5(a), where the symbol ⊤ (True) represents any
observation from 2B. An accepted run satisfying the formula could be s1, s3, s3, . . ., with s1

as the prefix and s3 as the suffix. Note that the final state s3 is visited infinitely often. However,
as depicted in the environment of Figure 4.2, this run cannot be executed by the two robots.
The robots are restricted to navigating through cells in the free space until one enters p13,
while the other simultaneously enters p4 or p10. Directly entering p13 is not feasible, as it
requires first activating b1 or b2, which would violate ϕ from Equation (4.1).

A feasible run generated by the robots follows the sequence: s1, s2, s3, s3, . . ., with
s1, s2 as the prefix and s3 as the suffix. In this case, the robots must first synchronously
enter y1 and y2 (producing π(s1,s2) = b1 ∧b2). Subsequently, one robot must proceed to p13

(the intersection of y1 and y2). Finally, a robot must enter y3 while crossing the free space
to enable the transition to s3 in the Büchi automaton. This solution is not unique, as the
self-loop at s2 allows for any valid input.

The translation of the Büchi automaton into a Büchi Petri net is illustrated in Figure
4.5(b) using Algorithm 5. Boolean formulas for transitions are displayed in red. The places
pB

2 and pB
3 , corresponding to states s2 and s3, are connected by a single transition for the

input π(s2,s3) = b1 ∧b2 ∧b3. Additionally, the virtual transition tV
1 is connected to the final

state s3 via a bidirectional arc. ■
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(a) Büchi automaton (b) The associated Büchi Petri net

Fig. 4.5. Example of Büchi automaton and Büchi Petri net for the LTL formula in (4.1)

Sub-step 1.3. Composition of Quotient RMPN and Büchi Petri net systems. The
entire approach for combining the robotic team model QM with the specification model QB

into a unified framework, referred to as the Composed Petri net QC, is detailed in Algorithm 6.
This process requires an intermediate layer of places given by 2×|Y |, with half representing
active observations (set PO) and the other half representing inactive observations (set P¬O).
Initially, places pO

i contain zero tokens, while places p¬O
i contain |R| tokens, indicating the

absence of active observations in the initial marking (line 3). The sum of tokens in pO
i and

p¬O
i always equals |R|. Lines 1 to 2 detail the sets of places and transitions for the Composed

PN QC.
The initialization of matrices PreC and PostC is addressed in lines 4 to 5. For each

observation bi, lines 6 to 10 are executed. Input arcs are added to place pO
i for each pk ∈ PM

where bi ∈ h(pk). Furthermore, arcs from pO
i to all output transitions of pk are incorporated.

This ensures that when a robot enters a region pk with output yi, a token is added to pO
i ,

making bi an active observation if m[pO
i ] > 0. On the other hand, p¬O

i represents the
complementary place of pO

i , which is connected to the same transitions but with oppositely
oriented arcs. If m[p¬O

i ] = |R|, then bi is inactive. Finally, the loop in lines 11 to 17 connects
places pO

i and p¬O
i with transitions tB

τ by reading arcs, following the assigned Boolean
formula (conjunction), and considering weights of 1, respectively |R|.

Figure 4.6 illustrates a partial view of the full Composed Petri Net as built by Algorithm
6, including the initial marking. For clarity, this figure includes only the arcs associated
with a specific region of interest (y3). When a transition in QM fires and the observation
b3 changes, QM deposits a token into the respective active observation place. For instance,
transition tM

2 is enabled when b3 is not active (initially, the robots are in the free space), and
if it fires, then a token is produced in both pM

1 and pO
3 . In QB, transitions fire based on the

assigned Boolean formula, triggered by the reading arcs from PO and P¬O. For example,
transitions tB

5 and tB
2 depend on the active observation b3 of region y3. The transitions in the

Büchi PN in Figure 4.6 are color-coded according to the required active observations: red for
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Algorithm 6: Composed Petri net system
Input :PO,P¬O, QM = ⟨⟨PM,T M,PreM,PostM⟩,mM

0 ,B,h⟩, QB = ⟨⟨PB,T B ∪TV ,
[PreB PreV ], [PostB PostV ]⟩,mB

0 ,B,h⟩,
Output :QC = ⟨⟨PC,TC,PreC,PostC⟩,mC

0 ,B,h⟩
1 Let PC = PM ∪PB ∪PO ∪P¬O;
2 Let TC = T M ∪T B ∪TV ;
3 mC

0 =
[
mM

0 , mB
0 ,m

O
0
]
;

4 Let PreC =


PreM 0|P

M |×|T B| 0|P
M |×|TV |

0|P
B|×|T M | PreB PreV

0|P
O|×|T M | 0|P

O|×|T B| 0|P
O|×|TV |

0|P
¬O|×|T M | 0|P

¬O|×|T B| 0|P
B|×|TV |

;

5 Let PostC =


PostM 0|P

M |×|T B| 0|P
M |×|TV |

0|P
B|×|T M | PostB PostV

0|P
O|×|T M | 0|P

O|×|T B| 0|P
O|×|TV |

0|P
¬O|×|T M | 0|P

¬O|×|T B| 0|P
O|×|TV |

;

6 forall yi ∈ Y do
7 Let P′ = {p ∈ PM|yi ∈ h(p)};
8 forall pk ∈ P′ do
9 PostC[pO

i ,
•pk] = PreC[pO

i , pk
•] = 1;

10 PreC[p¬O
i ,•pk] = PostC[p¬O

i , pk
•] = 1;

11 forall tB
τ ∈ T B do

12 Let πi be the DNF formula assigned to tB
τ ;

13 if πi ̸=⊤ then
14 forall atomic propositions yi appearing not negated in πi do
15 PreC[pO

i , t
B
τ ] = PostC[pO

i , t
B
τ ] = 1;

16 forall atomic propositions yi appearing negated in πi do
17 PreC[p¬O

i , tB
τ ] = PostC[p¬O

i , tB
τ ] = |R|;

y1, blue for y2, and green for y3. This rationale is consistently applied to the remaining active
and inactive intersections, such as b1 ∧b2.

Remark 4.1 The complexity of the Quotient PN is polynomial, specifically O(|P|2),
considering the partitioned environment. Algorithm 6 operates in polynomial time concerning
the inputs →B of the Büchi automaton B and the number of atomic propositions under set
B. Typically, Linear Temporal Logic (LTL) formulae involve a limited number of atomic
propositions, and the exponential upper bound of 2|B| is rarely reached. Furthermore,
Algorithm 6 is polynomial concerning the cardinalities of sets B and T B.
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Fig. 4.6. Part of the Composed Petri net, based on active and inactive observations b3 of y3

4.2.2 Optimization-based solution

The planning algorithm for robot navigation requires achieving two steps: (i) computing a
solution on the previously built model QC which considers a reduced representation of the
robotic team, and (ii) projecting this solution into the full Petri net robotic model, returning
the multi-robot system trajectories. This algorithm rules out the solutions that cannot be
projected into the environment model based on the reduced solution (step (i)). This idea is
similar to the one presented in [116], but it is applied to a PN-based rather than a graph-based
approach.

Global Algorithm. Algorithm 7 calculates the movements of the robots while ensuring
the fulfillment of the mission ϕ . The algorithm stops when it returns a set of trajectories
for a place pB

fi ∈ Set f , where Set f represents the final states in B (line 15). The principal
idea is to first search for a feasible run in QC (lines 3 - 12) using the MILP (4.2), which is
executed separately for the prefix and suffix, each with a different initial marking. The suffix
is computed by MILP (4.2) only when the last active observation of a final place pB

fi is not
included in its self-loop (i.e., the place pO

j for observation b j contains at least one token). If
the last active observation is captured by the self-loop of the final place, then the suffix is
defined by that final place. A feasible Run is obtained when both the prefix and suffix are
non-empty (lines 11 - 15), after which a projection of this solution is explored using MILP
(4.3).

If the Run cannot be projected into the original RMPN of the environment, the previous
solutions returned by MILP (4.2) for both the prefix and suffix are saved, considering only
the transitions in QM. Line 17 appends these solutions ∑

k
i=1 σM

i of the prefix (denoted by
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subscript p) and suffix (denoted by subscript s) to the sets of bad solutions CEp|s. These sets
are treated as counterexamples in MILP (4.2), forcing the computation of a different Run.
If no overall solution is found for any p fi , the entire process is repeated with an increased
number of steps k.

Algorithm 7: Global solution for robot’s trajectories
Input :RMPN Q, Composed Petri net QC, the sets B, |R|, PO, Set f , and the finite

horizon k
Output :Tra j = Sequence of firing transitions

1 Let CEp|s = /0 and f lag = False;
2 while (k ≤U) OR (k >U AND f lag = True) do
3 forall pB

fi ∈ Set f do
4 Compute prefix for pB

fi with MILP (4.2);
5 if prefix ̸= /0 then
6 Let PO

f be last active observation for pB
fi;

7 if PO
f |=π(s f ,s f ) then

8 Compute suffix with MILP (4.2), where mC
0 = mC

k ;
9 else

10 suffix = s f ;

11 if (prefix ̸= /0 AND suffix ̸= /0) then
12 Run = prefix suffix suffix . . . ;
13 Project Tra j with MILP (4.3);
14 if Tra j ̸= /0 then
15 Return Tra j;

16 f lag = True;
17 CEp|s =CEp|s ∪∑

k
i=1 σM

i ;

18 Increase k;

Sub-step 2.1. Solution on the reduced model. As previously mentioned, the solution
in terms of robots’ trajectories is returned by an algorithm considering two optimization
problems. The first MILP (4.2), drives the Quotient PN to a state corresponding to a final
state in Büchi (marking mC

2k). The MILP is solved individually for prefix and suffix, each
for k steps, with k ≥ 1 being a design parameter. The odd steps are responsible for firing
transitions in Quotient PN, while the even step triggers the firing of transitions in Büchi
PN. The upper-bound of k is U =

(
|PM|−1

)
×
(
|PB|−1

)
, as it may be necessary to move a

token through all places PM to produce a token in the next place Büchi PN.
Parameters:

• |R| - number of robots;
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• pB
f - place modeling a final state in Büchi;

• CC - token flow matrix of QC;

• PreC - pre-incidence matrix of QC;

• CEp|s - set of bad solutions for both prefix and suffix.

Variables:

• mC
i =

[
mM

i mB
i mO

i m¬O
i
]T - marking column vector at step i of QC composed by the

marking of Quotient PN (mM
i ), Büchi PN (mB

i ), active observation places (mO
i ) and

inactive observation places (m¬O
i );

• σC
i =

 σM
i

σB
i

σV
i

 - firing vector at step i of the Composed PN, comprised by the firing

vector of Quotient PN (σM
i ), Büchi PN (σB

i ) and of virtual transitions (σV
i );

• z1,z2 ∈ {0,1}|T M | - binary vectors with z1[ j] = 1 if ζ −∑
k
i=1 σM

i ≥ 1, and z1[ j] = 0
otherwise, respectively z2[ j] = 1 if ζ −∑

k
i=1 σM

i ≤ 1, otherwise z2[ j] = 0, with ζ ∈
CEp|s.

Objective:

min
2·k

∑
i=1

i ·
(
1T ·σM

i +1T ·σB
i
)

(4.2a)

Constraints:

mC
i −mC

i−1 −CC ·σC
i = 0, i=1,2·k (4.2b)

mC
i −PreC ·σC

i
1T ·σM

i
1T ·σB

i +1T ·σV
i

≥ 0,
≤ |R|,
= 0,

 i=2· j+1

j=0,k−1
(4.2c)

1T ·σM
i

1T ·σB
i

1T ·σV
i

= 0,
= 1,
= 0,

 i=2 (4.2d)

1T ·σM
i

1T ·σB
i +1T ·σV

i

= 0,
= 1,

}
i=2· j

j=2,k
(4.2e)

mC
i [p

B
f ] = 1, i=2·k (4.2f)

ζ −∑
k
i=1 σM

i
−ζ +∑

k
i=1 σM

i

≤ N · (1− z j),

≤ 1+N · z j,

}
∀ζ∈CEp|s

i=1,2·k, j=1,2
(4.2g)

1T · (z1 + z2)≥ 1 (4.2h)
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Explanations for MILP (4.2) are as follows: (a) the objective function minimizes the
number of transitions fired from sets T M and T B, favoring solutions that complete within the
earliest possible steps k; (b) represents the state equation (2.1); (c) ensures robots advance
at most one place in the Quotient PN when i is odd, leading to a change in observation
(h(pM

i ) ̸= /0), and requires that in the subsequent step (i is even), a transition in the Büchi PN
is fired; (d) enforces firing a transition from set T B, ensuring progress from the initial state;
(e) allows the firing of a single transition in the Büchi PN.; (f) guarantees that after k steps,
the marking corresponds to the final state in the Büchi PN, denoted pB

f ; (g) and (h) ensure the
current solution differs from any previously invalid solution ζ in the set CEp|s, employing a
big number (N) method [117].

Sub-step 2.2: Projecting the Solution. Let M = ⟨mM
1 ,mM

2 , . . . ,mM
2k⟩ denote the

sequence of markings returned by MILP (4.2), with successive identical markings removed.
Include mM

0 as the first element of M. Additionally, define G = ⟨g1,g2, . . . ,g2k⟩, a sequence
of 2k vectors such that gi ∈ {0,1}|PM |, where gi[ j] = 1 if mM

i [ j] = 0, and gi[ j] = 0 otherwise.
This vector ensures no additional observations are activated between consecutive steps.

MILP (4.3), used for projecting solutions, expands each marking in the Quotient
RMPN (derived from MILP (4.2)) into a sequence of markings in the original RMPN while
preserving the active observations to validate the LTL formula, even with finite repetitions.
To prevent collisions, |R| intermediate markings are introduced between successive markings,
ensuring only one robot crosses each region at a time.

Parameters:

• M - sequence of markings computed by (4.2);

• Pr - the projection matrix between QB and RMPN models;

• C - the token flow matrix of RMPN model;

• Pre,Post - the pre/post-incidence matrices of RMPN model;

• mM
i - marking at step i of QM.

Variables: mi, j - the marking at step i of RMPN model, based on the intermediate
marking j; σ i, j - the firing vector at step i of RMPN, considering the intermediate marking j
with i = 0, |M|, j = 1, |R|+1.

Objective:

min1T ·∑
i, j

σ i, j (4.3a)



4.2 Composed Petri net model 69

Constraints:

mi, j −mi, j−1 −C ·σ i = 0, i=0,|M|, j=1,|R|+1 (4.3b)

mi,0 −mi−1,|R|+1 = 0, i=1,|M| (4.3c)

Pr ·mi, j −mM
i = 0, i=0,|M|, j=1,|R| (4.3d)

Post[gi ·Pr, ·] ·σ i, j = 0, i=0,|M|, j=1,|R|+1 (4.3e)

Post ·σ i, j +mi, j−1 ≤ 1, i=0,|M|, j=1,|R|+1 (4.3f)

mi,|R|+1 −Pre ·σ i,|R|+1 ≥ 0, i=0,|M| (4.3g)

The constraints in MILP (4.3) are defined as follows: (b) represents the state equation
of the PN (2.1); (c) ensures continuity of markings by requiring that the last intermediate
marking matches the initial marking of the next step; (d) maintains the same observations
across intermediate markings mi,1 to mi,|R|, as the cardinality of |R| intermediate markings are
introduced to prevent collisions between mM

i and mM
i+1.; (e) guarantees that the firing vectors

corresponding to the intermediate markings from mi,1 to mi,|R| do not activate additional
observations; (f) enforces collision avoidance between consecutive markings in the original
RMPN by limiting each region to be traversed by at most one agent between two intermediate
markings; (g) requires that robot movements from substep mi,|R| to mi,|R|+1 are synchronized,
meaning all robots fire exactly one transition. This ensures that the resulting observation of
QM changes consistently with the transitions fired in the Büchi PN.

Complexity. The use of MILp problems leads to an NP-hard algorithm. The total
number of the unknown variables in both MILPs is based on the number of markings and
transitions in both QC and Q, and a set of binary variables of size 2 · |T M| · |CEp|s|, bounded
by U . The total number of constraints depends on the design parameter k for MILP (4.2),
while for MILP (4.3) it depends on the previous solution.

Remark 4.2 The Algorithm 7 proves efficient in situations where a first returned solution
by MILP (4.2) cannot be projected into the environment by MILP (4.3) (see Example 4.2.4.
One downside is the fact that the proposed algorithm is not complete due to the possibility
of spurious transitions as a result of MILP (4.2) and the collision avoidance restrictions of
MILP (4.3), ensuring the correct solution represented by collision-free trajectories for the
robotic team.

Example 4.2.4 This example presents an illustrative scenario that demonstrates an unfeasi-
ble solution returned by MILP 4.2 within the planning method based on the defined Composed
Petri Net model. In this case, the solution produced by MILP 4.2 cannot be projected into the
environment by MILP 4.3 due to the partitioned environment. Thus, the proposed Algorithm
7 is designed to prevent these limitations, ensuring that feasible solutions are still provided.

The projection step results from the collision avoidance constraint from MILP 4.3 thus
preventing the robots from following the solution returned by MILP 4.2. The Algorithm 7 is
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Fig. 4.7. Trajectories returned by the projection step (MILP 4.3) satisfying the LTL formula ϕ (based
on the work from Chapter4.2

structured on the following guided idea: each time MILP 4.2 gives a solution that cannot be
projected to the PN model of the robots (through MILP 4.3), that solution is added in a set of
bad solutions, k (user-defined parameter representing the number of steps) is increased, and
the procedure is iterated. Accordingly, MILP 4.2 has additional constraints that prevent any
solution from the set of bad ones. The completeness is not achieved, yet, as the new MILP 4.2
could return firing vectors containing cycles, and eliminating such cycles or putting upper
bounds on the number of cycles would require a huge number of additional constraints -
an aspect that is not included since the obtained MILP would have been computationally
intractable. The method is safe in terms of the possibility of returning feasible solutions. This
method is implemented and integrated into RMTool under MATLAB [118].

Let us consider the example from Figure 4.7, considering a team of two robots and the
LTL formula ϕ = ¬(b1 ∨b2)U (b1 ∧b2), imposing to reach the regions y1 (color red) and
y2 (color blue) simultaneously. By design, the regions y3 to y6 surround the free space cell
which is adjacent to both regions of interest y1 and y2. The robots could enter the required
region y1,y2 either from the free space, or from the mentioned adjacent regions. The figure
illustrates this scenario for which the first returned solution by MILP 4.2 cannot be projected
by MILP 4.3. Both robots’ trajectories are required to cross the free space while reaching
the imposed regions of interest y1 and y2, results obtained by MILP 4.2 with respect to the
shortest path in the Composed PN model. On account of the collision avoidance restriction
in MILP 4.3, the latter solution could not be projected, as both robots were forced to pass
through the same cell c6 representing the free space.

The proposed Algorithm 7 secures the robots’ trajectories through another computed
path, as a result of a new solution of MILP 4.2 which is different from the previous one
demanding to reach y1 and y2 directly from the free space. Therefore, the trajectories
(highlighted with blue and green) express the current collision-free robotic path projected
into the environment. ■
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Fig. 4.8. Trajectories of the robots (r1 - red, r2 - green), ensuring the given LTL mission ϕ from
equation (4.1)

4.2.3 Numerical example

The validation of the proposed framework Composed Petri net is shown here through
numerical simulations, considering two examples: a simple one 4.2.5 based on the previously
defined environment and LTL mission, and a more complex one 4.2.6 including a comparison
between the proposed approach and a previous one [4]. The implementation of the model is
integrated into RMTool - MATLAB [119], while the optimization solver selected for MILPs
is CPLEX Optimizer [110]. The results were computed on a laptop with i7 - 8th gen. CPU @
2.20GHz and 8GB RAM.

Example 4.2.5 In this example, the environment from Figure 4.2 is recalled with the LTL
mission from (4.1): ϕ =♢(b1 ∧b2 ∧b3)∧¬(b1 ∨b2)U (b1 ∧b2). The mission requires the
robots to simultaneously reach all three regions of interest, ensuring that y1 and y2 are visited
at the same time. Figure 4.8 illustrates the robot trajectories generated by Algorithm 7, with
red and green indicating the paths of r1 and r2, respectively. Both robots first move toward
regions y1 and y2 to satisfy the concurrent requirement. Subsequently, r1 advances to enter
the final region of interest, y3, while r2 moves into p13 = {y1,y2}.

For this result, the Quotient PN model, consisting of 5 places and 10 transitions,
was computed in 0.02 seconds. The Composed PN model, comprising 14 places and 16
transitions (including one virtual transition), was also computed in 0.02 seconds. MILP (4.2)
successfully reached the final state in the Büchi automaton within 0.05 seconds, using 180
unknown variables (k = 6). The returned solution included the prefix s1s2, without requiring
the computation of the suffix, as the final state s3 had a self-loop with a ⊤ (True) condition.
Projecting the solution took 0.05 seconds for 900 unknown variables, with a cost function
value of 11, representing the total number of cells traversed by the robots. ■
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Fig. 4.9. Returned trajectories for Example 4.2.6 (red - r1; green - r2, blue - r3, magenta - r4, black -
r5, yellow - r6)

Example 4.2.6 For this example, let us consider the following LTL formula:

ϕ =□(♢b1 ∧♢b3 ∧♢b5 ∧♢b6 ∧♢b7 ∧♢b8)∧¬(b5 ∨b6)U (b5 ∧b6)∧¬(b4 ∨b7)U (b4 ∧b7)

(4.4)
This specification requires visiting multiple regions of interest (ROIs) in an environment

containing 8 ROIs. Additionally, the regions y5 and y6 must be visited simultaneously, as well
as y4 and y7. Figure 4.9 illustrates the trajectories of 6 robots, with black stars indicating the
synchronization points needed for the team to satisfy ϕ . ■

Table 4.2 contains a result analysis of the current approach of Alg. 7 in contrast with
the work [4], previously described in Chapter2.4 under the notation FB. The comparison
between methods accounts for two metrics: (b) run time to provide a solution and (c)
trajectory length of the robotic team. The latter metric represents the value of the cost
function (number of crossed cells of all robots) computed for k = 10 intermediate markings.
One can refer to the present method as having a parallel approach, while the previous one
can be considered as a sequential approach, with respect to the two models (robotic team
and given specification). It should be noted that the collision avoidance strategy is ensured
through the current planning strategy (restrictions (4f) of MILP (4.3)), contrary to the FB
method out of which collision-free trajectories cannot be guaranteed.

Discussion. Based on the run simulations, this method of composing two models
(RMPN of the environment and the Büchi automaton for the LTL specification) yields lower
computational time and model size compared with FB. The current procedure returns a
scalable PN model w.r.t. the number of robots, having a maximum number of places given by
the following sum: |PM|+ |PB|+2 · |B| (sum of places in the Quotient PN, the number of
states in the Büchi automaton, and twice the number of individual observations). On the other
hand, the model returned by the FB approach contains the number of places given by the
RMPN Q, while approaches based on transition systems TS [50] (mentioned in Chapter2.4)
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Table. 4.2. Comparison between current approach and method FB [4] for Example 4.2.6

Number
of robots

(b) Run time to return a solution [sec] (c) Trajectory length

FB current approach: MILP (4.2) FB current approach

4 9.56 0.75 37 39
5 2.22 0.26 23 28
6 0.77 0.11 20 21
10 1.2 0.78 13 13

are highly dependent on the size of the team. For example, the size of models in Example
4.2.6 are as follows: 37 places (Composed Petri net), 62 places (FB), 11|R|×10 (Quotient
TS), as 11, respectively 10, represent the number of states in the reduced transition system,
respectively in BA. The Quotient TS method refers to the product automata of all individual
models of the robotic teams, where each state models a single observation, similar to the
approach of Quotient PN.

Thus, the complexity is reduced as the number of places in the Composed Petri net
model is smaller, compared with other approaches considered in the result analysis process.

4.3 Path rerouting considering parallel motion execution

Efficient task allocation and motion planning solutions maximize a team’s productivity by
assigning the right robot to the right task based on capabilities and workload [120, 121] while
following the computed path. On the other hand, task reassignment is crucial in multi-robot
systems operating in constrained environments, such as a narrow passage, as it allows the
robots to dynamically adjust their tasks based on real-time conditions. Without reassignment,
robots could collide, or delays might appear. By reallocating tasks, the multi-agent system
ensures that robots efficiently reach their destination. Several papers tackle the problem of
dynamic task allocation, either for UAVs [122], or in uncertain scenarios [123].

In narrow passages, space is limited, making it impossible for all robots to move
simultaneously without coordination. Pre-assigned tasks may not account for changing
spatial conditions, such as another robot blocking the way. If the robots fail to reassign their
tasks, they may all attempt to cross the passage simultaneously, leading to a deadlock or
inefficient movement patterns. The reallocation of tasks allows robots to prioritize certain
tasks, such as letting the closest robot pass first, while others delay or reroute. This not only
avoids collisions but also optimizes overall the robotic system performances by reducing
wait times and unnecessary energy consumption.
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The proposed solution enables parallel movement and collision-free paths for a team of
identical robots in a known environment, while satisfying a global Boolean-based formula
over a set of regions of interest. It builds upon the initial set of robotic paths provided by the
approach in [2]. The parallel execution of the planning solution ensures deadlock avoidance,
drawing inspiration from the Banker’s algorithm, which is commonly used for resource
allocation tasks. In this context, the resources are represented by the cells that model the free
space shared by the robots during the mission.

The key advantages of the proposed solution are twofold: (i) it improves motion
execution by reducing the number of waiting states of the robots along their paths, and (ii) it
incorporates path rerouting, which is solved through a MILP problem, ensuring the mission
is still fulfilled without generating new observations along the robot paths. To clarify, an
observation (as defined in Chapter 2.1) refers to the True value of an atomic proposition
from set B that is included in the global mission. Rerouting is triggered when the number of
waiting robots exceeds a certain threshold or when stopped robots impede the movement of
others. As a result, the method supports parallel robot movement and path rerouting when
necessary. The algorithm is integrated into the open-source toolbox RMTool [119].

4.3.1 Driving factors

In the literature, the collision- and deadlock-free motion of robots is typically classified under
Resource Allocation Systems (RAS). A widely adopted solution is based on the *Banker’s
Algorithm* (BA), which aims to prevent deadlocks. In essence, this algorithm simulates the
maximum resource allocation (currently represented by the free space for the robots) for each
process at every step, before deciding on the actual distribution of resources. This approach
ensures that processes finish sequentially, though an iterative version can be applied where
only one movement or operation is allowed per process step. It requires prior knowledge of
the total number of resources in the system, and the system must be in a safe state at each
step (meaning all processes can be completed within a finite time) [124].

While BA offers significant advantages for avoiding deadlocks, its application to mobile
robot planning, where each robot’s path is considered a separate process, is explored in only
a few studies. Papers such as [125, 126] propose improvements to the Banker’s Algorithm
by incorporating graph representations, allowing robots to temporarily be in unsafe states
under specific conditions, thus reducing unnecessary waiting times. An alternative approach
is found in [127], which considers the dynamic release of resources during process execution.
The benefits of using a Petri net system in conjunction with BA are discussed in [128],
particularly in flexible manufacturing systems.

The current approach improves upon the more conservative method presented in [2], by
introducing high-level path planning that allows for parallel movement of the robots. The
method in [2] addresses the following problem: Given a team of robots in an environment
E and a global Boolean-based formula ϕ (as outlined in Chapter 2.3), find collision-free
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paths for the robots to satisfy the mission. This approach solves two MILP problems based
on the team model RMPN (as defined in Definition 2.2.2): one for intermediate requirements
and another for final requirements within formula ϕ . Additionally, both MILP problems
assume a fixed number of intermediate markings (equal to the number of robots) to avoid
collisions in the robot paths. The limitation of this approach lies in its sequential nature,
where robots must reach goal cells one after the other when paths share *common resources*
(defined below). In practice, this requires robots to navigate narrow passages, but the solution
focuses solely on collision-free movement without considering parallel motion. This results
in unnecessary waiting for some robots until others reach their destinations. Hence, a parallel
motion strategy is needed, which will allow task reallocation, as further elaborated.

The primary goal of the current approach is to maximize the number of robots moving
in a single global step, based on their predefined paths. The overall solution involves
iteratively checking which robots can safely move to the next position. These robots must
satisfy a global Boolean-based specification while taking advantage of the Petri net model
in a partitioned environment. A key innovation in this approach is path rerouting without
generating new observations along the paths, triggered by the number of robots waiting at
a given step. Furthermore, rerouting is initiated when path blocking occurs due to parallel
movement and robot waiting. This situation arises when some robots reach their final states
but block the path for others. The rerouting is applied to the entire team, by solving a single
MILP problem using the current and final markings of the Petri net system. This reduces the
number of global steps needed to complete the mission.

The following assumptions are established, some of which are drawn from the previous
work [2], while others introduce terminology relevant to the current planning strategy:

(a) The condition m0[p]≤ 1,∀p ∈ P is satisfied, meaning that each robot is initially placed
in a distinct partition cell (place of the RMPN).

(b) Each disjunction ϕi from the Boolean specification (Chapter2.3) can specify either
regions to be visited or avoided.

(c) Each disjunction ϕi for intermediate or final requirements can be satisfied by a single
robot deployment. In other words, there exists at least one RMPN marking that satisfies
the requirements.

(d) Each disjunction for intermediate requirements may involve visiting multiple ROIs, or
it can specify the avoidance of specific ROIs.

(e) An obstacle place refers to a place in the RMPN corresponding to a ROI that must be
avoided, as required by the intermediate or final specifications in ϕ .

(f) A step is defined as a global time period during which at least one robot moves to an
adjacent cell.
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Fig. 4.10. Environment including 2 robots and 3 regions of interest

(g) A resource is defined as a cell in the path, while a common resource is a cell crossed
by more than one robot along their paths. A similar interpretation of this concept is
discussed in [129].

(h) A robot collision occurs when two robots occupy the same cell at the same time (step).
The case of two robots swapping places is excluded, as will be detailed in the following
section.

(i) A process represents the path of a robot, expressed as a sequence of cells, denoted
as Tra j. It is assumed that these (initial) paths are known and are provided by the
solution in [2].

Therefore, the second part of this chapter addresses the motion planning problem as
follows: Given a set of paths, denoted Paths, for a homogeneous robotic team, and their
evolution modeled as an RMPN Q system (Definition 2.2.2), compute collision-free parallel
movements for the robots to satisfy a global Boolean-based specification (Chapter2.3).

Example 4.3.1 Consider the environment E depicted in Figure 4.10. The workspace is
divided into 6 identical cells, represented by the set C , containing 3 regions of interest: y1,
y2, and y3. Two robots, r1 and r2, are initially positioned in cells c1 and c2, respectively. For
instance, cell c6 corresponds to the third region of interest (y3), so it is labeled as: h(c6) = b3.
The labels for the other cells are as follows: h(c5) = b1 (for y1), h(c4) = b2 (for y2), and
h(c1) = h(c2) = h(c3) = /0 (indicating free space), as these cells do not belong to any region
of interest.

Let us consider the following Boolean-based mission for the team of two robots:

ϕ = b1 ∧b2 ∧¬B3 (4.5)

This Boolean specification (from Chapter 2.1) requires that region y3 be avoided during
the robots’ movements (indicated in uppercase), while regions y1 and y2 must be visited at
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the final positions (indicated in lowercase). The approach described in [2] generates two
paths by assigning goal region y1 to robot r2 and goal region y2 to robot r1. The robots’
paths are represented as ⟨(ri,c j),(ri+1,ck)⟩, where robot ri is located in cell c j and robot
ri+1 is in cell ck, both at the same step. In the initial step (step 0), the assigned resources for
robots r1 and r2 are represented by cells c1 and c2, respectively.

Paths = {
step 0: ⟨(r1,c1),(r2,c2)⟩ step 1: ⟨(r1,c1),(r2,c3)⟩
step 2: ⟨(r1,c1),(r2,c4)⟩ step 3: ⟨(r1,c1),(r2,c5)⟩
step 4: ⟨(r1,c2),(r2,c5)⟩ step 5: ⟨(r1,c3),(r2,c5)⟩
step 6: ⟨(r1,c4),(r2,c5)⟩ }

(4.6)

■

4.3.2 Algorithm for parallel motion

As observed, the robots move sequentially: r1 begins its movement only after r2 reaches its
destination cell c5. Due to this delay, the mission is completed in 6 steps (refer to (f) for the
definition of step). To address the conservatism of this approach, we propose minimizing the
number of steps required to complete the mission. The proposed solution enables collision-
free parallel movement of the robots along their paths, while also rerouting them when
necessary. This rerouting is achieved by solving a MILP based on the current (m0) and
final (m f ) markings in the RMPN model. By applying the strategy outlined in Algorithm
8 (described in detail below), the robots can reach their final destination in 4 steps. Their
movements are represented as follows:

Paths′ = {
step 0: ⟨(r1,c1),(r2,c2)⟩ step 1: ⟨(r1,c1),(r2,c3)⟩
step 2: ⟨(r1,c2),(r2,c4)⟩ step 3: ⟨(r1,c3),(r2,c5)⟩
step 4: ⟨(r1,c4),(r2,c5)⟩ }

(4.7)

As previously stated, the solution reduces the steps required to fulfill the global mission
by enabling parallel motion and reallocating tasks. Let Tra j = {Tra j1,Tra j2, . . . ,Tra jr}
represent the set of robot trajectories, where Tra ji corresponds to the path followed by robot
ri ∈ R. The trajectory Tra ji specifies the sequence of cells that robot ri must traverse to
reach its target cell. For instance, the trajectory of r1 is expressed as Tra j1 = [c1,c2,c3,c4].
Although the method proposed in [2] effectively generates collision-free paths, it often results
in multiple waiting instances in certain cells when paths involve shared resources, leading to
increased steps. To address this, an algorithm is introduced to facilitate parallel execution
along the trajectories in Tra j and reroute robots when excessive waiting occurs at specific
steps.



78 Path planning with LTL specifications and path optimizing for multirobot systems

Algorithm 8: Parallel motion of the robotic team
Input :Q = ⟨N ,m0,B,h⟩,m f ,Paths,N
Output :Paths′ /* Planned robotic movement */

1 Build Tra j based on Paths;
2 Determine the order of resources c j ∈ P allocation to processes in Tra j;
3 Remove obstacle place to update Q;
4 Paths′ = step 0 in Paths;
5 while

(
m0 ̸= m f

)
do

6 RobotsToMove = /0;
7 for ri ∈ R do
8 c j is the second place in Tra ji /* the next robot to enter

c j is ri */
9 if resource c j should be assigned next to ri AND no robot in c j then

10 RobotsToMove = RobotsToMove∪{ri};
11 end
12 end
13 Update Paths with the next step by moving RobotsToMove to their next

places while maintaining the other in their position;
14 Remove first places of all ri ∈ RobotsToMove to update Tra j;
15 Update m0;
16 if (|R\RobotsToMove| ≥ N) OR (|RobotsToMove|== 0) then
17 Solve MILP (4.8) to reroute paths considering m0 and m f ;
18 Build Tra j associated with the rerouted paths;
19 Determine the order resources c j ∈ C allocation to processes in Tra j;
20 end
21 end

The key idea is to modify the initial movements encoded in Paths by encouraging
robots to move in parallel whenever feasible. This problem can be viewed as one of resource
allocation, aiming to prevent deadlocks and collisions. Completing the processes corresponds
to the multi-agent system reaching their designated goal cells. The strategy builds on the
concept of a safe state from the Banker’s Algorithm (BA), adapted to the current context. The
proposed algorithm guarantees a solution under the previously stated assumptions. Initially,
the order in which each process accesses resources is determined based on Paths, accounting
for scenarios where certain resources are reused during a process (e.g., back-and-forth
motions). This order ensures that all processes are eventually finished, as demonstrated in
[2]. At each step, if a robot cannot move according to Paths but the next cell it should enter
is free and the resource is assigned to the robot, the movement is shifted to the current step
in Paths′. Furthermore, if N or more robots are waiting for resources at the same step, all
trajectories are recomputed by solving the MILP (4.8).
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Algorithm 8 outlines the complete process for robot motion, starting with Paths obtained
using the approach from [2]. In addition to Paths, the user specifies a threshold N, which
triggers rerouting whenever at least N robots are waiting during a step. Before enabling
parallel motion, several preparatory actions are performed: compute robot trajectories in
Tra j (line 1), determine the order in which robots cross cells (line 2), remove restricted areas
along trajectories (line 3), and initialize the starting cells of robots at step 0 (line 4).

In line 6, the variable RobotsToMove is initialized as an empty set to store the robots
moving in the current step. The loop between lines 7 and 12 checks whether each robot can
move in the current step. A robot is allowed to move if the next cell is free and it is the robot’s
turn to occupy that cell. Once the set of moving robots is determined, lines 13–15 capture
their parallel movements. The final section of the algorithm assesses the need for rerouting.
If the threshold N is reached or no robot can move in the current step, the MILP (4.8) is
invoked to recompute paths, updating the starting positions m0 based on the robots’ current
locations (lines 17–19). This approach prevents deadlocks, which could arise if rerouting
changes the order in which robots reach their goal cells and obstructs others’ paths.

To enable parallel motion, path rerouting is applied to all robots. The MILP (4.8)
ensures that trajectories are completed in sequential order, avoiding collisions and deadlocks.
The implementation, as outlined, promotes parallel movement by solving the MILP. The
optimization variables include the initial markings m0,i, the final markings mi, and the
firing count vectors σ i for each robot ri ∈ R. These vectors are also used in the cost
function to minimize the weighted sum of the r firing count vectors. Unlike previous MILP
formulations for robot motion strategies—where σ encompasses the firing sequence for the
entire team—this approach individually accounts for each robot’s execution. Minimizing this
cost function ensures that two robots cannot swap positions, thereby satisfying assumption
(h).

The MILP (4.8) is subject to the following constraints:

• Constraints (i) correspond to the state equation (2.1) applied to a sequence of markings
mi, i = 1, . . . , r . This sequence of markings is utilized to prevent collisions.

• Constraints (ii) enforce that no more than one robot occupies a given place at any time,
taking into account the final positions of the preceding (i−1) robots and the initial
positions of the remaining (|R|− i) robots.

• Constraints (iii) and (iv) ensure the determination of the initial markings m0,i and final
markings mi for all robots ri ∈ R, consistent with the initial marking m0 and the final
marking m f of the RMPN team model.

• Constraints (v) complement the earlier constraints by guaranteeing that m0,i represents
the marking for a single robot.

• Constraints (vi) define the types of the unknown variables.



80 Path planning with LTL specifications and path optimizing for multirobot systems

min 1T ·
r
∑

i=1
i ·σi

s.t. mi = m0,i +C ·σi, i=1,2...r (i)

Post ·σ i +
i−1
∑
j=1

mi +
r
∑

j=i+1
m0,i ≤ 1, i=1,2...r (ii)

r
∑

i=1
m0,i = m0 (iii)

r
∑

i=1
mi = m f (iv)

1T ·m0,i = 1, i=1,2...r (v)
m0,i ∈ N|P|

≥0,mi ∈ R|P|
≥0,σ i ∈ N|T |

≥0, i=1,2...r (vi)

(4.8)

Remark 4.3 The proposed algorithm has the following limitations: the chosen threshold
for the number of waiting robots, N, does not guarantee a monotonic relationship with the
total number of global steps in the team path planning process (see Table 4.3); additionally,
in certain cases, the solution may yield the same robot motion as the approach presented in
[2].

4.3.3 Numerical results

The algorithm has been implemented and integrated into the open-source toolbox RMTool
- MATLAB [119]. The simulations were performed on a computer equipped with an i7
8th-generation CPU @ 2.20GHz and 8GB of RAM. The rerouting MILP (4.8) was solved
using CPLEX [110].

Example 4.3.2 Consider Example 4.3.1 with the Boolean-based formula from (4.5). The
mission requires the robots to reach regions y1 and y2 while avoiding y3. The solution
provided by the current method, for N = 1, is shown in Equation (4.7). Using this approach,
the number of steps needed to complete the Boolean-based mission is reduced compared to
the method from [2], with the total steps being reduced from 6 to 4.

In the first step, only r2 moves, as its next cell (c3) is unoccupied, allowing it to advance.
Meanwhile, r1 cannot move because its next cell (c2) is still occupied by r2. For this small
example, the runtime of Algorithm 8 is negligible, approximately 0 seconds. ■

Example 4.3.3 To better evaluate the quality of the solution, consider a scenario where all
robots must traverse a shared free passage to reach their destinations. Figure 4.11 depicts a
grid-based environment consisting of 5 × 5 cells, with 8 ROIs and 4 robots initially positioned
in cells c1, c6, c16, and c21 (in the first column from the left). The Boolean-based specification
is given by ϕ = ¬B1 ∧¬B2 ∧¬B3 ∧¬B4 ∧b5 ∧b6 ∧b7 ∧b8, which requires avoiding the first
4 regions (y1,y2,y3,y4) during the trajectories and visiting the last 4 regions (y5,y6,y7,y8) at
the destination cells.
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Fig. 4.11. Scenario for rerouting the robotic paths considering a grid environment with 4 robots and 8
ROIs

For this example, the computation time to generate robot trajectories using the approach
in [2] is 0.1 seconds. The mission is completed in 24 steps with the previous method [2],
compared to 11 steps achieved by the current approach. The parallel movement of the robots
along their paths does not introduce noticeable additional computation time, particularly
when rerouting is not required. The order in which the robots reach their final cells is detailed
in Table 4.3.

For the specified threshold N = 2 (triggering rerouting when at least 2 robots are
waiting in their current cells), the paths are rerouted twice using MILP (4.8), resulting in a
total of 10 steps. Figure 4.11 illustrates the robot trajectories with dashed lines (r1 - red, r2

- blue, r3 - pink, r4 - green). The figure also shows the robots’ current positions and their
intended movements (indicated by colored arrows) immediately before the rerouting actions
were initiated. The performance metrics for path rerouting, including the mean (µ) and
standard deviation (std) of the running times, are summarized in Table 4.3. ■

Table 4.3 presents quantitative results for scenarios involving shared resources and
increased complexity, characterized by a larger number of cells and team size. The running
time reported in the table corresponds to solving the respective optimization problem for each
approach, as follows: the MILPs in [2] compute robot paths to satisfy the Boolean-based
formula using a global model of the team. Meanwhile, the MILP in the current approach
handles rerouting when necessary: Case I involves rerouting only when a final state is
occupied but needs to be traversed by another robot, while Case II triggers rerouting when N
robots are waiting. In both cases, the team’s final cells are preserved, and collision-free paths
are guaranteed.
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Table. 4.3. Numerical data comparison between the sequential approach [2] and the parallel (current)
approach

Environment scenario Numerical
performances

Planning
approach [2] Case I Case I or Case II (here

N = ⌊|R|/2⌋)

Grid-based 5 × 5, with
|R|= 4 robots

Step count 24 11 10
Count of rerouting actions NA 0 2 times

Execution time [sec] 0.1 0.1 0.1 + (µ = 7 ·10−3, std = 1 ·10−2)
Order of robots to reach
their final cell

r3,r1,r4,r2 r2,r1,r3,r4 r2,r1,r3,r4

Assigned final regions
for tupla (r1,r2,r3,r4)

(y5,y7,y6,y8) (y5,y7,y6,y8) (y6,y5,y8,y7)

Grid-based 10 × 20, with
|R|= 10 robots

Step count 155 39 43
Count of rerouting actions NA 0 6 times

Execution time [sec] 3.2 3.2 3.2 + (µ = 1 ·10−2, std = 1 ·10−2)

Grid-based 20 × 20, with
|R|= 20 robots

Step count 352 78 7
Count of rerouting actions NA 2 times 14 times

Execution time [sec] 12 12 0 12 + (µ = 9 ·10−3, std = 3 ·10−3)

It is important to note that path rerouting is Not Applicable (NA) in [2], as this feature
is a novel contribution of the current work. The first set of rows in the table reports results
for Example 5, while the second set provides simulation results for the scenario discussed in
[2], which involves a grid with 20 × 10 cells.

Figure 4.12 includes three stages from the entire movement of the robotic system, based
on the proposed algorithm. The first figure shows the initial deployment of the robots. In
this scenario, there are 20 regions of interest, out of which the first 10 regions should be
avoided during the movement, while the rest of 10 should be visited as final destinations. As
mentioned also at the beginning of this work, the rerouting procedure can be triggered by
two cases. Figure 4.12(b) illustrates the second case. Particularly, it shows that one robot can
be blocked by another robot, due to the previous task reallocation solution provided by MILP
(4.8). The last image portrays the final destinations of the robots, as a result of their parallel
movement. The first two scenarios are also captured in an animation that can be inspected
here [130].

The third set of rows in Table 4.3 presents results for a grid-based environment with
20 × 20 cells and |R|= 20. This scenario is not included in the animation recording due to
reduced readability. In this case, the parallel movement for N = |R| involves two rerouting
actions, triggered by certain robots being unable to move because other robots have already
reached their final destinations and blocked some passages. When a trigger of N = 10 is
applied for parallel movement, the robots reach their destinations in 77 steps. These results
highlight the advantages of parallel robot motion with rerouting capabilities, particularly for
large teams of mobile robots.
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(a) The initial position of the robots

(b) The blocking scenario caused by the paths’ rerouting procedure

(c) The final position of the robots as a result of task reallocation and the paths followed

Fig. 4.12. Example for a grid decomposition with 20×10 for 10 robots, 10 regions to avoid, and 10
regions to reach





Chapter 5

Path planning with MITL specification
for multi-robot systems

This chapter extends the proposed Petri net framework previously introduced, by incorpo-
rating time constraints towards both the behavior of the robotic team, as well the mission
expressed through an MITL specification. The framework is denoted Composed Time Petri
net. The novelty of this model includes multiple contributions, such as (i) a planning strategy
based on on-the-fly model-checking approaches that do not explore the entire state space
of the motion problem, (ii) tailoring the model for returning trajectories for heterogeneous
robotic systems, where each robot satisfy an individual MITL mission. Moreover, the second
contribution presents a synchronization mechanism between the MITL missions, considering
a Composed Time Petri net for each robot that are connected through a fixed Time Petri net
topology. Illustrative examples accompany the proposed framework, evaluating the results
through simulations. In addition, Chapter 7 presents an experimental setup that validates this
model for a manufacturing application.

5.1 Modeling workflow

This section provides insights into the modeling strategy, with a focus on preserving the time
expressiveness of the time automata of an MITL specification into a Time Petri net, as both
models exhibit time constraints [100]. Compared with the Composed Petri net, where the
solution is given by optimization problems, here a model-checking procedure is conducted
to output the solution in terms of agents’ trajectories. Parts of this chapter are included in
[60, 30].

Specifically, this model captures not only the space requirements (as it was previously
described in the previous chapter, where the robots ensure a global LTL mission), but also
time requirements constraints which can be expressed through MITL specifications, e.g.,
”Reach region y1 in 10 time units”. The proposed model is denoted Composed Time Petri
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net. The main idea of building this model is similar to the Composed Petri net approach
considering the time Petri net representation defined in Chapter 2.2.2. The challenge here is
to synchronize the local clocks in the robotic team with the time constraints specified under
the MITL formula. The step-by-step workflow is introduced first, following a numerical
evaluation assessing the proposed model in the second subsection, based on model-checking
procedures.

Problem 2 Consider that the motion of a robotic team is represented by a time Petri net
model, as defined in Definition 2.2.4. Given a global MITL specification over the set B,
automatically generate the robots’ trajectories to satisfy the specification while meeting both
spatial and temporal constraints.

The results of the Composed Time Petri Net model offer key contributions when com-
pared to the Composed Petri Net: the incorporation of time constraints for the multi-agent
system and the provision of a planning strategy for scenarios that require multiple agents to
occupy the same region of interest. Another difference accounts for the path planning strategy,
where the previous method considers mathematical programming-based methods, while the
current model considers model-checking procedures. Lastly, this framework encodes in the
set of atomic proposition actions that the robots should operate, actions that are linked to a
region of interest that the robots should achieve. The latter characteristic will occur mainly
in examples and simulation results, to highlight the applicability of the model in real-life
scenarios.

The Composed Time Petri net framework offers a planning strategy for multi-agent
systems operating under time constraints. It accommodates scenarios where either the
entire robotic team must fulfill a global MITL mission or sub-groups of agents with similar
capabilities must complete a set of MITL missions. Figure 5.1 illustrates the proposed
solution in a step-by-step breakdown, where two time Petri net models are combined: the
environment model (step 1) and the MITL specification model (step 2), forming a unified
Composed Time Petri net. Consequently, a single Composed Time Petri Net model is created
for each MITL specification. Although the composition of this model is similar to the
structure of the Composed Petri net representation, the current model provides a distinct
advantage by reducing the gap in utilizing time Petri net (TPN) models for motion planning.
This is especially relevant in the context of using structural methods, such as mathematical
programming, which remains an open problem in the literature.

Let us denote the Composed Time Petri net model as T PNC. "C" is a superscript "C"
added to every component of T PNC, such as the following sets: of places PT , of transitions
T T , and the input and output functions that define the arc weights between places and
transitions PreT ,PostT . In addition, is added also to the marking mT , and the function that
maps a static interval to each transition IT .

Step 1.1 In this step, the continuous environment is translated into a discrete repre-
sentation, which simplifies the manipulation of the space E regarding the agents’ motion.
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Fig. 5.1. General Framework of Composed Time Petri net model

The chosen mapping method is based on a cell decomposition technique, as discussed in
Chapter2.1.

The robots’ movement from one cell to an adjacent one is characterized by (i) the
deployment of the robots in space (i.e., their position in the cell) and (ii) time constraints.
These constraints are defined as [δmin,δmax], where δmin represents the minimum time to
move, and δmax is the maximum time required to reach the adjacent cell, considering the
robot’s minimum and maximum speeds. Note that this notation does not account for the
waiting time in the current cell. If the agent has an undefined or unlimited time to wait in
its current cell before moving to an adjacent cell, the upper bound is set to δmax = ∞. The
movement from one cell to another is provided by a low-level control strategy, which can be
user-defined. For instance, the movement can be described as traveling from the center of
one cell to the center of an adjacent cell, passing through the middle of the shared facet.

Step 1.2 Once the environment E is partitioned, the robots’ motion is modeled using
a time Petri net, denoted as T PN E . The superscript "E" is applied to each component
of T PN E . The desired TPN model is created by adding motion time constraints for
movement between adjacent cells, as previously explained.

Following the building steps of the Composed Petri net model, the time Petri net model
of the environment is partially Quotient, where adjacent places pE

i and pE
j , which share

the same atomic proposition from the set Y (i.e., h(pE
i ) = h(pE

j )), are merged, excluding
the places that model free space. In this way, the time information related to the robots’
movement is preserved. The output transitions from the merged places will have an upper
bound of time set to ∞ to account for the robot’s time in a region of interest, without being
constrained by any specific time limit imposed by the MITL specification. In other words,
the ∞ value indicates that the agent can stay in a region of interest for an unlimited amount of
time. The lower bound is updated with the minimum time constraints derived from different
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observations, reflecting the physical constraints of the robot when moving from one cell
(place) to another.

Example 5.1.1 Figure 5.2 illustrates an example for the first two sub-steps of the proposed
workflow. On the left side of the figure, an environment E is partitioned into 4 cells, with two
of these cells belonging to the same region of interest, y1 (depicted in blue). On the right
side, the corresponding T PN E is shown, tailored as described earlier: both cells c3 and
c4, with h(p3) = h(p4) = b1 (representing region y1), are modeled by a single place pE

3 . The
token in place pE

2 indicates the presence of one agent in cell c2. ■

Fig. 5.2. Example of Time Petri net representation T PN E (right) considering a partitioned
workspace E (left)

The second phase of the proposed framework defines the mission of the multi-robotic
system for an MITL specification.

Step 2.1 As outlined in Chapter2.1, according to Definition 2.3.5, any MITL formula
ϕ in normal form (time interval ≤ τ or < τ , where τ ∈Q+) can be represented as a Timed
B"uchi automaton (TBA) A (see Figure 5.3). Furthermore, any MITL specification can be
converted to normal form by applying a set of four transformations, as demonstrated in [95].

Example 5.1.2 Figure 5.3 shows an example of a TBA A that models the MITL specification
ϕ =♢≤τb1, where b1 ∈ B corresponds to the region of interest y1, and τ ∈Q+ represents
the clock constraint for the clock x. This mission requires reaching the region y1 within τ

time units. The clock reset is depicted in green. In this case, resetting the clock is optional,
as it pertains to the temporal operator eventually. The clock reset becomes trivial in nested
MITL specifications [102].

The initial state q0 is represented by the initial input arc, while the final state q1 is
indicated by the double edge, and q2 denotes the sink state (error). If the MITL formula is
not satisfied, the automaton transitions to the error state. The set of edges is as follows: E =

{(q0,¬b1,x ≤ τ, /0,q0),(q0,b1,x ≤ τ,x := 0,q1), (q0,⊤,x ≥ τ, /0,q2),(q1,⊤,T,x := 0,q1),

(q2,⊤,T,x := 0,q2)}, where T ∈ Q+ where T ∈ Q+ represents any time duration, and ⊤
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Fig. 5.3. Example of a Timed Büchi automaton accepting runs that satisfy the MITL specification
ϕ =♢≤τb1

stands for the logical constant True, indicating that the edge can be triggered without any
constraints on the value of the atomic propositions. ■

Step 2.2 The strategy here is to associate a time Petri net to a Timed Büchi Automata,
necessary for the composition of the proposed model. Therefore, several papers examined
their benefits in real-time systems, as well as their similarities and differences concerning
timed bisimilarity and timed language acceptance.

Throughout the literature, two papers can be found relevant for this translation. By
investigating their expressiveness, the first work [131] proposes a translation of a Timed
Automata to a Bounded TPN with static priorities on transitions. Therefore, at one time
instant, the transition with the highest priority will fire. For example, if transition t1 has
priority over t2 in the time interval [2, inf) and both are enabled, then t1 will fire at time 2.
This approach encodes each atomic clock guard as Time Petri net models, then the nets are
combined as a product. Afterward, several transitions are removed based on the combination
of clocks in the TA. Furthermore, the invariants of TA can be also encoded as TPN models,
while preserving the weak time bisimilarity property between the two representations. Since
the TPN representation of the workspace does not consider priorities over transitions, another
approach was exploited to translate a TBA to a TPN.

In [100], the authors considered a translation from a Timed Büchi automata with
invariant clock constraints x ≤ τ or x < τ , with Φ(X) = {x} and τ ∈Q+, to a time Petri net
model, taking into account the time bisimilarity property between the two representations.
The main concept is to express the clock constraints and resets associated with each edge
and each invariant as topologies within the time Petri net formalism. Each location of the
automaton corresponds to a place, and each edge is modeled as a time transition, except for
self-loop arcs defined as e = (q,⊤,T, /0,q), where q ∈ Q. In other words, no transition is
added for self-loops that do not have clock or logical constraints. Additionally, the transitions
are connected to the TPN topologies assigned to clock constraints (represented by gray
blocks) and clock resets (represented by green blocks), as seen in Figure 5.4. The full
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algorithm is described in [100]. This TPN model corresponds to the TBA model shown
in Figure 5.3, where the presence of a token in the final places pϕ

f i, i = 1,2 indicates the
satisfaction of the time requirements.

The associated TPN structure for an MITL specification is denoted as T PN ϕ , with
the superscript ·ϕ applied to all components of the model. The set of transitions T ϕ =

T ϕ
c ∪T ϕ

g , with T ϕ
c ∩T ϕ

g = /0, consists of two sets: T ϕ
c , which is used for the topologies of the

clock constraints, and T ϕ
g , which represents the transitions between the places corresponding

to locations q ∈ Q in the automaton A . The labeling function for transitions is denoted as
Λ : T →B′

ε . All transitions tci ∈ T ϕ
c , i≥ 1, are labeled as Λ(tci)= ε in order to simultaneously

validate all clocks connected with transitions tgi ∈ T ϕ
g , as per [100].

Fig. 5.4. An example of converting a TBA model to a TPN model (left) for the MITL formula
ϕ =♢≤τb1, incorporating clock topologies (right)

Furthermore, we define the function Π : T ϕ
g → 2B to store the symbols λ ∈ B assigned

to the edges of A . The values of this function are represented as a Disjunctive Normal Form
(DNF) formula over the set 2B, where B is the set of atomic propositions. In Figure 5.4, the
transition tϕ

g0,1 corresponds to the edge e = (q0,b1,x ≤ c, /0,q1), with q0,q1 ∈ Q, b1 ∈ Σ, and
X = {x}, hence Π(tg0,1) = b1.

Step 3. To complete the construction of the proposed Composed Time Petri net model,
denoted as T PN C, this step integrates the outputs from steps 1.2 and 2.2 along with
additional inputs that model the atomic propositions from the set B. As mentioned in
Chapter 4.1, the sets PO and P¬O represent the true and false values of the atomic propositions,
respectively. These places serve to provide a snapshot of the robots’ movements with respect
to the regions of interest they have reached. The sets PO and P¬O are included in T PN C

and function as an intermediary layer between the two TPN models, T PN E and T PN ϕ .
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The Composed Time Petri net model is constructed using the following inputs: the TPN
model assigned to the robotic system, T PN E , with the labeling function for places h; the
TPN model corresponding to the MITL formula, T PN ϕ , with the labeling function Π;
the aforementioned sets PO and P¬O; and the number of robots required to satisfy the MITL
specification ϕ .

Fig. 5.5. Part of Composed Time Petri net model, for the atomic proposition b1 included in the MITL
specification ϕ =♢≤τb1

Example 5.1.3 Figure 5.5 illustrates a portion of the Composed Time Petri net, which results
from the overall workflow, providing a clearer view of the arcs that connect the two TPN
models via the intermediate layer PO,P¬O. The left side of the figure shows a partial time
Petri net modeling the agents’ movement within the environment, where h(pE

2 ) = /0 and
h(pE

3 ) = b1, with b1 being the atomic proposition associated with region y1 ∈ Y . On the
right side, the time Petri net corresponding to the MITL formula ϕ =♢≤τb1 is displayed. The
intermediate layer formed by sets PO,P¬O reflects the agents’ positions in the environment:
one agent is located in the free space, while no agent occupies the region of interest y1 ∈ Y .
The linking arcs between the models T PN E , T PN ϕ , and the intermediate layer adhere
to the previously outlined procedure. In essence, the atomic proposition b1 is evaluated as
True only if a minimum number of ωi tokens are present in pO

1 , and it is evaluated as False
when |R| tokens are found in p¬O

1 . ■

Remark 5.1 The current model is designed to provide solutions in scenarios where an
MITL specification requires a minimum number of agents to fulfill the truth value of atomic
propositions. This concept, referred to as "census" in the literature, involves having multiple
agents execute the same task (in our case, the task is defined as reaching a region of interest).
An example of the census concept is presented in [132], where STL (Signal Temporal Logic)
specifications are used. Since the MITL formula is represented by an equivalent time Petri
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net model, it helps in better understanding the census concept, which is represented by the
imposed markings.

Example 5.1.4 Consider a team of 5 robots and the MITL mission ϕ =♢≤5(b1∧b2), which
express to visit both regions y1 and y2 simultaneously within 5-time units. Additionally,
assume that the regions of interest should be reached by multiple robots, as mentioned in the
previous remark. If one region, say y1, must be reached by 3 robots, while region y2 should
be reached by 2 robots, the equivalent interpretation of the MITL specification in terms of
the T PN C model is: ϕ = ♢≤5((mO[pO

1 ] == 3)∧ (mO[pO
2 ] == 2)). This interpretation

is used in the model-checking process to validate the model and compute the sequence of
transitions needed to fulfill the MITL mission. Thus, a minimum marking is imposed on
places pO

1 and pO
2 , which model the truth values of atomic propositions b1 and b2. These

markings are sustained by the weight of the output transition from pO
i and the incoming

transition from T PN ϕ , representing the MITL mission. This weight is depicted in Figure
5.5 as ωi on the arc between pO

1 and tϕ
g0,1 . ■

The workflow differences between building Composed Time Petri net and Composed
Petri net (Chapter 4.2) is mentioned below:

• Introducing time constraints into the T PN E based on the movement of the multi-
robotic system, as a result of steps 1.1 and 1.2;

• Modeling the TBA (Timed Büchi Automaton) of an MITL formula ϕ as a T PN ϕ

model, following the approach outlined in [100]. It is important to note that the
translation from a TBA model to a TPN model, preserving the timed bisimilarity
property, is possible only if specific conditions are met, as detailed in [100] and earlier
in steps 2.1 and 2.2;

• Modifying the arc weights between places in the set PO and transitions in T ϕ , thereby
enforcing the minimum number of agents required to achieve the true value for the
atomic propositions in B (see Example 5.1.4).

5.2 Coordination mechanism for multiple Composed Time
Petri net models

The main benefit of the Composed time Petri net model is that it combines the advantages of a
specification MITL and the robot capabilities in its workspace. This section provides insights
concerning a synchronization mechanism between multiple models, where individual MITL
specifications are addressed to different robots. In this sense, the model can be associated
with two scenarios: the MITL mission is given to a subgroup of agents, all of them required
to fulfill the given mission under the census concept mentioned in the last remark, the MITL
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formula is given individually for each agent, thus decoupling the tasks among the agents
from the beginning. The last scene requires a coordination mechanism between the agents,
as it will be detailed in the following. The versatility of this model allows for tailoring it
according to the needs of the application:

• (i) Atomic propositions - Each MITL specification incorporates the time restrictions
for a set of atomic propositions B defined by either a set of actions assigned to the
robots, either by the regions of interest that the robots should reach under set Y .

• (ii) Robotic model - The Time Petri net model of the robotic model embodies the
individual or the collective space capabilities of reaching regions of interest for a single,
respectively a subgroup of robots. Moreover, the model incorporates representations
of the providing services in these regions of interest, based on a set of places and
transitions.

• (iii) Coordination - Separate Composed Time Petri net models based on the given
MITL missions are synchronized through a mechanism of adding a set of places and
transitions, allowing for a global view in the entire robotic system.

The synchronizations of the robots assess the planned set of actions with their physical
movements under time restrictions. Each action should be satisfied with respect to a time
upper bound, thus resulting in a set of local clocks for the set of actions. The (a) high-level
planner combines the restrictions of the mission with the kinematic capabilities of the robots,
where the tasks cannot be executed immediately. Hence, the coordination of the clocks is
ensured by adjusting the Composed Time Petri net models according to the needs of the
applications, defined by a set of transitions fired instantaneously for the actions of each
robot that should be synchronized. Each point enumerated previously is detailed below,
emphasizing the adaptability of the high-level planning phase under Petri net formalism.

(i) The Composed Time Petri net model is defined considering the set of atomic propo-
sitions B to be associated with the set of regions of interest Y that the robots should reach
under time requirements. Considering an application where a team of robots should col-
laborate, the multitude of individual tasks encapsulates the manipulating global mission
that the robots should ensure. In Chapter 7.3 there is presented a manipulating application
based on two cobots that receive individual MITL missions which combined, the multi-agent
system should build a fixed structure. In short, one cobot receives a pick-and-place mission,
while the second one receives a mission of putting the pieces together. Therefore, the set of
atomic propositions is given by the set of actions that can be achieved by the robots to build
a given structure, e.g. PickTool. For example, an MITL formula for a robot can be written as
ϕ =♢τiPickTool expressing eventually picking up the tool in the time interval τi = [0,τi].
Notice that here, the MITL formula is based on atomic propositions expressed as actions,
these actions being closely related to the region of interest that the robot should reach in
order to ensure the specific task.
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(ii) On the same note of achieving collaboration between robots based on their actions,
a detailed explanation is needed for the robot’s capabilities in the Composed Time Petri net
model. The set of places PE used in the robot’s model is represented by the union of three
subsets of places: (a) one set denotes places associated with the movement of the robot,
based on the partitioned workspace (these places include also the association with the set
Y ), (b) another set notes with the actions of the robots, captured also in the set of atomic
propositions B, and (c) the last set denotes the capacities of the robots related to the actions
of the robots. In the case of (b), the places are connected to each Time Petri net model of the
robots sharing the same action, e.g., two robots should pick up the same tool. The last set (c)
handles the mutual exclusion [133] when one action is executed by one robot. For this, an
even number of places are needed, due to the fact that one place expresses that the action
can be made by any robot, and the complementary one portrays the fact that the action is
conducted by one robot.

The two added sets from points (b) and (c) are necessary for the coordination of multiple
agents, where their missions are given as individual MITL specifications. To reduce the
use of new mathematical notations for these subsets, the explanations consider color codes,
which are further detailed in the example.

Fig. 5.6. Partial representation of the Time Petri net model of a robot

Example 5.2.1 Figure 5.6 portrays a partial representation of the Time Petri net model
of a robot, including all the places previously mentioned. Let us recall that the place pE

3
models the region of interest y1, with b1 being its atomic proposition, illustrated with the
blue color (from Figure 5.2). For simplicity, the rest of the places modeling the free space
or other atomic propositions, are excluded from Figure 5.6. Let us consider that the robot
should reach the region y1 to pick a tool, e.g., a welding gun used to glue pieces together.
Thus, places pE

5 , respectively pE
4 (orange color), model the actions of PickTool, respectively
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PlaceTool. The presence of the token in pE
3 represents the robot being in region y1. When

the token is in places pE
5 or pE

5 , the robot picks up the tool or places it back after using it.
The gray places allow us to design mutual exclusion constraints used for this application

in reasoning with the actions of a robot: place pE
7 has the capacity equal to one, imposing

that a single robot can hold the tool at any time. The place pE
6 is the complementary place

illustrating that the robot picked up the tool, a fact that ensures placing the tool as the
continuity of the pick operation. Notice that these places maintain the logical course of the
actions. Specifically, a tool cannot be placed if it hasn’t been picked up previously. The time
allocated to the transitions seize the complete action, e.g., picking up a tool from place pE

5
requires at least δ

37,4
min and maximum δ

37,4
max time units, the limits encapsulating the motion of

the robot for the action PickTool based on its velocity. ■

The time restriction for a robot to fulfill a mission ϕ = ♢τ1PickTool depends on the
robot’s representation. This specification requires the robot to pick up a tool in less than τ1

time restriction. If the previous example is considered, with the difference that the robot is in
a region connected with y3 (thus, no initial marking in place pE

3 ), then the desired marking
pE

5 is reached only if all the fired transitions up to t37,4 following the imposed time τ1. For
example, considering the MITL ϕ = ♢τ1PickTool ∧♢τ2PlaceTool, the clock for τ2 starts
after the action PickTool is True in the time interval τ1. Hence, the atomic propositions
PlaceTool and PickTool are not commutative following the stated assumption previously
described.

(iii) The Composed Time Petri net expresses the time requirements under the MITL
specification that are embodied in the same model with the robot’s representation. For
an easier explanation of the synchronization mechanism between MITL specifications,
the following example considers a scenario where two MITL missions are given to two
individual robots. For each robot, a Composed Time Petri net is built, integrating both the
robot’s capabilities with the constraints from the MITL specification. The synchronization
of the robots is achieved by adding a set of waiting places that triggers temporal transitions
with time [0,0] (instantaneous firing) between the relevant clocks associated with the time
restrictions.

Example 5.2.2 Specifically, let us consider the following MITL formulae ϕ1 =♢τ1b1 and
ϕ2 = ♢τ2b2 describing that r1 eventually ensure reaching region y1 in time τ1 while the
second robot r2 eventually reaches region y2 under time τ2.

Figure 5.7 illustrates the synchronization mechanism. Both Composed Time Petri net
models are highlighted through this figure, maintaining the mathematical notations defined
throughout the thesis. Let us assume that τ1 = τ2. For example, both robots should reach the
regions y1 and y2 in 5 time units. Both MITL missions can be ensured if one robot reaches the
region of interest in 2 seconds, and the second one in 3 seconds. The idea of this mechanism
is to ensure that both robots synchronize. Thus, since the robots can ensure their missions
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Fig. 5.7. Synchronization mechanism for individual Composed time Petri net models

any time in the interval [0,τ1], respectively [0,τ2], the synchronization should be performed
in the minimum time between τ1,τ2.

As previously defined, an MITL mission is fulfilled when the place modeling the final
state of the associated automaton has a token. For this example, these places are denoted:
pϕ1

1 and pϕ2
1 . Since these places can be reached anytime under the time restrictions τ1 and

τ2, then new places are added simulating the waiting action immediately after the input
transitions are fired (tϕ1

g0,1, t
ϕ2
g0,1 which are also highlighted with an orange bounding box. Thus,

once the True value of the atomic propositions is evaluated, the token modeling the current
state of the specification reaches a waiting place. This approach is considered for all the
robots requiring synchronizations for a set of actions.

Once both waiting places are reached, pϕ1
4 , pϕ2

4 , then a newly added transition is added
tϕ
g0,0 responsible for the synchronization of both MITL missions. The output arcs from this

newly added transition are directed toward the places modeling the fulfillment of the MITL
missions. In this sense, notice that the time expressed by the transition is the [0,0] time
interval, forcing an immediate firing action. ■

Remark 5.2 The synchronization mechanism does not alter the meaning of the mission
by the addition of the instantaneous transitions with time [0,0]. In contrast, the synchro-
nization mechanism implies dependencies between the missions, such that one robot cannot
fulfill its specifications without synchronizing with another robot.
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5.3 Model-checking approach in numerical evaluation

The motion planning strategy for MITL missions is based on simulations, which solve
a reachability problem commonly addressed through model-checking approaches. After
computing the Composed Time Petri net, the model is implemented in the ROMEO tool
[134], which provides a model-checking solution by determining if a particular marking
can be reached. If this is the case, the sequence of transitions is provided. The marking
corresponds to the place modeling the final state of the TBA model of the MITL formula.
Therefore, the solution that reaches the desired marking is equivalent to satisfying the MITL
formula (as demonstrated in Example 5.1.4). The paths of the multi-robotic system are then
translated into motions based on the trace run and the controller, which steers the robots
between partitioned cells. A notable advantage of ROMEO for modeling and analyzing Time
Petri Net models is its on-the-fly model-checking procedure, which avoids the creation of the
entire state-class graph during trace run searches.

Consider the case study presented in [135], where a gantry-robot system consisting of
R robotic arms is responsible for installing reinforcement bars (rebars) to build a concrete
structure (cage). This scenario involves two sub-groups of robotic arms based on their gripper
capabilities: the first subgroup (denoted rpp) picks up the rebars, moves them within the
construction area, and holds the rebars while the second subgroup of robots, rc, connects
the rebars. The two subgroups satisfy rc ∩ rpp = /0 and rc ∪ rpp ⊆ r. Although the solution
proposed in [135] addresses this scenario, the authors note a lack of flexibility in their
approach. In contrast, the current work proposes a fixed topology model regarding the
number of agents in the team. For example, the number of robots assigned to each subgroup
can vary depending on the type of rebars. Furthermore, time constraints are integrated into
the path planning strategy. This case study builds on the assumptions in [135], where the
necessary data for building the cage is known in advance.

The planning strategy is adaptable since is based on a configuration space including two
regions of interest (ROIs), y1 and y2, related to the atomic propositions b1, respectively b2:

• y1 - represents the common area associated with the set rpp of robots aiming to pick
up the rebars. It is considered that gripping points are allocated to the robots while
ensuring collision-free movement.

• y2 - represents the construction area where the rebars are placed by the rpp robots and
connected by the set of robots rc.

Each sub-group of robots is assigned a separate MITL specification as a mission.
These formulas are repeated for each rebar until the entire structure is completed. The
time restrictions are defined as [0,τi],∀Ii,τi ∈ N+, with both MITL specifications being
interconnected through the time conditions τ3 > τ4 and τ3 ≤ τ4 + τ5 (where the robots in rpp

must hold the rebars for a duration of τ5 = |I3|, while the robots in rc connect the rebars).
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(i) Formula (5.1) is allocated to the robotic set rpp, mentioning the sequence of actions:
picking up rebar from region y1 under the time restriction from interval I1, placing it in region
y2 within a time interval I2 relative to the pick-up time, and holding the rebar for a duration
of I3.

ϕrpp =♢I1b1 ∧ (b1 →♢I2□I3b2) (5.1)

(ii) Formula (5.2) demand the robots rc to visit region y2 within time I4, while remaining
there for I5 units of time to connect the rebars together.

ϕrc =♢I4□I5b2 (5.2)

The core idea is to build a separate Composed Time Petri net for each MITL specification
and use a model-checking approach to assess whether the specification can be satisfied based
on the T PN C representation.

Algorithm 9: Motion of the entire robotic team
Input :r, ϕrpp , ϕrc , structure f ixed , E
Output :Planned robotic motion

1 Initially place all the robots r in their home position;
2 structure = /0;
3 Construct T PN ϕrpp based on mission ϕrpp;
4 Construct T PN ϕrc based on mission ϕrc;
5 while structure ̸= structure f ixed do
6 A rebar arrives at the pick-up region y1;
7 Evaluate rebar’s type to count the number of agents in sub-groups rpp and rc;
8 Determine and follow paths for setsrpp and rc;
9 Update structure;

10 Move rc and rpp in their initial home position;
11 end

Algorithm 9 outlines the procedure followed in this case study. Initially, all robots are
positioned in their home location. For each rebar arriving at the pick-up area y1, the number
of robots assigned to each subgroup is calculated based on the type of rebar, as described in
[135]. Each subgroup, rpp and rc, is assigned a separate MITL formula, and an individual
T PN C model is computed for each. These formulas are satisfied when robots rpp fulfill
ϕrpp , and robots rc satisfy ϕrc . This corresponds to reaching the final markings in the TPN
models, with yi being true only when the token count equals |rpp| for the first subgroup, and
|rc| for the second. After the transition sequences in the TPN models (representing robot
paths) are determined, the robots return to their home position, and the structure is updated.
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The process from lines 6 to 13 is repeated until the current structure matches the intended
structure, structure f ixed , provided as input.

Table. 5.1. Numerical Evaluation of the Composed Time Petri net

MITL Formula Size of T PN C No. of agents Model-checking
run time [sec]

ϕrpp |PC|= 50, |TC|= 65 2 2.2
3 81.3

ϕrc |PC|= 42, |TC|= 58 2 1.8
3 49

Consider the workspace partitioned into cells, represented by T PN E with 20 places.
Table 5.1 presents the numerical evaluation for the MITL specifications (5.1) and (5.2),
reflecting the size of each Composed Time Petri net model T PN C, specifically T PN ϕrpp

and T PN ϕrc . The simulation results were computed on a computer with an i7 8th-
generation CPU @ 2.20GHz and 8GB RAM.

Remark 5.3 As stated in [100], both the TBA and TPN models are timed bisimilar. If
each robot from the multi-robotic team is modeled as a TBA, as in [39], the total number of
nodes for the entire team increases exponentially due to the product automata, which also
includes the places for the TBA assigned to an MITL formula ϕ . In contrast, the size of a
Composed Time Petri net model in terms of the number of places PC is determined by the
cardinality of the sets PE ,PO,P¬O, and Pϕ . Importantly, the total number of places PC is not
influenced by the number of robots involved in the T PN C.

Considering the tool ROMEO, a marking that can be reached leads to a sequence of
transitions. The tool uses TCTL (Timed Computation Tree Logic) for this evaluation. For
instance, to compute the robotic trajectories ensuring the MITL mission ϕrpp , the following
TCTL formula is applied for model-checking: EF [0,cu](M(pC

f ) == 1), where cu ∈ N+ is
a user-defined time constant. In simple terms, this TCTL formula indicates that if a trace
eventually reaches the desired marking modeled by pC

f , the sequence of transitions is returned.
Otherwise, the formula cannot be fulfilled.

Discussion. The proposed TPN structure effectively coordinates the local time con-
straints associated with robot motion (T PN E) and the global time constraints defined by
the MITL specification (T PN ϕ ). Furthermore, the Composed Time Petri net model is
suitable for representing the census concept, as discussed in [132], which requires multiple
agents to complete a task.

The model-checking approach applied in this case study demonstrates the effectiveness
of the proposed framework, which offers a fixed topology model relative to the number
of agents needed to satisfy an MITL formula. Thus, this work based on t=Time Petri nets
provides a solid foundation for developing scalable multi-agent system models. However, one
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limitation of the current approach arises when handling a large number of robots. Although
the ROMEO model-checking tool does not explore the entire reachability graph, simulations
involving more than 3 agents failed to provide a solution. To address this, alternative
approaches such as structural methods (e.g., mathematical programming) or techniques that
partially explore the state space (e.g., distributed methods) could be further explored.



Chapter 6

Path planning with LTL specification
based on hierarchical approach for
multi-robot system

This chapter addresses the motion planning problem for heterogeneous teams of robots
ensuring a global specification. The planning strategy involves a hierarchical structure of
Petri net models, known as the Nets-within-Nets (NwN) paradigm [57]. In this sense, a novel
framework is proposed, denoted High-Level robot team Petri Net (HLrtPN) system having
two characteristics. Firstly, the robots’ behavior, alongside a model of the team’s mission, is
represented by a set of object nets. Secondly, a system net is defined to provide the global
state of the robotic system, by coordinating the object nets through Global Enabling Function
(GEF). The solution is obtained by simulating the HLrtPN system using specialized software
designed to support Nets-within-Nets (NwN). Demonstrative examples, based on Linear
Temporal Logic (LTL) missions, highlight the computational feasibility of the proposed
framework, accompanied by numerical analyses across various DES representations. A
review of the existing literature suggests that this approach is among the first to present a
step-by-step motion planning solution leveraging the NwN paradigm.

The contributions included in this chapter are as follows:

• Introducing a novel framework, the High-Level robot team Petri Net (HLrtPN) system,
for motion planning in heterogeneous robotic systems to guarantee the fulfillment
of a global mission. To achieve this, a synchronization function, referred to as the
Global Enabling Function, is developed. This function is responsible for verifying and
executing a set of logical Boolean formulas to ensure compliance with the specified
requirements.

• Describing the step-by-step implementation of the framework in Renew [136] and
making it accessible on web [137]. The illustrative examples of this implementation
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showcasing the modeling of LTL formulas for heterogeneous robotic teams strengthen
our framework’s substantial potential in robotic planning;

• Assessing the proposed solution through numerical simulation in Renew and comparing
it with various DES representations, considering two case studies, one of which
includes a real-life futuristic scenario for a robotic team evolving in a hospital (detailed
in Chapter 7.

6.1 Nets-within-Nets paradigm

Recently, motion planning in the robotic field represents a challenging problem to be solved,
considering daily applications where the multi-robotic systems are heterogeneous, e.g.,
agriculture [138] and mapping [139]. As mentioned also in Chapter 1, the objective of this
thesis is to provide planning strategies while preserving the advantages of discrete-event-
based frameworks. In Chapter 2.1 is stated that the Petri net formalism facilitates an easier
modeling of homogeneous robotic teams, by associating a token to each robot. Accounting
for heterogeneous robots, the use of the Petri net model defined in Definition 2.2.2 can
represent a barrier. One might suggest the use of different classes of PN, e.g., colored Petri
nets [140]. Another perspective includes the coordination of multiple PNs in a structured
manner.

The solution described in this chapter is based on a hierarchical approach of Petri net
models, known as the Nets-within-Nets paradigm [57]. The particularity of this family of
high-level nets is characterized by the fact that each token can transfer information such as
states of another process. In this sense, a token is visualized as a Petri net denoted as Object
net. Moreover, the relation between these nets is captured in System net, which contains
a global view of the entire system [58]. The object-oriented methodology is suitable for
high-level representations [58] by introducing different types of mobility among nets [141],
which express synchronous and synchronous actions.

Example 6.1.1 Let us provide a short illustration based on which the fundamentals of the
Nets-within-Nets paradigm are explained, such as system net and object net. In Figures 6.1 -
6.3, it can be observed the system net, given by places p3, p4 and transition t3, and the object
net given by places p1, p2 and transitions t1, t2.

This hierarchical structure of nets allows the paradigm to capture three different behav-
iors. Figure 6.1 portrays the transport of the object net into the system net. Specifically, the
marking of the object net is not modified by firing the transition t3. Figure 6.2 presents the
autonomous transition behavior, representing the marking’s update only in the object net, by
firing only transition t1. In Figure 6.3, an interaction between both system net and object net
is portrayed, through the synchronous firing of two transitions t1 and t3.
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Fig. 6.1. Nets-within-Nets: transport

Fig. 6.2. Nets-within-Nets: autonomous transition

Fig. 6.3. Nets-within-Nets: interaction
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For an easier understanding, explanations from the manufacturing domain shall be
provided for each behavior. For example, the transport action updates the global view of
the system, e.g., the movement of a robot from p3 to p4, while maintaining the local state
of a robot, e.g., gripper closed (given by the presence of a token in p1); the autonomous
transitions illustrates update only for local states, e.g., from gripper closed (marking in p1)
to gripped open (marking in p2) while maintaining the global state, e.g., robot doesn’t move
(marking in p3); and the interaction action which synchronously updates both the global and
local states of the entire system, e.g., robot moving from p3 to p4 while opening the gripper
(marking in p2) from a close state (marking in p1). ■

Remark 6.1 Generally, there is only one system net that provides the global state of
a system. On the other hand, for each sub-system, the states are given by individual object
nets, which can have various designs, e.g., two different robots modeled by two different
object nets representations.

Several application examples of the NwN paradigm include modeling web service
coordination [142], smart houses [143], modeling the epigenetic regulation process at the
cell level [144], and simulating antibiotic resistance at the microbiota level [145]. Other
works focused on self-development tools such as Renew [136] and Modular Model Checker
(MoMoC) [146], or encoding specifications in Maude language [147].

When writing this thesis, the total number of papers that involve the “Nets-within-Nets
paradigm” is 64, using the Web of Science database. Of this number, only a few papers
address the problem of computing paths for single or multiple robots [141]. Some papers use
the object-oriented or hierarchical idea of PNs, without referring to it as the NwN paradigm
[148]. This work introduces a top-down framework with formal definitions under the NwN
paradigm, suitable for heterogeneous robotic teams that ensure a global specification. In
this account, the team’s mission is also modeled by an object net, interacting further with
object nets allocated to the robots through a synchronization function that secures spatial
capacity constraints by design (the maximum number of robots in an environmental region).
The following contributions can be mentioned:

• Proposing a novel framework called the High-Level robot team Petri Net (HLrtPN)
system for motion planning of heterogeneous robotic systems that ensures a global
mission. For this purpose, a synchronization function (Global Enabling Function)
between the nets is designed, having the role of verifying and acting on a set of logical
Boolean formulas to ensure that the specification requirements are met;

• Describing the step-by-step implementation of the framework in Renew [136] and
making it accessible on web [137]. The illustrative examples of this implementation
showcasing the modeling of LTL formulas for heterogeneous robotic teams strengthen
our framework’s substantial potential in robotic planning;
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• Assessing the proposed solution through numerical simulation in Renew and comparing
it with various DES representations, considering two case studies, one of which
includes a real-life futuristic scenario for a robotic team evolving in a hospital.

Currently, the framework HLrtPN facilitates an easier modeling approach in the robotic
field, but the drawback is that the planning strategy leading to a feasible solution requires
the exploration of multiple transitions for complex systems, which can be time-consuming.
Nevertheless, the potential of HLrtPN can be further exploited in search of viable trajectories
of a heterogeneous robotic team ensuring a global mission.

6.2 Problem formulation

Problem: This work addresses the task allocation and planning problem for a heterogeneous
multi-robotic system evolving in a known environment including a set of regions of interest.
The team should ensure a global mission given as a co-safe LTL specification, imposing spa-
tial constraints of visiting/avoiding the regions, and temporal constraints requiring sequencing
and synchronization.

The solution space of the problem is subject to a proposed framework under the Nets-
within-Nets formalism correlating hierarchical Petri net representations, including both the
motion of robots and the global mission to determine a solution that will be simulation-based.

An explanation of the proposed method consists of modeling the allowed movements
of the heterogeneous team as a set of PNs (one assigned to each different type of robot, as
sketched in Figure 6.4-iii), also specifying the mission in the same formalism (as depicted
through the PN in Figure 6.4-i). These models are implemented at the same hierarchical
level as Object nets. The upper-level PN denoted System net, considers object nets as tokens
(Figure 6.4-ii). Firing the transitions of the system net imposes synchronization between the
object nets (of the robots and the mission).

The prerequisites of the problem formulation include the following assumptions:

• Among the high-level languages to specify a mission for the robotic team, we have
focused on the Linear Temporal Logic formalism, due to a provided algorithm from
our previous work in [35], which allows us to model the Büchi automaton for an LTL
formula into a Petri net model. Additional details are provided in Chapter6.3.1.

• The high-level planning of mobile robots returned by the proposed method is composed
of a sequencing of motion plans which a low-level controller of the robots can enforce.
Thus, robots are not restricted to any particular category, encapsulating various dynamic
characteristics.

An intuitive explanation is provided for a clearer understanding of this concept. The
NwN model is called the High-Level Robot Team Petri Net (HLrtPN) system, and it comprises
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Fig. 6.4. Example demonstrating the Nets-within-Nets paradigm: (i) Specification Object Petri net,
(ii) System net, (iii) Robotic Object Petri net

Fig. 6.5. Example of an environment with 4 ROIs and 3 robots initially placed in the free space y4 and
having the trajectories for the mission ϕ =♢b1∧♢b2∧♢b3∧ (¬b1 U b3) (meaning to visit y1,y2,y3,
with y3 before y1)

(i) a set of object nets modeling robots (Robotic Object Petri Nets (RobotOPNs)) and one
object net modeling the mission (Specification Object Petri Net (SpecOPN)); and (ii) one
system net where each token corresponds to an object net. The system net governs the
evolution of the system. When transitions of the RobotOPNs are fired, they must fire
synchronously with a transition in the system net. Additionally, when transitions in the
RobotOPN are fired, the robots move between regions, updating the values of set atomic
propositions B. Consequently, the transition fired in the system net synchronizes with the
firing of a transition in SpecOPN. The overall synchronization of the transitions in the system
and object nets is ensured by the synchronization function GEF.

Let us consider the environment in Figure 6.5 that can be partitioned into 5 cells
C = {c1, . . . ,c5} where c1,c2,c3,c4, respectively c5 are associated with the free space (white
region), green region minus the intersection with blue region; the blue region minus the
intersection with the green region; the intersection of the blue and green region, respectively
the purple region. The set of labels is b1 for the purple region y1, b2 for the blue region
y2, b3 for the green region y3, and b4 for the free space, which is represented by region
y4. Therefore, the labeling function h is defined as follows: h(c1) = {b4}, h(c2) = {b3},
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h(c3) = {b2}, h(c4) = {b2,b3} (h(c4) = b2∧b3) and h(c5) = {b1}. Note that for this intuitive
explanation, the labeling function h is defined on the set of cells C . This function shall be
defined further on the set of places P modeling the RobotOPN representations, considering
that each place is associated with a cell c ∈ C .

The HLrtPN is illustrated in Figure 6.4. Specifically, Figure 6.4-ii displays the system
net with two places: Rb, containing three tokens, each corresponding to a RobotOPN of a
robot, and Ms, with one token corresponding to the SpecOPN. The system net includes three
transitions: t1, t2, respectively t3, which fires only one robot, two robots, and three robots
changing their regions.

Remark 6.2 Formally, to differentiate between the object nets, we have defined the
following notations such as superscripts: ”S“ for SpecOPN, respectively ”oi“ for RobotOPN
modeling the robot ri, for all the components as part of these nets definition (Chapter6.3.1).

Figure6.4-i shows the SpecOPN for the simple formula ϕ = ♢b3. The mission is
assumed to be accomplished when pS

2 has a token (or a robot reaches the region y3). Notice
that this is possible by the firing transition tS

1 attached to the labeling function value b3. The
function is evaluated at True when a robot enters a region y3 (cells c2 or c4).

Figure 6.4-iii shows one RobotOPN denoted as o1. The other two are identical if the
other two robots are identical. In the RobotOPN of robot r j, each place models a cell from
C ; specifically, for each ci ∈ C , a place po j

i is defined, where o j models the robot r j. Initially,
all robots are in the free space, with the initial marking of o j, j = 1,3, being a token in po j

1 .
Since the label of c1 is h(c1) = {b4} (the region y4 modeled by po j

1 ), the atomic proposition
b4 is evaluated as True in this state. If robot r1 leaves c1 and enters c2, transition to1

1 should
fire, and the atomic proposition b3 becomes True since h(c2) = {b3} (for region y3). Notice
that the transitions in RobotOPN are labeled with the atomic propositions evaluated as True.
The movement of a robot from one cell to another updates the truth value of at least one
atomic proposition. Adjacent cells have different labels but our modeling methodology can
handle more general cases.

Suppose we return to the firing of transition to1

1 , assuming that the other robots are
not moving. In that case, this means that transition t1 from the system net should fire
synchronously with to1

1 (in the system net, transition t1 models the movement of one robot,
t2 the synchronous movement of two robots, and t3 the synchronous movement of all three
robots). Moreover, the defined GEF will ensure the synchronous firing of these two transitions
with one transition from the SpecOPN. In SpecOPN, both transitions are enabled and the
logical functions assigned to them are also true (tS

3 is labeled with True while tS
1 is labeled

with b3, which will become True as the robot enters the green region). If transition tS
1 fires,

pS
2 will have a token and the mission will be fulfilled.

Remark 6.3 The simulation results highlight the benefits of the current method when
compared with the other three DES approaches (two of them being restricted to homogeneous
teams), one rational being represented by the versatility of the Nets-within-Nets formalism
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of modeling heterogeneous robotic teams. When a heterogeneous robot is added to the team,
it is necessary to add a RobotOPN model only, allowing for easier handling of the entire
framework in comparison with traditional approaches based on transition systems.

The framework is validated through numerical experiments using simulations performed
in specialized software tools. Consequently, the current approach yields a sub-optimal
solution instead of pursuing an optimal one by exhaustively exploring the reachability graph
of different models or solving intricate optimization problems. A key advantage of the
proposed framework lies in its ability to establish tailored connections between robots and
specific tasks, making it well-suited for addressing complex scenarios. Additionally, it has
the potential to incorporate time-analysis mission models from other formalisms to enhance
its applicability.

6.3 Nets-within-Nets tailored to path planning

The proposed framework High-Level Robot Team Petri Net (HLrtPN) is defined formally
below, including definitions and illustrative examples for a clear understanding.

6.3.1 Object Petri nets systems

The dynamic of the heterogeneous robotic team is modeled by a set of object nets Robotic
Object Petri net (RobotOPN), one assigned to each type of robot based on their spatial
capabilities (allowed ROIs to reach). Respectively, another object net called Specification
Object Petri net (SpecOPN) models the requirements included in the global mission, which
the team should ensure. The following subsections formally define these nets.

Specification Object Petri net

Definition 6.3.1 (SpecOPN) A Specification Object Petri net represented by a tuple Spec =
⟨P,Pf ,T,F,λ ⟩, where: P and T are the disjoint finite set of places and transitions, Pf ⊆ P
is the set of final places, F ⊆ (P×T )∪ (T ×P) is the set of arcs. The transition labeling
function λ∧(t)≡ t∧ assigns to each transition t ∈ T a Boolean formula defined by using the
atomic propositions B and their negations. ■

The current work considers SpecOPN the translated PN model obtained from the Büchi
automaton (Algorithm 5, Chapter 4). This translation accounts only for the transitions
considered in the Büchi automaton, without generating new ones, as in Composed Petri net
model, for which the generation of virtual transitions was necessary for the planning strategy.
The translated Petri net is a state machine PN, and at any time, only one place is marked.
Moreover, the proposed translation from the Büchi automaton adapts any disjunctive Boolean
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formula from the automaton bi ∨b j to a conjunctive Boolean formula, thus returning two
transitions with their labeling functions λ∧(tx) = bi and λ∧(tz) = b j.

A marking is represented as a {0,1}-valued vector of size |P|, while a SpecOPN system
is defined as the pair ⟨Spec,m0⟩, where m0 denotes the initial marking. The specification is
satisfied when the SpecOPN system reaches a marking with a token in a place belonging
to Pf , achieved by firing a sequence of enabled transitions. A transition t ∈ T within the
SpecOPN system is enabled at a marking m if two conditions are satisfied: (i) m[•t] = 1,
1 and (ii) the Boolean formula t∧ evaluates to True. Informally, condition (i) serves as the
enabling condition, while condition (ii) implies that the movement of robots within the set of
regions Y triggers the firing of a transition in SpecOPN by altering the truth value of t∧. In
Figure 6.4-i, the final place is pS

2, which becomes marked only when tS
1 fires. This occurs

when a robot enters a region labeled with b3.

Robotic Object Petri net

It is assumed that RobotOPN is a state machine PN that can be considered an labeled Petri
net [149] by adding a labeling function over the set of transitions and places.

Definition 6.3.2 (RobotOPN) Given a set of cells C modeling the workspace of the robotic
team, let the Robotic Object Petri net be the model of a robot, expressed by the tuple
o = ⟨P,T,F,h,λ ,γ⟩:

• P is the finite set of places, bijective with set C . Each place is associated with an
element ci ∈ C in which the robot is allowed to enter;

• T is the finite set of transitions. A transition ti j ∈ T is added between two places
pi, p j ∈ P only if the robot can move from any position in cell ci to cell c j in the
partitioned workspace E;

• F ⊆ (P×T )∪ (T ×P) is the set of arcs. If ti j is the transition modeling the movement
from pi to p j, then (pi, ti j) ∈ F and (ti j, p j) ∈ F;

• h∧ is the labeling function of places p ∈ P, defined in the previous section and associ-
ating to each place a Boolean formula over the set of propositions B;

• λ∧ is the Boolean labeling function of transitions t ∈ T , such that λ∧(ti) = h(ti•)∧;

• γ : P → C is the associating function. If place pi ∈ P is associated with ci ∈ C , then
γ(pi) = ci. ■

1•t and t• represent the input and output places of transition t ∈ T , respectively, which are singletons since
the SpecOPN is a state machine.
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The marking of the RobotOPN is a vector m ∈ {0,1}|P|. Initial marking is denoted m0

such that m0[pi] = 1 if the robot is initially in pi, and m0[p j] = 0 for the rest of the places
p j ∈ P\{pi}. A RobotOPN system is a pair ⟨o,m0⟩.

A heterogeneous robotic system incorporates the dynamics of several types of robots.
We are interested in the differences concerning their space constraints (ROIs that can be
reached). Each type of robot is modeled as a RobotOPN, including these differences in terms
of topology and labels.

6.3.2 High-Level robot team Petri net

This section introduces our proposed model denoted High-Level robot team Petri net which
encapsulates the ability to provide a global view, by enabling synchronizations between the
system net and the previously defined object nets.

Definition 6.3.3 A High-Level robot team Petri net (HLrtPN) is a tuple
N = ⟨P̄, T̄ ,O,S ,Vars, F̄ ,W,µcap⟩, where:

• P̄ = {Rb,Ms} is the set of places;

• T̄ = {t1, t2, . . . , ts} is the set of transitions;

• O = {⟨o1,m1
0⟩,⟨o2,m2

0⟩, . . . ,⟨on,mn
0⟩} is a set of n RobotOPN systems, one for each

robot;

• S = ⟨Spec,mS
0⟩ is a SpecOPN system;

• Vars = {v,x1,x2, . . . ,xn} is a set of variables;

• F̄ is the set of arcs: F̄ =
⋃

t∈T̄ ,p∈P̄{(p, t),(t, p)};

• W is the inscription function that assigns a set of variables from Vars to each arc.
For every ti ∈ T̄ , it holds that W (Rb, ti) =W (ti,Rb) = (x1,x2, . . . ,xi) and W (Ms, ti) =
W (ti,Ms) = v.

• µcap ∈ Bag(P) represents the capacity multi-set, where µcap[Pi] > 0 for all i ∈
{1, . . . ,w}, and µcap[Pj]≥ n if h(Pj) = bq. ■

The system net (as noticed in Figure 6.4-ii.) is the tuple ⟨P̄, T̄ , F̄ ,Vars,W ⟩, with Rb
and Ms being the robot and mission places. The transitions are connected via bidirectional
arcs, where ti synchronizes i robots according to the specification, with i = 1,s. Considering
co-safe LTL missions, the following assumption is made: s ≤ n. The firing of a transition
manipulates the object nets through the use of variables, e.g., x1 is bound to a RobotOPN,
v for the SpecOPN. Although the state of an object net changes when a transition in the
HLrtPN system is fired, the reference semantics approach, as described in [58], ensures that
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a token serves as a reference to an object net. The same variable is used bidirectionally—for
both input to and output from places and transitions.

Each cell ci ∈C has a specific number of space units, referred to as its capacity, denoted
by µcap[ci]. This value is determined by the multi-set µcap and represents the maximum
number of robots that can occupy cell ci at the same time. It is assumed that each robot
occupies one unit of capacity. Consequently, every cell ci ∈ C has a strictly positive capacity,
with the additional assumption that a cell c j ∈ C labeled as h(c j) = bq has sufficient space to
accommodate the entire team (as described in the last bullet of Def. 6.3.3).

An HLrtPN system is defined as a tuple ⟨N ,m,µocc⟩, where N represents an HLrtPN
as in Definition 6.3.3, m denotes the marking that associates a multi-set to each place in
P̄, and µ represents the multi-set. The marking is represented as a multi-set that assigns a
non-negative integer coefficient to each element. The set of all multi-sets over U is denoted
as Bag(U). The algebra of multi-sets, as defined in [150], includes various operations such
as addition and comparison.

The initial marking m0 is

• m0[Rb] = 1′⟨o1,m1
0⟩+1′⟨o2,m2

0⟩+ . . .+1′⟨on,mn
0⟩;

• m0[Ms] = 1′⟨Spec,mS
0⟩.

Finally, µocc ∈ Bag(B) represents the occupancy multi-set, which indicates the current
positions of the robots relative to the regions in Y . At any given moment, µocc[bi] denotes
the number of robots currently present in the region yi. The initial occupancy multi-set is
defined as µocc0 = ∑

q−1
i=1 0′bi +∑

n
i=1 |Rk|′b j, assuming that all robots are initially located in

the free space.
A transition t ∈ T̄ of the HLrtPN is enabled at a given state ⟨m,µocc⟩ if the following

conditions are satisfied:

• m[Ms] has an enabled transition tS ∈ T S;

• Given W (Rb, t)= (x1,x2, . . . ,xi), m[Rb] contains i RobotOPN net systems (⟨o1,m1⟩,⟨o2,m2⟩,
. . . ,⟨oi,mi⟩), where each net has an enabled transition to j

, for j = 1, i, and
GEF(µocc,µcap, tS,(to1

, to2
, . . . , toi

)) = True.

An enabled transition t ∈ T̄ may fire, transitioning the system from ⟨m,µocc⟩ to
⟨m′,µ ′

occ⟩, such that:

• m′[Ms] include the firing of transition tS;

• At m′[Rb], each oi has fired its corresponding transition toi
;

• µ ′
occ is updated to reflect the new positions of the robots.
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6.3.3 Synchronization function

When a transition t j ∈ T̄ of the HLrtPN fires, the system should synchronize transitions in
both the RobotOPNs (from m[Rb]) and SpecOPN (from m[Mb]). However, this synchroniza-
tion is subject to various compatibility rules that consider the current state of the system,
including the occupancy multi-set µocc. To guarantee these rules are ensured, the Global
Enabling Function (GEF) acts as a gatekeeper, checking the compatibility of the system’s
state involving the transition rules before enabling synchronous transitions. The GEF is
essential for ensuring that the firing of an HLrtPN transition, together with the corresponding
enabled transitions in RobotOPNs and SpecOPN, occurs without violating any system rules.

For any transition t ∈ T̄ , the GEF takes inputs from Bag(C )×Bag(B)×T S×
(⋃n

i=1 ∏
i
j=1 T k

j

)
and returns either True or False to enable or disable t. The GEF evaluates the assignment
of variables to input arcs (i.e., v and (x1,x2, . . . ,xi)), along with global data such as the
occupancy multi-set µocc, the capacity multi-set µcap, the marking-enabled transition tS in
the SpecOPN, the Boolean label v, and the set of marking-enabled transitions (to1

, to2
, . . . , toi

)

in (x1,x2, . . . ,xi). If firing the i transitions in the RobotOPN satisfies the Boolean label for tS,
the GEF returns True; otherwise, it returns False. The algorithm for this function is provided
in Algorithm 10.

Algorithm 10: The Global Enabling Function (GEF)

Input: µocc,µcap, tS,(to1
, to2

, . . . toi
)

Output: Is the synchronized firing of tS, to1
, to2

, . . . , toi
feasible?

Data: (⟨o1,m1⟩,⟨o2,m2⟩, . . . ,⟨on,mn⟩),C
1 Let χ be the simulated occupancy multi-set w.r.t. C after firing (to1

, to2
, . . . toi

);
2 forall c j ∈ C do
3 if

(
χ[c j]> µcap[c j]

)
/* See Comment 1 */

4 then
5 return False

6 if
(
tS
∧ == True

)
/* See Comment 2 */

7 then
8 return True
9 else

10 Let µ ′
occ be the simulated update of µocc w.r.t. B after firing (to1

, to2
, . . . toi

);
11 forall

(
b j ∈ B

)
/* See Comment 3 */

12 do
13 if

(
b j ∈ tS

∧∧µ ′
occ[b j] == 0

)
∨
(
¬b j ∈ tS

∧∧µ ′
occ[b j]≥ 1

)
then

14 return False

15 return True
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Comment 1: The enabling of a transition t ∈ T̄ is checked by simulating the firing of
the corresponding i transitions in the RobotOPN, which are synchronized through transition
ti of the HLrtPN. This simulation is performed using the multi-set χ , which is computed at
line 1. To compute χ , transitions (to1

, to2
, . . . , toi

) are fictitiously fired in the corresponding
RobotOPNs (from o1 to oi), while no transitions are fired in the remaining RobotOPNs (from
oi+1 to on). As a result, the marked places in all RobotOPNs are taken into account. By using
the associating function γk for each RobotOPN, the multi-set χ is obtained. The GEF then
verifies whether the firing of the transitions satisfies the capacity constraints for each c j ∈ C

(lines 2-5).
Comment 2: If the capacity restrictions are ensured and the Boolean formula assigned

to tS (i.e., tS
∧) evaluates to True, the transitions ⟨tS,(to1

, to2
, . . . , toi

)⟩ can fire synchronously
without the need to evaluate the robot positions. In this case, the GEF returns True (line 8).

Comment 3: If the conditions are not met, a new simulation is performed, and the
updated occupancy multi-set µ ′

occ is computed. Note that χ and µ ′
occ represent the simulated

occupancy multi-sets with respect to C and B, respectively. For µ ′
occ, there are two additional

conditions that may prevent the transitions from firing. These conditions are checked at lines
11-14 and are as follows:

• If an atomic proposition b j ∈B is part of the formula tS
∧, but in the simulated occupancy

state µ ′
occ (after the transitions are fired), no robot is present in region y j, then the

motion of the robotic team does not fulfill the Boolean function assigned to transition
tS (first condition at line 13).

• If a negated atomic proposition ¬b j (where b j ∈ B) is part of the formula tS
∧, but the

artificial updated occupancy multi-set µ ′
occ after the firing of the involved transitions

respects µ ′
occ[b j]≥ 1, meaning at least one robot is in region y j, then the formula tS

∧ is
not satisfied (second condition at line 13).

If any of these conditions hold, the GEF returns False (line 14). Otherwise, it returns
True (line 15). The firing of transition t (lines 8 and 15) updates the system’s marking and
the multi-set µocc.

Remark 6.4 A path planning solution for the proposed system HLrtPN is returned
only if the capacities constraints of the robots over a set of cells C mapped to the set Y

are considered such that the mission can be accomplished. A counterexample for which
the executability of our model produces a deadlock is represented by the LTL mission
ϕ =♢b1 requiring the visit of the region y1 for which no robot can enter due to its size. This
characteristic translates into µcap[ci] < R− k,ci ∈ C for any robot Rk able to enter any ci

with h(ci) = b1 (for y1). Throughout the simulations provided in the next section, we have
considered feasible missions that could be satisfied by the robotic team. Thus, we have
excluded scenarios that could lead to blocked or endless simulations, as previously stated.
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6.4 Numerical evaluation

The evaluation of the HLrtPN system considers a detailed explanation of an easy-to-follow
example, showcasing the unique perspective of the proposed model for a planning strategy
of a heterogeneous robotic team. The implementation relies on the development process in
Renew software tool2[136]. The version of the software is 4.1, since this version simplifies
compilation and simulation based on synchronous channels.

The feasibility of the LTL formulas addresses the number of robots in the team and their
spatial constraints. A SpecOPN model associated with an LTL formula can be generated
automatically based on the defined steps documented on the website [137]. In addition,
the website elaborates a more thorough explanation of the mentioned notations alongside
illustrative examples, as part of the entire GitHub project.

At different runs, the tool may return different solutions for the same scenario, since
there may be multiple possibilities to verify the Boolean formulas from transitions of the
SpecOPN. Therefore, for each experiment, a given number of simulations are performed to
assess the quality of the results. The metrics chosen for the analysis of numerical results are
the following.

• (a) Model size, as the sum of places and transitions, respectively, of all the representa-
tions assigned to the robotic team and the given specification.

• Average (b) run time to return a solution, based on all the simulations as part of one
experiment, such that a given LTL mission is ensured by the robotic team. This metric
excludes the time needed to build the model.

• Shortest (c) trajectory length for the whole robotic team obtained over all simulations
performed within the same experiment. The trajectory length is expressed as the total
number of fired transitions in the RobotOPN models.

Easy to follow example
This case study provides an altogether view of the defined formalism, considering the

problem formulation from Chapter6.2. The planning strategy for a team of three robots evolv-
ing in a known workspace is visualized in Figure 6.5 for which a global LTL specification
is given. The mission ϕ = ♢b1 ∧♢b2 ∧♢b3 ∧ (¬b1 U b3) implies the visit of regions of
interest y1,y2,y3, but requires that region y3 be visited before y1. The spatial constraints for
agents impose an upper bound of two, i.e., µcap[c5] = 2, meaning that no more than two
robots can be present at the same time in the cell c5 modeled by po1

5 , po2

5 and po3

5 , all labeled
by y1.

Figure 6.6 illustrates object nets. The left side (Figure 6.6-(a)), shows two different
types of robots concerning their spatial capabilities: r1 and r2 are identical and are allowed

2Renew software tool: http://www.renew.de/

http://www.renew.de/
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Fig. 6.6. (a) RobotOPN modeling three robots evolving in the environment in Figure 6.5. Two robots
r1 and r2 can move freely in the workspace while r3 is not allowed to enter the overlapped region
between y2 and y3 (the model would be the same, but removing the red elements); (b) SpecOPN: the
marked path corresponds to the shortest solution out of 100 simulations according to the trajectory
length of the robotic-team

to move freely in the workspace. In contrast, r3 is not allowed to enter the overlapped part of
regions of interest y2 and y3 (illustrated by place po1,2

4 ).
The right side (Figure 6.6-(b)) shows the SpecOPN model of the LTL mission ϕ , result-

ing from Algorithm 5. As mentioned previously, the results in terms of robots’ trajectories
are returned randomly by Renew. Therefore, we have conducted 100 simulations, with a
mean execution time per simulation of µ = 14.25 [ms].

Let us explain the orange run from Figure 6.6-(b). This run requires triggering a
transition labeled b1 ∧b2 ∧b3, which requires the simultaneous visit to regions y1, y2, and y3.
The mission is accomplished when place pS

6 in SpecOPN contains a token, guaranteed by the
synchronization function GEF based on the movements of the robots in RobotOPNs.

Initially, the robots are in free space and cannot directly enter cell c4 (intersection of
green and blue regions modeled by places po1

4 and po2

4 ). Note that r3 cannot enter this cell.
Therefore, the only way to reach all three regions is for each robot to synchronously enter
these regions in one step. Consequently, three robots must move, and transition t3 in the
system net must fire synchronously with tS

6 .
Furthermore, the three robots should move as follows: to1

1 from o1 labeled b3, to2

4 from
o2 labeled b2, and to3

10 from o3 labeled b1. Therefore, transition t3 in the system net, which
models the movement of three robots, will fire synchronously with to1

1 , to2

4 , and to3

10 from the
RobotOPNs, as well as with tS

6 . After these firings, a token will arrive in place pS
6, fulfilling

the LTL formula.
The motion planning obtained through the proposed algorithm does not guarantee an

optimal robotic plan for the chosen metrics, influenced by the randomness of performing
simulations in Renew.
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6.5 Comparison with P/T Petri net

To provide a broader aspect of the benefits of the proposed (ii) High-level robotic team Petri
net (HLrtPN), a comprehensive comparison example is provided considering the (i) P/T
Petri net [151]. The example highlights the advantages of our proposed method for planning
robotic trajectories, particularly in managing complexity. As the size of the robotic team
increases, the P/T Petri net model scales exponentially, whereas the HLrtPN provides a more
scalable solution. This comparison underscores the effectiveness of our approach in handling
larger robotic systems.

Fig. 6.7. Example of synchronous movements between the robots

Figure 6.7-a) shows a partitioned environment that includes two disjoint regions of
interest y1 (green) and y2 (blue). In this workspace, a team of three robots is considered
to evolve: one robot r1 can reach only the region y1, another robot r2 is allowed to move
only in the region y2, while the third robot r3 is allowed to move freely in the workspace.
The Petri net representations for each robot r1,r2 respectively r3 are captured in Figures
6.7-c), d), respectively b). The mathematical notations used for this example follow the
notations defined in Chapter 2 i.e., set Y for the regions of interest and set B for the atomic
propositions associated with the set Y .

Each place represents a cell from the partitioned environment. Places p1, p3, and p5 are
associated with the free space, places p2, p6 are associated with region y1, and places p4, p7

are associated with region y2. The presence of a token in a place represents the position of
the robot in the environment. Initially, the robots are located in free space.
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The transitions that facilitate the entering of a robot in a region of interest have assigned
a label equal to the value of the atomic proposition associated with the respective region of
interest, e.g., b1 for y1, respectively b2 for y2. For example, the movement of robot r1 from
the free space in the region y1 is portrayed by triggering the transition t2 which evaluates the
atomic proposition b1 as True when consuming the token from place p1 to p2 (Figure 6.7
-c)). Contrary, when transition t1 is fired (the robot entering the free space), the value of b1

is unknown. The negation of any atomic proposition is a global variable, depending on the
state of all robots, e.g., robot r1 exits region y1 while r3 is present in the region y1.

Fig. 6.8. Example of synchronous movements between the robots

Approach (i): P/T model. The P/T-net (also known as “Place/Transition Petri net”) is
a model where the tokens cannot be differentiated between them, as stated in[151]. Based
on the studies from literature, the Petri net model is usually considered for motion planning
solutions of homogeneous robotic teams, that should ensure a global mission. This aspect is
given by the fact that the robots are represented by tokens, as in [107].

The global view of the robotic team can be visualized by adding several transitions in
the P/T model, capturing the synchronous movements of the robot. For a clearer visualiza-
tion, Figure 6.8 provides a partial view of the totality of transitions that should be added,
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considering all the synchronizations of the robots. For example, the firing of transition t11

triggers a synchronization between robots r1 and r3, by evaluating the True value of b1 ∧b2

when both robots enter regions y1, respectively y2. On the other hand, it can be observed that
no label was assigned to transition t12 since this models the exit of robots r1,r2 from regions
y1,y2 and enter the free space. The synchronization between r1 and r3 but not r2 cannot yield
any global information about the atomic propositions, associated with the movement of all
robots. The number of synchronizations between r1 and r3 is 12, given by 2 transitions in the
model of r1 connected with the 6 transitions in the model of r3. Similarly, there are needed
12 transitions for counting the synchronizations between r2 and r3.

The new transitions illustrated on the right side of Figure 6.8 show synchronizations
of all robots in the team. In this scenario, transition t16 yields global information about
the state of the robotic team, since it considers their synchronization. By firing t16, both
b1 and b2 associated with regions y1 and y2 are evaluated as False. The total number of
synchronizations is given by the product of all number of transitions for each model: 2
(transitions for r1) × 2 (transitions for r2) × 6 (transitions for r3).

Observe that in the provided example, where only three robots are in the team, the
number of transitions that should be added is equal to 52, composed of 4 transitions for syn-
chronizations between r1,r2; 12 for synchronizations between r1,r3; 12 for synchronizations
between r2,r3; and 24 for synchronizations between r1,r2,r3. Moreover, we have analyzed
the synchronization between the robots, without considering another Petri net model for the
given mission. In such a case, a large number of arcs should be added to the overall model,
such that the motion of the robots updates the state of the mission.

Approach (ii): Nets-within-Nets paradigm. The main idea of this formalism is to
facilitate a hierarchical structure of Petri nets: a system net provides the global information
about the system, while the object nets represent the local state, particularly of the robots.
Each robot is modeled as a Petri net, similar to the previous approach the difference being
that these Petri nets are denoted Robotic object nets (RobotOPN), with o1,o2, respectively
o3 denoting robots r1,r2, respectively r3. These nets represent the tokens for an upper-level
Petri net denoted System net, particularly in the place Rb, visualized in Figure 6.9. The
notations of places and transitions reflect the mathematical notations from our proposed
method, po1

1 , po2

1 , and po3

1 modeling the free space of robots r1,r2 and r3. Observe that the
System net contains a second place Mb carrying information for the specification given to
the robotic team. In this example, we focus on the synchronization between robots, without
analyzing the complex scenario of the robots ensuring a given mission.

In our framework, the free space is considered as a region of interest associated with an
atomic proposition, specifically b3 for this example. Therefore, the transitions triggering the
entering in the free space, are labeled with b3. Note that this labeling function is considered
for all transitions that require synchronization, as part of the Nets-within-Nets paradigm [58].
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Fig. 6.9. Nets-within-Nets paradigm: Example of synchronization of the robots modeled as RobotOPN
and coordinated by the system net and synchronization function GEF.

The synchronization function requires the values of the atomic proposition based on
the enabled transitions in each local model. The system net manipulates its object nets by
firing one of the transitions t1, t2, respectively t3 associated with the synchronizations of one,
two, respectively three robots through variables x1,x2 and x3. Let us consider the following
use-case: r1 is in region y1, r2 in region y2, while r3 does not move from the free space.
Currently, the enabled transitions are to1

1 , to2

1 , to3

2 , to3

4 . Since the Nets-within-Nets paradigm
supports object-oriented operations, the synchronization function GEF acts as a guard by
analyzing the state of the robotic team with respect to the specification net, before firing any
transition. For example, if synchronization between r1 and r2 is required, while robot r3

remains in the free space, then the function GEF provides information about the global state
of the robotic team when transitions to1

1 , to2

1 are fired. This leads to the update in the atomic
propositions value: b3 becomes True, while b1,b2 becomes False.

Discussion. The method (i) based on P/T net has been studied for system modeling,
e.g., Silva, Manuel. “Introducing Petri nets.” Practice of Petri Nets in Manufacturing (1993):
1-62; Murata, Tadao. “Petri nets: Properties, analysis and applications.” Proceedings of the
IEEE 77.4 (1989): 541-580; Peterson, James Lyle. “Petri net theory and the modeling of
systems”. Prentice Hall PTR, 1981. One main drawback is the complexity of the model
obtained for complex systems being challenging to handle any modification and update when
necessary with every modification in the robotic team.

As a general rule, the number of total transitions required to be added (provided that
the global state of the robotic team) increases exponentially. This increase leads to a hardly
malleable model. Particularly, let us denote the number of transitions for each robot ri, i= ¯1,n
with N1,N2, . . .Nn, where Ni is the number of transitions associated with robot ri. The total
number of new transitions NT required for all synchronizations between robots is given by
the following equation:
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NT =

(
n

∑
i=1

n

∑
j=i+1

Ni ∗N j

)
+

(
n

∑
i=1

n

∑
j=i+1

n

∑
k= j+1

Ni ∗N j ∗Nk

)
+ · · ·+(N1 ∗ · · · ∗Nn) (6.1)

On the other hand, the second method (ii) is based on Nets-within-Nets. This formalism
facilitates easier modeling and handling of the entire representation, through its hierarchical
structure of nets, while the object-oriented operations support the insertion of user-defined
methods assigned to the system net and object nets.

We conclude that modeling a planning solution solely on P/T Petri net formalism is
proving to be difficult to handle while tracking the correctness of arcs connecting each place
such that the robotic team ensures the given mission. On the other hand, the proposed
method under the Nets-within-Nets paradigm, facilitates the modeling of local states and
global states, through its hierarchical structure. The local states are represented by a set of
Object nets, modeling the motion of robots and the specification. The System net provides
the global state of the robotic team concerning their mission, having as tokens the object
nets. In addition, the object-oriented operations that can be handled by the Nets-within-Nets
formalism, establish the synchronization between the object nets.



Chapter 7

Developed software routines and
applications

This chapter presents several simulations and applications that evaluate the results derived
from the proposed methods throughout the thesis under the Petri net formalism. The main
idea is to show the versatility of the high-level frameworks proposed for this thesis, by
analyzing the planning strategies addressed to different robotic teams: based on identical
UAVs, heterogeneous mobile robots, and a team of cobots.

Firstly, the implementation section describes the steps throughout the deployment
in MATLAB and Renew software tools, considering three methods previously detailed
throughout the thesis. Specifically, the MATLAB implementation aims to include in the
open-source toolbox denoted RMTool the following methods based on the Discrete Event
Systems formalism: the rerouting planning algorithm from Chapter 4.3 and the Composed
Petri net framework from Chapter 4.2. Moreover, the Renew tool allowed for evaluating the
soundness of the framework High-Level robot team Petri net under the Nets-within-Nets
paradigm from Chapter 6.1.

Secondly, two simulation scenarios with real applicability are considered for the result
analysis, introducing planning strategies for a team of identical UAVs whitening the roof of
greenhouses, respectively considering both homogeneous and heterogeneous robotic systems
to plan collision-free trajectories and allocating tasks envisioning a futuristic situation in
the healthcare domain. Lastly, this chapter concludes with an experimental validation of
the framework Composed Time Petri net model in the industrial domain, particularly for a
manipulating application using two cobots ensuring mission with space and time constraints
under the MITL formalism.
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7.1 Deployment

One contribution of this thesis is represented by the implementation process since several
methods are uploaded online to serve as open sources for researchers. By having access to
these methods, the previously described methods are a stepping stone for further improve-
ments in the robotic path planning field. Thus, this section describes the implementation
process, that has been considered throughout this thesis, aiming for a conceptual understand-
ing of the software tools chosen for validating the formal methods presented in the previous
chapters. Particularly, this section is divided into three phases, detailing the following: (a)
MATLAB implementation [152] with a focus on the Composed Petri net formalism (Chapter
4.2) and the path rerouting method (Chapter 4.3) which is available in the toolbox RMTool
[2], (b) Renew implementation [153] taken into account for the High-Level robot team Petri
net system under the Nets-within-Nets paradigm (Chapter 6.1)), a deployment which is
described in [137], a website that includes also the GitHub functions used for validating the
proposed framework, and (iii) Romeo implementation [134] weighted for evaluating the Com-
posed Time Petri net model (Chapter 5), since this tool allows for on-the-fly model-checking
suitable for Time Petri net representations.

7.1.1 MATLAB implementation

The implementation was carried out in the toolbox RMTool in MATLAB [2], which can be
found on this link [154]. Particularly, this toolbox is open-source, has a user-friendly graphic
interface, and facilitates an easier deployment and validation of the proposed methods under
the Discrete Event System representations, such as Petri net or Transition Systems. The
implementation is reproducible and adaptable to the user’s needs. Therefore, one of the
contributions of this thesis relies on the availability of the implementation of the mentioned
methods.

The methods described in this thesis and deployed in MATLAB could be easily validated,
through its simplicity of expressing optimization problems with the Optimization Toolbox
[155]. Moreover, the comparison with other algorithms from the literature (as stated in
Chapter 2.4, is simple to assess, since the evaluation of the proposed and other DES methods
are integrated in the same workspace.

Figure 7.1 represents a top-level overview of the implementation in MATLAB: (a) the
RMTool yields an easy-to-handle graphical interface that includes (b) multiple path planning
methods further implemented by (c) a set of MATLAB scripts. Among the methods available
currently in RMTool, this section highlights the contributions related to the deployment of
two of the proposed methods explained in this thesis, notably (i) the path rerouting algorithm
from Chapter 4.3 which expanded on a previous path planning solution included in the
RMTool, and (ii) the Composed Petri net framework from Chapter 6.1 which was analyzed in
comparison with several algorithms under Discrete Event System’s representation, algorithms
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Fig. 7.1. Diagram of MATLAB deployment in RMTool

that are also included in RMTool. A short code description will be described for each of these
two deployments, following the steps that should be considered for running the algorithms.

Figure 7.2 illustrates the graphical interface of the toolbox RMTool. On the right side
(highlighted with light blue), it can be visualized the workspace including a set of regions of
interest Y which is further partitioned into cells for an easier handling of the environment,
and the positions of the robot. On the bottom side, a short mention of the cells modeling the
regions of interest can be visualized. On the left side, different settings can be selected by
the user, such as the type of cell decomposition technique, planning in a known or partially
unknown environment, specifying the global mission of the robotic team described either
as a Boolean formula (emphasized by the green color), either as Linear Temporal Logic
specifications (as described in Chapter 2) and selecting the path planning strategy. The path
planning algorithms can be chosen by pressing the button highlighted with purple, including
methods published in [2, 4, 50] among others, such as two of the proposed algorithms from
this thesis noted by (i) and (ii) in this section.

Moreover, on top of the graphical interface, a list of settings is accessible to the user.
Among these, the user can add or remove robots once they were added initially in the
workspace, to move their initial position and to modify the font size which enumerates the
cells returned by the partitioning technique. In addition, the interface facilitates the choice
for a particular optimization solver such as: intlinprog incorporated in the MATLAB tool
[152], GLPK (GNU Linear Programming Kit) [156] or CPLEX [110]. Other inputs relevant
to a path planning method, such as user-defined parameters, e.g., the number of intermediate
markings for MILP 4.2, can be modified. For small or less complex problems, the intlinprog is
efficient and convenient since it is integrated into MATLAB. For more advanced applications
or large-scale MILP, CPLEX is usually the best choice, as observed throughout simulations
when evaluating the proposed methods. GLPK provides a cost-effective solution but is
unsuitable for large problems, such as having many robots on the team. Throughout the
result analysis of the methods proposed for this thesis, the selected solver was CPLEX 12.10
which is compatible with MATLAB 2019b.
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Fig. 7.2. Graphical interface of RMTool [2]

Fig. 7.3. Message addressed to the user regarding the saving of data based on the selected planning
method
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RMTool incorporates a feature that allows the user to save data about the simulation
in .txt file, among which several pieces of information can be enumerated such as the run
time for building and solving an optimization problem, the solver that the user selects,
the size of the model (Petri net or Transition System) for which the planning method has
been implemented on, the accepted run in the Büchi automaton that is followed in case of
providing a global LTL mission, the trajectories of the robots ensuring the mission (LTL
or Boolean) considering the cells that are being crossed through their paths. Figure 7.3
shows the message that the user receives by the interface once the path planning procedure is
finished and the following text illustrates the data returned by the tool. This text considers
a planning procedure based on the method from [2] for the Boolean mission ¬b1 ∧b2 ∧b3

ensuring the visit of regions y2,y3 and the avoidance of region y1 by a team of two robots.

P e t r i n e t sys tem has 42 p l a c e s and 122 t r a n s i t i o n s
Time s p e n t f o r c r e a t i n g i t : 0 .0011535 s e c s
The MILP f o r i n t e r m e d i a t e s t a t e t o s a t i f y t h e f o r m u l a on
t r a j e c t o r y has 495 v a r i a b l e s and 126 e q u a l i t y c o n s t r a i n t s
and 132 i n e q u a l i t y c o n s t r a i n t s ;
Time s p e n t f o r c r e a t i n g t h e problem : 0 .0014024 s e c s

The MILP s o l u t i o n i s w i th GLPK

Time of s o l v i n g t h e MILP f o r comput ing i n t e r m e d i a t e marking
t o s a t i s f y t h e f o r m u l a on t r a j e c t o r y : 0 .0061338 s e c s

I n i t i a l marking [ [ 2 1 ; 2 7 ] ] = [ 1 ; 1 ]
Boolean v a r i a b l e s i n s o l u t i o n s f o r t h e i n t e r m e d i a t e s t a t e a r e :
[ 0 ; 0 ; 0 ]

The MILP f o r t h e f i n a l s t a t e c o m p u t a t i o n has 659 v a r i a b l e s
and 168 e q u a l i t y c o n s t r a i n t s and 219 i n e q u a l i t y c o n s t r a i n t s ;
Time s p e n t f o r c r e a t i n g t h e problem : 0 .0036597 s e c s

The MILP s o l u t i o n i s w i th GLPK

Time of s o l v i n g t h e MILP f o r comput ing t h e f i n a l marking
t o s a t i s f y t h e f o r m u l a on t h e f i n a l s t a t e : 0 .0094235 s e c s

I n t e r m e d i a t e marking [ [ 2 1 ; 2 7 ] ] = [ 1 ; 1 ]

============STEP 1 =============
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Marking [ [ 3 ; 2 3 ] ] = [ 1 ; 1 ]

Sigma [ [ 5 4 ; 6 1 ; 6 9 ; 7 5 ; 7 8 ; 8 0 ] ] = [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ]
Boolean v a r i a b l e s f o r t h e f i n a l s t a t e i n s o l u t i o n s a r e :
[ 0 ; 1 ; 1 ]
R e q u i r e d number o f s y n c h r o n i z a t i o n s : 2

SOLUTION − r u n s o f r o b o t s :

Robot 1 : 2 1 , 1 9 , 3 , 3 , 3
Robot 2 : 2 7 , 2 6 , 2 4 , 2 8 , 2 3
The number o f s t e p s f o r a l l r o b o t s i s : 4
===========
The o r d e r o f t h e r o b o t s i s : 1 2

(i) Path rerouting implementation
Let us recall the path rerouting algorithm explained in Chapter 4.3, build upon the

approach presented in [2], where a set of robotic paths is returned ensuring a Boolean mission
specifying the final destination for the multi-robotic system while avoiding a set of obstacles
along their trajectories. The proposed solution achieves parallel movements of the robots
when the team should pass through a narrowed passage, maintaining the fulfillment of the
Boolean mission, although the paths are rerouted to allow a parallel motion.

As mentioned before, the approach from [2] is implemented in the RMTool in the script
denoted rmt_path_planning_boolean_new . Thus, by deploying the algorithm of
the path rerouting into the same toolbox in MATLAB, the evaluation process ensures a
controlled comparison between methods since the environment is consistent and can be
reproduced.

Figure 7.4 shows the workflow diagram of the implementation code which provides an
extended explanation of the Algorithm 8 by illustrating code fragments. The inputs (purple
color) for this algorithm are represented by a Boolean mission for the robotic team and
the environment designed by the user in RMTool, including the set of regions of interest
that should be reached and/or avoided (based on the mission), the number of robots in the
team and their location in the workspace, and select the type of cellular decomposition (as
mentioned in Chapter 2.1). The tool also allows for a random positioning of the regions of
interest and the initial position of the robots.

As it can be in the diagram (Figure 7.4), based on the delineated workspace, an RMPN
representation (Definition 2.2.2) is built through the function that outputs the matrices Pre
and Post based on the adjacency matrix resulted from the cell decomposition technique,
specifically rmt_construct_PN . The pseudocode for this translation is explained in
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Fig. 7.4. Flow diagram for the method described in Chapter 4.3
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Fig. 7.5. Message to the user with respect to the rerouting procedure

detail in [1] (particularly, in Algorithm 4.2), where a place represents each cell, and the
transitions are added based on the adjacency matrix.

The following step in the diagram is emphasized with the pink color, since the trajecto-
ries of the robots are computed based on the method proposed in [2]. The script in MATLAB
contains four main functions: rmt_construct_constraints_intermediate

which builds an optimization problem for the intermediate marking, meaning that the
regions of interest along the trajectory are avoided as stated in the global Boolean mis-
sion, rmt_construct_constraints_final which builds the optimization prob-
lem for the final marking that ensures that the robots reach the regions of the interest,
rmt_path_planning_boolean_milp which solves the previous optimization prob-
lems, and the last function allows the user to interpret the solution into robot trajectories
rmt_path_planning_boolean_trajectories

To visualize the trajectories computed by the algorithm [2], it is recommended to press
the path planning button (highlighted with purple in Figure 7.2). Immediately afterward,
the user has the possibility of selecting another planning strategy based on the method
from Chapter 4.3, suitable for a dynamic planning route based on the previously returned
trajectories. Specifically, Figure 7.5 shows the message that the user visualizes it since the
method that reroutes the trajectories contributes to a parallel motion of the robots fitted in
scenarios where the robots should pass through a common free area to reach the specified
regions of interest.

All the actions encapsulated inside the workflow diagram, starting from the Com-
pute order of cells in Tra j, are implemented inside the customed MATLAB function
rmt_path_planning_dyn_release_resources . The name of the function ac-

counted for the scenario where the narrowed passage includes resources in the form of com-
mon free cells that the team of robots should share among them while computing collision-
free trajectories. The commoncell is represented by a vector cell_idx that stores all the
common free cells that robots should pass through, while currentcell and the previouscell are
associated with variables sharing the same name: current_cell, previous_cell

for the current robot i, as it can also be seen in the for loop in the diagram.
Therefore, the set Tra j contains the ordered cells, returned by the following function

rmt_find_order_trajectories and is saved in the variable order_rob_cell.
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This step is necessary to observe the order in which the robots cross the common free
cells since the method from [2] moves the robots sequentially. The update of the RMPN
model inhibits the input and output transitions from the places that represent the obsta-
cles in the workspace. The set RobotsToMove is computed in MATLAB in the variable
new_Run_cells which is a cell with a size equal to the number of robots that should
move. On the other hand, the set RobotsToWait is given by the variable count which is
further used in the last decision node (with yellow), when the number of these robots is
greater or equal to a user-defined parameter N.

The movement of the robots is visualized by the variable flag_release which is
used afterward to release the resources, thus freeing the current cells of the robots. Once the
movement is accomplished, the initial marking m0 is updated to be further used to reroute
the trajectories when either the number of robots that cannot move is greater than the user’s
threshold or the robots that should move cannot proceed. The second scenario occurs when a
rerouting solution assigns the regions of interest to the robots through a set of trajectories.
However, since the robots are moving in parallel, a blocking throughout the trajectory might
happen. A visualization for this scenario is explained and shown in Figure 4.12 (b).

If the rerouting procedure is triggered by the conditions of the last decision node,
then the function rmt_path_planning_pn_bool_new_traj build and solves the
MILP (4.8). The solution is afterward interpreted and saved into the new set Tra j by the
function rmt_path_planning_boolspec_dif_trajectories . Based on these
trajectories, the robots that were previously in the category RobotsToWait are now relocated
into the set RobotsToMove in order to advance for one step in their paths. Once all the robots
that didn’t reach their final region of interest moved for one step, the marking is updated in
m0 and the order of the cells is evaluated. The entire procedure is iterated until the initial
marking m0 is equal to the final marking m f . In other words, the robotic team ensured
the Boolean mission by reaching all the specified regions of interest, through collision-free
trajectories, while the robots moved in parallel.

The video from [130] contains a comparison between the method from [2] with the
path rerouting procedure, as a result of the implemented procedure described in Chapter 4.3.

(ii) Implementation of the Composed Petri net model
The novel framework Composed Petri net (Chapter 4.2) joining the PN model repre-

senting the motion of the robots in the workspace with the Büchi automaton modeling a
given LTL mission to the robotic system is part of the RMTool implementation as one of
the contributions of this thesis. Moreover, the algorithm 7 providing the global view of
the proposed solution the robotic motion plan was analyzed in comparison with other DES
methods also present in the same toolbox.

In the following, a workflow diagram of the Algorithm 7 is explained in detail (Figure
7.6), by emphasizing the key aspects from the implementation code in MATLAB in the
function rmt_path_planning_ltl_pn_with_buchi . The purple bounding boxes
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represent the inputs of the algorithm associated with the environment (the set of regions of
interest and the number of the robots in the robotic team), the given LTL mission, and the
number of intermediate markings k, all of them being defined by the user in the RMTool.

The workspace is represented by a RMPN model (Definition 2.2.2) by using the MAT-
LAB functions rmt_quotient_T_new which firstly make a quotient partition of the
workspace by joining the cells sharing the same observation and afterward building the
Quotient PN through rmt_construct_PN . On a similar note, the Büchi automaton
associated with the LTL formula is returned by the tool ltl2ba [93], which can be installed
and used in MATLAB through the costumed function rmt_create_buchi .

The Composed PN representation is built by the function rmt_construct_PN_ltl

returning variables for the matrices Pre and Post together with the index of the transitions
that are virtual as described in Chapter 4.2. The MILP 4.2, specifically the matrices A,b
for the inequality, respectively Aeq,beq for the equality constraints and the cost function
with the coefficients saved in the vector cost, is built by the customed MATLAB function
rmt_construct_constraints_ltl_wBuchi .

The first computation of the solution of MILP 4.2 is needed for the prefix. The
solution saved in the variable xmin is afterward resolved in MATLAB by the function
rmt_check_active_observations . The aim is to obtain the last active observa-

tions resulting from the last motion of the robots coordinated with the prefix path from Büchi
automaton. For example, if the input from the second to last state represented by the s f

requires the robots to reach the regions y1 and y2, and the region y2 is reached by visiting the
overlapping area between y2 ∧ y3, then the active observations are b1 ∧b2 ∧b3.

The next step visualized by the decision node, is to verify if the last active observations
are present in the self-loop of the final state s f . If yes, then the suffix is represented by this
final state, and there is no need to solve the MILP 4.2, resulting in a smaller run time for
computing a robotic path in the Composed Petri net model. Otherwise, the suffix is returned
by the same MILP 4.2 (function rmt_construct_constraints_ltl_wBuchi ) for
which the initial marking m0 is updated based on the motion produced by the prefix.

After the entire run is computed Run = pre f ix,su f f ix . . . , then the solution based on
the Composed PN requires to be projected in the RMPN model of the workspace, since
the Composed PN representation includes a reduced model of the environment. This is
achieved by function rmt_construct_constraints_ltl_project_sol imple-
menting MILP 4.3. If the solution cannot be projected as shown in Appendix ??, then this
solution is saved in a vector (bad_sol_pr caused by the prefix and bad_sol_suf caused
by the suffix).

The entire for loop is iterated for each final state until a solution is projected through
MILP 4.3. In case no solution is acquired, then the number of intermediate markings k is
increased by 1 up to its boundary given by the size of the Composed PN under the variable U .
When an iteration occurs in the while loop and the set of final states is considered once more
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Fig. 7.6. Flow diagram for the method described in Chapter 4.2
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for the planning procedure, then the MILP 4.2 ensures a new solution for prefix, respectively
suffix which is different than the previous bad solution which could not be projected into
the full RMPN of the workspace. Therefore, this action increases the expectations for the
solution returned for a reduced model to be suitable for the extended one.

The last decision node verifies if a solution is possible using the Composed PN con-
cerning the trajectories of a robotic system. If so, the trajectories are decoded through
the costumed function rmt_path_planning_ltl_with_buchi_trajectories

and are afterward plotted in the graphical interface. If a solution is not returned, then the user
is informed about this fact in the .txt file, including the simulation information.

7.1.2 Renew implementation

In this subsection, a short presentation of the Renew tool shall be described, focusing on
the key aspects that allow the user to model nets under the Nets-within-Nets formalism.
Afterward, the open source implementation that is available on GitHub is outlined, following
the Renew implementation process accompanied by illustrative examples considering the
scenario from Chapter 6.1 for an easier and comprehensive understanding of this deployment.
Finally, notes about running simulations shall be detailed such that any researcher to have a
similar starting point for further improvements of the proposed novel model.

Renew (Reference Net Workshop) is a software tool Java-based simulator that excels in
modeling and simulating Petri nets, particularly with its support for the Nets-within-Nets
paradigm. This paradigm allows for hierarchical modeling, where individual nets can be
encapsulated within larger nets, enabling modular design and complex system representation.
The tool integrates the object-oriented properties further enhancing its flexibility. As a
result, the users are allowed to define classes and objects that can be manipulated within the
Nets-within-Nets paradigm [136].

Therefore, the implementation of the planning method using the High-Level robotic
team Petri net model under the Nets-within-Nets (as presented in Chapter 6.1) is based
on Renew. Particularly, the version of Renew is 4.1 due to the feature of compiling and
simulating the nets using synchronous channels. 1

As previously stated in Chapter 6.4, several details about the implementation are
described in [137], which also contains references to two examples that are open access
on GitHub: a simple scenario considering three robots and an easy to follow LTL mission
[157] that is explained in Chapter 6.4 and a more complex scenario [158] considering a team
up to 10 robots, which is further explained in Chapter 7.2.2. The following explanations
accompanied by examples of modeling the nets in Renew are based on the simple scenario,
to enhance the reader’s understanding.

1The documentation of Renew includes the upgrades from one version to a newer one, as described here:
https://www2.informatik.uni-hamburg.de/TGI/renew/4.1/renew4.1.pdf.

https://www2.informatik.uni-hamburg.de/TGI/renew/4.1/renew4.1.pdf
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Fig. 7.7. Examples of the RobotOPN models in Renew: Robots r1 and r2 are free to move throughout
the workspace. Robot r3 is prohibited from entering the overlapping area between y2 and y3 (excluding
the red places and transitions).

The GitHub projects include multiple types of files: the extension .rnw is associated
with the Renew file for the designed nets (modeling the RobotOPN, SpecOPN and the
system net, the extensions .hoa and .pnml are necessary when a net should represent the
LTL mission associated with the SpecOPN, and the extension .java related to the Java
scripts in which the Algorithm 10 is deployed. Particularly, there are two main Java scripts:
Eval implementing the synchronization function between the system net and the object nets
(visualized as tokens inside the system net), denoted Global Enabling Function (GEF), and
Perf_eval computing the information about the solutions obtained after simulating the
experiments in .txt file including the minimum and maximum steps required by the robotic
team to ensure the given mission, the minimum, and maximum robotic moves by the entire
team following an accepted run in the SpecOPN.

Let us recall the formal notation of the sets of regions of interest Y = {y1,y2, . . .y|Y |},
respectively of atomic propositions B = {b1,b2, . . .b|B|}. For a simpler visualization in the
Renew simulator, the notations are redefined to eliminate the subscripts, e.g., the formal
notation of atomic propositions B for the set of regions Y = {y1,y2,y3,y4} (Figure 6.5)
is replaced here by set {a,b,c,w}, in exactly this order, with w assigned to the free space
y4. Additionally, the symbols ¬ and ∧ are replaced in Renew with the syntax “!“ and “,“,
respectively. The True value returned by the associated Büchi automaton of the co-safe LTL
formula is represented in the tool by “1“.

Firstly, Figure 7.7 portrays the design of a RobotOPN representation, considering the
environment described from Figure 6.5. Specifically, the workspace contains a set of 3
regions of interest, two of them being overlapped y2 ∧ y3. In this workspace, there are two
types of robots: r1,r2 moving freely and r3 which is not allowed to enter the overlapped
region. Thus, the place p2 modeling the overlaid area together with the input and output
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Fig. 7.8. Renew SpecOPN model for the LTL formula ϕ =♢b1 ∧♢b2 ∧♢b3 ∧ (¬b1 U b3)

transitions, are highlighted with the red color. In other words, the RobotOPN model for r3

includes only the places and transitions colored with green, while r1,r2 is associated with a
Petri net modeled by all the places and transitions illustrated in the figure.

Each transition is labeled, emphasized here by the magenta color. This following label
(c,1′p5,1′p4, ...) corresponds to the information required for the synchronization, used by
the GEF: the robot occupies one unit in the region labeled with c (modeled by p5) while
freeing its position from the free space w (modeled by p4). Thus, the atomic proposition
for c is evaluated as True. The last parameter from the transition label represents additional
information about the robot. In our example, the last data contains a number expressing
the robot’s time to move from p4 towards p5, e.g., 5.5 time units for the robotic movement,
assuming that the robot has constant velocity.

Remark 7.1 In the implementation, there are two Renew models for these two types of
robots. Since r1 and r2 have the same spacial constraints (moving freely in the workspace), a
single RobotOPN model is necessary, including all 5 places, as visualized also in Figure 7.7.
For r3, the RobotOPN model in Renew includes only 4 places, excluding the reaching of the
overlapped region modeled by p2.

Figure 7.8 illustrates the Renew modeling of the SpecOPN model. This representation
is associated with the LTL mission ϕ =♢b1 ∧♢b2 ∧♢b3 ∧ (¬b1 U b3). Similar to before,
the magenta color emphasizes the label of transitions over the set of atomic propositions.
Specifically, label (!a) expresses the negation of the atomic proposition b1 associated with
region y1. The blue color illustrates the run returned by Renew after the 100 simulations,
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Fig. 7.9. Example of the High-Level robotic team Petri net model in Renew

representing the shortest path of the robotic team when the atomic propositions associated
with region y1,y2,y3 are reached in one step. With : end() is marked the place modeling the
final state. In other words, a token in place p11 leads to the achievement of the mission.

Figure 7.9 portrays the main file representing the High-Level robotic team Petri net
framework under the Nets-within-Nets paradigm. Specifically, the blue color illustrates the
components of the system net: the place denoted mission includes as a token the SpecOPN
model, while the second place robots includes three tokens referenced to the RobotOPN
models. Furthermore, the blue transitions are added for each number of robots up to the
maximum number of robots in the team, as detailed in Chapter 6 (Figure 6.4). The other
colors used for this net are associated with the components necessary to initiate the simulation
(color green), to finalize the simulation (color red), and to process the information concerning
the shortest path of the robotic team and the run time for all the experiments (pink color).
For example, on the top left side of the figure, three green places initiate the required inputs
for the simulation such as the maximum allowed capacity for each place, e.g., 3 robots in the
free space modeled by the atomic proposition w, the association between the places modeling
the movement of the robots in RobotOPNs and their atomic propositions, e.g., p4 modeling
the free space w, and the initial position of the robots, all three robots being located in the
free space.

To run the simulations, another net is modeled in Renew, necessary from a deployment
point of view, denoted execute_experiment. The main idea of this net is to encapsu-



136 Developed software routines and applications

Fig. 7.10. Example of the execute_experiment file from Renew

late data about the simulation, considering the number of simulations considered for one
experiment, the names of the .txt files that save information about the robotic path, and the
total run time for one experiment in milliseconds. Figure 7.10 depicts this net. With orange
color is expressed as the input place and with yellow is the end place. When the token reaches
the yellow place, then the experiment finishes running and the data are saved regarding the
result simulation.

The SpecOPN model can be represented directly by the user in the tool Renew. However,
for complex missions, a manual design is difficult to build. Thus, the Renew tool encapsulates
a characteristic that for any LTL mission to be expressed as a Petri net model in a file .rnw
which can be further used for specific experiments that the researcher would like to analyze
throughout the proposed framework High-Level robotic team Petri net. Thus, a list of steps
is provided in the following:

• Translate the given LTL mission into a Büchi automaton through any model-checking
tools [94, 93].

• Copy the detailed representation of the automaton in a file and save it with the extension
.never.

• Convert the file to a new one with the extension .hoa by using the autfilt tool of the
SPOT software 2. Specifically, in the command line, the following command should
run autfilt NameOfTheFile.never > NameOfTheFile.hoa

2The autfilt tool can be accessed on the following link https://spot.lre.epita.fr/autfilt.html.

https://spot.lre.epita.fr/autfilt.html
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Fig. 7.11. Complex LTL mission ϕ modeled in Renew (blue - initial state, red - final state)

• Open a terminal window inside the folder hoa2pnml (from [157, 158]) and use the
following command line java -jar hoa2pnml.jar NameOfTheHoaFile.
The file should be added without the extension .hoa. Thus, the type of the file is
converted to a .pnml which can be opened by the Renew tool and saved as .rnw to be
further used as a SpecOPN model.

One example of a complex LTL mission is tackled in Chapter 7.2.2. Particularly,
the LTL mission ϕ =♢(b1 ∧b2)∧♢(b3 ∧b6)∧♢(b4 ∧b5)∧¬(b1 ∨b3 ∨b4)U (b7 ∨b11)∧
♢(b8 ∨ b9 ∨ b10 ∨ b12) express the visit of the first 6 regions of interest where two by two
should be reached synchronously, followed by the visit of other regions up to region y12.
The Büchi automaton for this mission includes 18 states. However, since each transition
is associated with a Boolean formula conveyed as a DNF (Disjunctive Normal Form), the
entire model is returned by the conversion from the .hoa to .rnw contains 18 places and 264
transitions. Hence, this model cannot be easily designed manually in Renew. A visualization
for this SpecOPN is shown in Figure 7.11.

The results of an experiment based on multiple simulations are saved in a .txt file,
as presented below. For this example, the simulation results are analyzed and processed
by the script Perf_eval mentioned previously, considering 1000 simulations. This file
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contains the minimum and maximum time simulating the time for the robots to move from
one region to another, as given in the transition labels as the last input. The maximum and
the minimum steps refer to the number of movements made by the robots simultaneously,
while the minimum and maximum robot moves count for the individual robotic movements
of each robot. The example from the .txt file portrays a section of the entire result of the
robotic team saved in the file, by considering the complex mission for a team of 4 robots.

min t ime : 2 7 . 5
max t ime : 1184.1000000000008
mean t ime : 307.54390470000004
minS teps : 5
maxSteps : 133
minRobotMoves : 15
maxRobotMoves : 405

7.2 Simulation results

Throughout this section, several case studies are introduced, considering various scenarios
such as: (i) whitening the roof of greenhouses by a team of UAVs, problems addressed in
the agriculture field; (ii) a futuristic hospital scenario where a team of heterogeneous mobile
robots should synchronize with respect to a given mission. In both settings, the planning
strategy relies on Petri net formalism, as previously detailed. These scenarios tackle essential
issues in the field of robotic applications.

By 2050, according to the World Resources Institute, the demand for food will increase
up to 25% compared with the present requirements [159]. Additionally, unpredictable weather
and the effects of climate change will threaten food production and security. One possible
solution to this problem is the use of greenhouses to intensify agriculture. Chapter7.2.1
proposes a planning strategy for a team of UAVs that should paint the roofs of greenhouses.
The motion of the robots is given by a mathematical programming approach under Petri net
formalism.

Mobile robots can enhance healthcare services in several ways, including optimizing
operations such as delivering medications or cleaning rooms, minimizing human expo-
sure to potentially contaminated spaces, lowering infection risks, and improving safety for
both patients and healthcare staff [160]. Chapter7.2.2 includes a planning solution for a
heterogeneous team that should respect synchronizations and sequencing for a given set
of space restrictions, under LTL formalism. The robotic trajectories are returned by the
Nets-within-Nets framework introduced in Chapter 6.
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7.2.1 Whitening the roof of greenhouses by a team of UAVs

Motivation
The relevance of UAVs in the agriculture field is oriented towards (i) usage of spray

systems [8], (ii) crop data acquisition and examination [9]. Besides these applications among
others [10], several activities can be improved based on automated UAVs, having a beneficial
impact in regard to human safety. One example is represented by the greenhouses in the
southeast of Spain, in the province of Almeria.

The whitening of greenhouse’s roof is crucial in controlling the amount of radiation that
affects the crop, thus influencing the inside temperature in the greenhouse [161], right next
to the natural ventilation [3]. The whitening process is made periodically and only when
it is needed (the temperatures are high), while washing off the whitening when the natural
ventilation is sufficient for the crop [162].

There are several problems with manually whitening the roof, the most important ones
being related to the labor risks of the workers. For example, in [163], the authors report the
labor accidents in the greenhouse-construction industry of SE Spain for the period 1999-2007
as 15133.7 accidents per 100000 workers per year. The most frequent type of accidents
include cuts, punctures, contact with hard or rough material, overexertion, and falls from one
level to another.

A set of risks can be enumerated as follows: (a) falling risk: dangerous action for a
person since almost all covers (including the roofs) are made of plastic and can break very
easily in case of a wrong step of the worker, (b) adverse weather conditions: since this
process is done during the summertime around midday when the temperature is very high
and the sun is shining. Moreover, in the (c) case of wind, when it changes direction or its
force, particles of paint may land on the skin or eyes (if not protected) of the human operator.
In addition to the human risks factor, one of the downsides of manually performing the
whitening procedure lies in the non-uniformity, since the substance is not evenly spread as it
would be through an automatic procedure.

One challenge is represented by the shape of the greenhouse’s roof. For example, the
usual type of greenhouse used in Almeria [3] is "Raspa y Agamado" (gable symmetrical
modules roof) expressing 76.4% in 2013 out of the total types of greenhouses (this percentage
increased from 62.5% in 2006). Other types are represented by Flat-Top 11.3%, Asymmetric
6.6%, and others 5.7% (this statistic was made in 2013). The ventilation of a greenhouse is
directly influenced by its geometrical characteristics, hence the width is usually recommended
to be below 30 m [164]. Considering that the size of greenhouses is not big, a particular
challenge in Almeria is represented by the spread of greenhouses: 30.000 ha [165], part
of which can be seen in Figure 7.12. Thus, the use of teams of UAVs is motivated by the
scale and number of the greenhouses, in addition to the reasoning illustrated in the previous
paragraph.

Problem formulation
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Fig. 7.12. Greenhouses in Almeria [3]

Let us consider a 3D known environment including a greenhouse and several charging
stations for a team of identical UAVs. Each drone has a finite flight autonomy which is being
reset in the charging station. The given mission for the entire team specifies whitening the
roof of the greenhouse, which can be interpreted as visiting and painting several regions of
interest that include the surface of the roof.

In [166] it is proposed a solution for a similar application as the one tackled in this work,
while the path planning problem is solved using a MILP formulation and transition system
representation of the environment. This approach computes a large optimization problem
due to sub-tour elimination constraints (a well-known issue in traveling salesman problems
[167]). In addition, the number of unknown variables is dependent on both the size of the
environment and the team of robots. The current work proposes to overcome the downsides
expressed before.

The mission given to the team of UAVs ensures the painting of the entire roof of a
greenhouse. This mission is embedded in the planning strategy, such that there is no need to
express it formally using high-level formalism as LTL or MITL, as introduced in Chapter 2.
As mentioned, the advantages of Petri net models rely on their scalability with respect to the
number of robots, as it will be observed throughout the result analysis.

Example 7.2.1 Figure 7.13 illustrates an example of the greenhouse with an even-span type
of roof [168]. We assume that at each corner of the greenhouse, there exists a charging
station together with a UAV. The drones are denoted as: r1 - red UAV, r2 - blue UAV, r3 -
green UAV, r4 - magenta UAV. ■
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Fig. 7.13. Example of greenhouse environment with 4 UAVs

The space around the roof is divided into cells based on the 3D cuboid cell decompo-
sition as presented in Chapter2.1. The idea is to divide the considered environment, e.g.,
the roof’s surroundings, into cells that are further labeled as Regions of interest - the cells
that should be visited and painted, intersecting the surface of the roof and Free - the cells
which do not intersect the roof. For this work, let us denote with yp a single region of interest
including all the cells including the surface of the roof, and with y f for the free space. The
partitioning method is under the grid-based approach, where the cells have the same size. A
Petri net model is built on the set of cells, with the following meaning: h(pi) = yp, pi ∈ P
corresponding to the region of interest and h(p j) = y f , p j ∈ P, pi ̸= p j corresponding to the
region of interest. A place cannot be labeled both free and as a region of interest.

Example 7.2.2 An example of a roof’s space partitioned into cells is captured in Figure
7.14 for a precision ε = 4, resulting in a total set of 43 = 64 cells. In addition, one cell was
included for each initial position of UAVs to connect the roof space with the drones’ charging
stations. From the totality of computed cells, the ones which are fully intersected with the
roof (the ones in which the UAVs cannot cross) are eliminated, resulting in a set of 60 viable
cells.

Figure 7.15 (X-Z view) illustrates the two different types of cells based on their labels:
regions of interest represented by the cells intersecting the surface of the roof (green border)
and free without any intersection (black border). For a clear visualization, only the cells
relevant to one facet of the roof are captured here. ■
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Fig. 7.14. Grid decomposition of greenhouse’s roof, with precision ε = 4

Fig. 7.15. Example of different types of cells: regions of interest and free

It is assumed that the drones fly in the space defined by the obtained viable cells (free
and regions of interest), thus avoiding collision with the greenhouse.
Proposed solution

The approach consists of iteratively solving a Mixed Integer Linear Programming
(MILP) (7.1) to compute the paths of all robots for a given tour. By a tour we understand the
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paths of all robots starting from the charging station, paint some regions of interest, and return
to the charging stations. The main idea of MILP (7.1) is to obtain a sequence σ such that
as many cells (modeled by places) are visited, with h(pi) = yp, pi ∈ P, subject to the energy
constraint of the UAVs when they both move and paint the roof. The current work assumes
the energy consumption constraints to be more rigorous than the paint capacity constraints.
In addition, the MILP ensures that all UAVs included in the path planning problem reach a
region of interest. The number of available UAVs for the MILP is denoted with rAv ≤ |R|.
One refers to available UAV for MILP if the solution returns a trajectory towards regions of
interest for the same UAV, i.e., an available UAV has enough energy to reach and paint at
least one cell labeled as region of interest. The MILP is described as follows:

Variables:

• m ∈ R|P|
≥0 - marking of RMPN for the entire team of UAVs;

• σ ∈ N|T |
≥0 - firing count transition vector of RMPN.

The values of vector m are considered real for the MILP, to reduce the complexity for
the solved problem when compared with an ILP formulation.

Objective:

min 1T ·σ (7.1a)

Constraints:

m−m0 −C ·σ = 0 (7.1b)

ET ·Post ·σ ≤ rAv · min
i=1,rAv

Eci (7.1c)

LT ·m = min(rAv, |Pp|) (7.1d)

Post ·σ ≤ 1 (7.1e)

The MILP (7.1) minimizes the number of the fired transitions 1T ·σ . The constraints of
this MILP are as follows,

• Constraint (7.1b) is the state equation (2.1).

• Constraint (7.1c): considers that the energy consumption for the entire team of UAVs
along the paths is less or equal to an approximation of the entire available energy of
the team. This entire available energy is approximated with the minimum energy of
the available robots multiplied by the number of available robots rAv (right-hand term).
The left-hand term contains E ∈ R|P|×1 which is a vector containing the energy to
cross free places (regions that shouldn’t be painted), respective region of interest places
(regions that should be painted).
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• Constraint (7.1d) specifies that in the final marking m, all available robots should reach
a region that should be painted. If the number of regions to paint is less than the number
of available robots, then only a subset of robots are moving. Vector L ∈ {0,1}|P|×1 is
defined as L[pi] = 1 if h(pi) = yp, pi ∈ P, and L[p j] = 0 otherwise.

• Constraint (7.1e) is responsible for the collision avoidance between UAVs, ensuring
that only one UAV can be in one place throughout the trajectory, where 1 is a vector of
|P| elements having all elements equal to one.

The main advantage of using the PN model is emphasized through this MILP, e.g., when
the team on UAVs decreases or increases, only the initial marking m0 is modified, while the
structure of the mapped environment remains the same. In addition, the size of MILP (7.1)
remains constant, as the number of constraints is not dependent on the size of the UAV team,
nor the size of the environment.

The previous MILP is incorporated into an overall algorithm, which is solved multiple
times, based on the number of cells to paint. Algorithm 11 captures the path planning strategy
for one tour. This procedure is centralized and iterated until all cells that should be painted
are visited. Before executing the algorithm, the following values are initialized:

• rAv = |R |, i.e., initially, the number of available UAVs is equal to the number of UAVs.
The loop in line 1 of the algorithm is iterated until the number of available robots is
zero (all robots should be recharged), thus a tour is finished.

• Eci,∀i = 1, . . . ,R is initialized with the maximum energy as all UAVs are charged
fully with energy in the charging stations. As mentioned above, the paint capacity
constraints are included in the energy consumption constraints. In this problem, the
quantity of paint carried by the UAVs does not represent a restriction, since the flight
autonomy of drones is considered more stringent than the carrying capacity.

• Pathsi represents the path towards the regions of interest that should be visited and
painted, computed by MILP for all UAVs ri ∈ R.

If MILP (7.1) has a feasible solution (line 3), an estimation of the current energy Ēci,

for all available robots ri, is calculated based on the returned solution of MILP (loop in lines
4-6). In line 7, if the estimated current energy of all UAVs is greater than a given threshold
Eτ , then the paths returned by MILP for all available UAVs are computed. Moreover, the
necessary parameters included in the optimization problem (lines 10 and 11) are updated. On
the other hand, if at least one UAV doesn’t have enough energy (compared with the threshold
Eτ ) or the solution is unfeasible, then a path towards a charging station is computed for the
UAV with less available energy ri (line 13). As a consequence of this action, the number of
available UAVs for MILP is updated accordingly and the loop is iterated.

Result analysis
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Algorithm 11: Path Planning for one tour
Input: RMPN Q, regions to paint with h(pi) = yp, pi ∈ P, number of available

UAVs rAv, current energy of each robot Eci

Output: Paths
1 while rAv > 0 do
2 Solve MILP (7.1);
3 if solution is feasible then
4 forall ri do
5 Compute the energy Ei of executing the path resulting from the MILP’s

solution;
6 Ēci = Eci −Ei;

7 if solution is feasible AND min
i=1,rAv

Ēci > Eτ then

8 forall ri do
9 Append to Pathsi the path based on MILP;

10 Update m0,L, pi with h(pi) = yp;
11 Eci = Ēci;

12 else
13 For ri with less Eci compute the path to a charging station and append it to

Pathsi;
14 Update m0;
15 rAv = rAv −1;

The simulation results are obtained on a computer with i7 - 8th gen. CPU @ 2.20GHz
and 8GB RAM after the algorithm was implemented in MATLAB. The selected solver for
MILP (7.1) is CPLEX [110].

Example 7.2.3 Let us recall the Example 7.2.1, illustrating a team of 4 UAVs which should
whiten the roof of a greenhouse. For the considered simulation, the size of the greenhouse is
100×100×5 meters [m], while the highest point of the roof is at 8 [m]. Each UAV is placed
in a charging station at every corner of the greenhouse.

The roof’s space is modeled as a grid-based environment based on the 3D cell decompo-
sition method. For precision ε = 4 we obtained 60 viable cells (through which the UAVs can
fly) in 0.24 seconds. In addition to these cells, 4 more cells are added, one for each initial
place of UAVs. Therefore, the roof’s space is captured in 60 cells, from which 32 represent
regions to paint (ROIs). The whitening of the roof (interpreted as visiting all ROIs by the
UAVs team), finishes in 3 tours, while the run time of one instance of MILP (7.1) with all
robots available rAv = |R| is 0.06 seconds. ■
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Table 5.1 capture scenarios where the size of the UAV team and the precision are
modified. The following energy preconditions were assumed for these simulations: (a) for
precision ε = 4 the energy to move between two adjacent places is 3%, while the energy
for painting one region of interest represents 15% out of maximum (fully charged 100%)
drone energy; (b) for precision ε = 8 the energy to move, respectively to paint consumes 1%,
5% and (c) for precision ε = 16 the energy to move is 0.5% and to paint is 2%. The energy
consumption for moving/ painting one cell is reduced when the precision increases, due to
smaller areas to paint.

Let us recall the fact that the previous work [166] considered a similar problem for-
mulation. The differences between these two works consist in the chosen model of the
environment: transition system in [166] and PN model in the current work. In addition,
the previous work accounts for a single run of the MILP problem while including as input
the number of tours, while the current work is based on an iterative approach to the MILP
problem, the number of tours increasing every time when the first condition in Algorithm
11 is not verified. In [166] the results show an exponential increase in constructing and
solving the MILP, based on the sub-tour elimination constraints assigned to each robot in the
team and a large number of unknown variables. For example, in [166] the running time to
compute MILP is 2359 seconds and to solve it is 152.36 seconds for a small environment
with only 15 nodes in the graph. Simulations with more than 15 nodes were not computed
because the computer ran out of memory, the trigger being represented by the large number
of unknown variables in MILP. On the other hand, the current work provides a solution
for a large environment containing 2980 nodes (places in the Petri net model), having the
following performances: constructing the MILP in 20 seconds and solving the MILP in 13.26
seconds.

Moreover, the results in Table 7.1 show the same running time to solve the MILP
when the precision ε is the same and the size of the team varies (the first two lines), as the
optimization problem depends only on the size of the environment. Thus, the main advantage
of the PN model is emphasized. To ease the visualization of the results, a video animation
can be accessed at this link.

7.2.2 Assisting multi-agent robotic systems in healthcare field

Motivation
Let us consider a hospital procedure, e.g., MRI (Magnetic Resonance Imaging), suitable

to scan images of the patient’s body which are further used in diagnosing medical conditions
or plan treatments. Due to the magnetic field generated by the machine, the computer
used in the scanning process is in a different room. A radiographer usually operates the
scanning process from another room. Depending on the body part that has to be monitored,
the acquisition time varies, e.g., measuring the flow rates in vessels can take up to 30-40
minutes long [169]. Due to the time-consuming process of the scanning and monitoring,

https://youtu.be/YhT_29iPMRs
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Table. 7.1. Simulation results evaluation

Environment scenario Run time for cell
decomposition [sec]

No.
ROI

Run time for 1 instance of
MILP (7.1) [sec] No. tours

r = 8 UAVs, precision ε = 4
0.24 32 0.06 2

PN model with |P|= 60, |T |= 288

r = 4 UAVs, precision ε = 4
0.24 32 0.06 3

PN model with |P|= 60, |T |= 288

r = 4 UAVs, precision ε = 8
2.1 112 0.17 4

PN model with |P|= 404, |T |= 2328

r = 4 UAVs, precision ε = 16
29.66 512 13.26 6

PN model with |P|= 2980, |T |= 18856

the researchers are inclined to automate it, e.g., the authors of [170] aim to close the gap
between the current manual approach of ultrasound acquisition by using a robotic system.
Since the tendency is to reach fully automated systems assisting in the medical field, many
works provide different solutions approaching this aspect. One example is in[171], where
various methods for the ultrasound procedure are structured based on a defined autonomy
level.

Problem formulation
The need to automate this medical process among others, allows us to introduce a

complex scenario suitable for motion planning of a robotic system with physical applicability
in the real world. The main idea is to output robotic trajectories considering the proposed
High-Level robotic team Petri net (HLrtPN) model under Nets-within-Nets paradigm,
as presented in Chapter 6. The following scenario provides a wider perspective into the
complexity in which the HLrtPN model enhances the scalability property of the Petri net
formalism.

Let Figure 7.16 illustrate the layout of a hospital with three floors. The hospital includes
a total number of rooms of 12, denoted by the set Y = {y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12},
with examination rooms y7,y11, surgery rooms y8,y12, therapy rooms y9,y10, and MRI rooms
y1,y3,y4 which can be monitored only from rooms y2,y5,y6.

Fig. 7.16. Example of a hospital scenario with three layouts and 12 rooms for a multi-robot system.
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Multiple rooms from the hospital are reached at one point in time. Firstly, the patients
should be first examined in one of the examination rooms. If an MRI procedure is required,
then the required rooms should be reached synchronously, as the patient is monitored
simultaneously by a scanning robot. Any of the surgery and therapy rooms can be reached
eventually, to be supplied and cleaned. The associated co-safe LTL mission is expressed
in (7.2) correlated with the set of atomic propositions for each region from set Y , i.e., b1

associated with y1.

ϕ =♢(b1 ∧b2)∧♢(b3 ∧b6)∧♢(b4 ∧b5)∧¬(b1 ∨b3 ∨b4)U (b7 ∨b11)∧♢(b8 ∨b9 ∨b10 ∨b12)

(7.2)

The robotic system includes different types of robots, based on their spatial capabilities:
rp are robots carrying patients, rm have scanning abilities only for the MRI procedure, rsc are
supplier and cleaning robots (supply with medicament and sterilize the rooms in which the
patient should enter for medical operations) and ra are assistant robots having a wide range
of actions, realizing the tasks of rm and rsc. Table 7.2 illustrates the agents’ capabilities w.r.t.
the spatial constraints. For example, agents rp can only enter rooms y1,y3,y4,y7,y11 for MRI
or leading the patients for examination, while agents rm have access only in rooms y2,y5,y6

to scan the patient during the MRI procedure.
Result analysis
The simulations are conducted on a computer with 12th Gen. Intel®Core i7-12700x20

and Ubuntu 24.04LTS operating system, with 32Gb RAM, using Renew 4.1 [153] for the
results based on the HLrtPN model under Nets-within-Nets paradigm, and MATLAB [152]
for the rest of the methods as they are enumerated below.

Let us recall the methods previously described in Chapter2.4:

• (i) FB [172] - A sequential approach based on Petri net model that solves an MILP for
robot trajectories by following an accepted run in the Büchi automaton. The iterative
process yields sub-optimal solutions without ensuring collision-free paths.

• (ii) TS [50] - Each robot is represented by a Transition System model. A product
model is composed out of these TS and the Büchi automaton of the LTL specification,
such that a graph-search algorithm computes trajectories for the robotic team.

Heterogeneous robotic team

These two methods serves in the comparison analysis of the proposed HLrtPN model, since
this scenario is complex and requires a deeper examination of the results. In addition, the
comparative study includes also the proposed framework from Chapter 4.2, based on the
Composed Petri net model. For simplicity, in the result table, let us denote this method with
the abbreviation (iii) CPN [35]. As a reminder, this model introduces a parallel approach
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where a reduced Petri net for robot motion and a Büchi automaton for the mission are
integrated via an intermediate layer of atomic propositions. Two MILPs compute collision-
free motion plans, though completeness is not guaranteed due to a projection step.

The result analysis is executed for teams of two to eight robots, shown in Table 7.3. The
first columns of the table present the cardinality of each type of robot for every scenario. It
is observed that the (a) model size directly influences the (b) run time. These simulations
prove that the proposed framework satisfies the main objective in terms of a motion plan for
a multi-agent system, considering offline planning. Thus, the (c) trajectory length could
be shortened by introducing an optimality problem, the visualized result currently being
computed through random solutions.

Remark 7.2 Generally, the proposed framework ensures solutions in which a subset of
the robotic team synchronizes. This subset is a user-defined agent group bounded by the team
cardinality. Particularly, the second case study for heterogeneous robotic teams generates
solutions determined by a subset equal to the entire set of the robotic team (Table 7.3).

Floor Rooms
Robots

rp rm rsc ra

I y1 ×
II y2 × ×
I y3 ×
I y4 ×
II y5 × ×
II y6 × ×
II y7 ×
III y8 × ×
III y9 × ×
III y10 × ×
I y11 ×
II y12 × ×

Table. 7.2. Robots spatial capabilities considering the hospital’s rooms.

Homogeneous robotic team

Let r f be a full robot that is not restricted in movement and has access to all rooms. Explicitly,
the robot can carry patients in the examination and MRI rooms, it has the necessary abilities
to scan the patient for the MRI process, as well as being able to carry supplies and clean the
therapy and surgery rooms. When the team includes only this type of robot, the team consists
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No. of rob
Types of robots

No. of simulations (a) Model size (b) Run time [s] (c) Trajectory length
rp rm rsc ra

2 1 1 1000 (|P|, |T |) = (42,294) 0.39 27
3 1 1 1 1000 (|P|, |T |) = (37,293) 0.24 29
4 2 1 1 1000 (|P|, |T |) = (44,305) 1.1 25
5 2 2 1 1000 (|P|, |T |) = (48,311) 1.89 15
6 2 2 2 1000 (|P|, |T |) = (54,321) 10.4 14
7 2 2 2 1 250 (|P|, |T |) = (69,337) 107.15 20
8 3 2 2 1 245 (|P|, |T |) = (76,349) 228.91 16

Table. 7.3. Comparison results for heterogeneous robotic team for the proposed approach

of identical agents. Thus, the current method is evaluated alongside other Discrete Event
Systems approaches, suitable for motion planning of homogeneous teams ensuring a global
LTL specification. The methods are briefly outlined below. The first two are mathematical
programming based on PN approaches, while the third is based on graph-search algorithms.

No. of rob Algorithm (a) Model size (b) Run time [s] (c) Trajectory length

2

HLrtPN (|P|, |T |) = (50,322) 0.8 33
WB [35] (|P|, |T |) = (55,288) 0.86 14
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 0.97 14
TS [50] |Nn|= 3042 1.51 14

3

HLrtPN (|P|, |T |) = (65,351) 0.5 28
WB [35] (|P|, |T |) = (55,288) 1.1 13
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 0.9 13
TS [50] |Nn|= 3.9∗103 1940.33 13

4

HLrtPN (|P|, |T |) = (80,380) 4.5 19
WB [35] (|P|, |T |) = (55,288) 0.71 12
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 0.76 12
TS [50] |Nn|= 5.1∗104 ≈ 3 days −

5

HLrtPN (|P|, |T |) = (95,409) 10.9 17
WB [35] (|P|, |T |) = (55,288) 0.74 11
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 0.88 11
TS [50] |Nn|= 6.6∗105 − −

6

HLrtPN (|P|, |T |) = (110,438) 39.5 24
WB [35] (|P|, |T |) = (55,288) 0.62 10
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 0.88 10
TS [50] |Nn|= 8.6∗106 − −

7

HLrtPN (|P|, |T |) = (125,467) 133.2 26
WB [35] (|P|, |T |) = (55,288) 0.74 9
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 1.41 9
TS [50] |Nn|= 1.1∗109 − −

8

HLrtPN (|P|, |T |) = (140,496) 227.7 16
WB [35] (|P|, |T |) = (55,288) 0.17 8
FB [172] (|P|, |T |) = (13,26),(|NB|, |TB|) = (18,108) 1.43 8
TS [50] |Nn|= 1.4∗1010 − −

Table. 7.4. Comparison results for the homogeneous robotic team between the current, respectively
(i), (ii), (iii) methods

Remark 7.3 To maintain the consistency of the comparison procedure, all the mentioned
methods, including the current one, are subject to the smallest discrete representation of the
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environment w.r.t. the number of partition elements, i.e., one element is associated with a
single atomic proposition. Moreover, these methods are integrated into RMTool - MATLAB
[119], thus making them accessible for any simulation according to the user’s needs.

As previously stated, the team’s model size represents one metric taken into consid-
eration for evaluation purposes. Thus, let us express the size of the models for each of the
mentioned methods as follows:

• CPN [35] - the total number of places and transitions (|P|, |T |) of the defined Com-
posed Petri net model given by the sum of the size of the Petri net model associated
with the environment, the size of the Büchi Petri net model associated with the LTL
formula, and the number of places for the intermediate layer.

• FB [172] - the number of places and transitions of the Petri net model of the envi-
ronment (|P|, |T |), as well as the size of the Büchi automaton (|S|, | →B |) of the LTL
formula (Definition 2.3.2, since both models are examined sequentially.

• TS [50] - the total number of nodes in the product automata |Nn| = |Nsr |n ×|S| con-
sidering the size of the transition system for each robot and the size of the Büchi
automaton.

Notice that the first two methods have fixed sizes of models regardless of the number of
robots in the team versus the last method which is strongly dependent on the size of the team,
leading to a state-space explosion that is difficult to maintain for computational operations.

The notation HLrtPN will refer to the proposed method, for an easier visualization in
the comparison Table 7.4. Let us introduce the notation (|P|, |T |) to capture the size of the
entire model, where |P| and |T | are computed similarly, i.e., |P|= ∑

n
k=1 |Pok |+ |PS|+2. The

result represents the sum of all RobotOPN models for each robot rk, the size of SpecOPN,
and the size of the system net. As defined, the latter representation includes only two places
Rb,Ms, and the number of transitions is equal to the number of robots in the team. For this
scenario, the size of RobotOPN for r f is (15,28) (considering one free space place for each
floor of the hospital) and (18,264) for the size of SpecOPN due to the automated generation
from a Büchi automaton.

Table 7.4 illustrates a comparative study between the current approach and the men-
tioned relevant Petri net approaches, which embody the defined performance metrics with
numerical values. Note that the described methods (i), (ii), (iii) do not require multiple
simulations for one experiment. Therefore, the (b) run time and (c) trajectory length are
computed only once, without the need to compute an average metric for (b) or return the
shortest trajectory for (c). The solver used for approaches (i), (ii), (iii) is CPLEX [173] for
MATLAB.

The (b) run time for our proposed work represents the mean time for each experiment,
as follows: 1000 simulations for the first three cases (2-5 robots), 250 simulations for 6 robots,
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85 simulations for 7 robots and 300 simulations for 8 robots. As observed, the HLrtPN model
tends to exhibit steeper increases in running time when more robots are added to the team,
compared with CPN [35], FB [172], on account of the number of branches explored by the
Renew simulator. The last metric (c) portrays the comparison of the trajectory length for
the entire robotic team, the smallest value being computed for methods CPN [35], FB [172]
an account of the optimization problems. In the case of HLrtPN, we expect this metric to
decrease for a higher number of simulations for one experiment.

The TS [50] model size is computed by a product automata which becomes too large
to be computationally tractable for teams of more than 4 robots. Although there are DES
methods that are more cost-effective in terms of performances for metrics (b), (c) for
homogeneous teams, our proposed method is shown to be efficient for heterogeneous teams,
due to its flexibility by design, as noted in Table 7.3.

7.3 Experimental validation of the Composed Time Petri
net model

Let us end the result chapter by enhancing the flexibility of one of the proposed methods,
particularly the Composed Time Petri net framework defined in Chapter 4.2. The main
idea is to plan high-level trajectories for a robotic system ensuring mission under the MITL
formalism and to validate them through experiments. Hence, the theoretical framework
considers a team of cobots for an industrial application.

The scenario proposes a solution for a manipulating application dedicated to two cobots,
built on the problem tackled in [135] for assembling a cage structure used in constructions.
The work is divided into two steps: (a) high-level motion planner based on Composed Time
Petri net which is tailored accordingly for validating a synchronization mechanism between
individual robots’ missions; (b) low-level execution planner based on a ROS infrastruc-
ture, communicating with the robotic nodes and denoting the pose sequence, allowing the
introduction of temporal constraints. This work is one of the few known works in litera-
ture to experimentally validate individual MITL missions that are being synchronized in a
manipulating application.

Motivation
Focusing on manipulating applications, some works aim to develop collision-free plan-

ning algorithms, such as: providing a control law based on a decentralized learning technique
[174], proposing a coordination scheme for holonic systems validated by a Colored Petri net
model [175], or optimizing the trajectory of the goal pose based on genetic algorithms [176].
A comprehensive workflow for the motion plan is proposed in [177] based on an improved
Denavit–Hartenberg method, to prove the correctness of the inverse kinematics, while the
angles movements are computed based on a Monte-Carlo method to which a linear trajectory
algorithm is added.
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These algorithms are essential in the manufacturing industry to ensure a high standard
of safety, thus requiring two entities: (i) human knowledge of product development processes,
and (ii) the precision and repeatability of operations based on the movement of industrial
manipulator robots. To integrate the advantages of both, the robots should be safely operated
in the human workspace. Hence, the term collaborative robots (known also as cobots) is
introduced. Several definitions of cobots are provided in the literature, all enhancing the
idea of a robot manipulating objects in collaboration with the human operator in a shared
workspace [178], e.g., by providing a mixed reality framework facilitating the robot-human
interaction [179].

Several studies are concerned with the state-of-the-art of collaborative robotic systems,
presenting key challenges such as implementing decision-making methods to provide flexibil-
ity and scalability, reducing redundancy, and computing optimal planning strategies, among
others [180, 181].

Some examples of applications based on collaborative robots are presented here: in
[182] two robots assembled a full-scale vault structure, in [183] an automatic collision-free
trajectory was calculated based on a partitioned environment, applying a coverage path
planning algorithm to cover the paint on a car, and in [184] two manipulators carry a common
payload in an unknown environment, where the roles of leader and helper are dynamically
assigned based on robot’s performance.

Figure 7.17 presents an overview of the global solution that illustrates the relation
between the (a) high-level planner synchronizing the models of the robots based on their
MITL missions and (b) low-level planner associated with two robots, as this work provides a
real experiment that showcases two robots involved in a manipulating application.

The contributions of the work are reflected in the manipulating application and it
includes the following:

• Integration of MITL specifications into real application simulating a manufacturing
process between two cobots, based on a tailored model supported by the previously
introduced Composed Time Petri net framework in [23].

• Proposing a synchronization mechanism between the modified Composed Time Petri
net representations allocated to each robot, checked in simulations using ROMEO tool
[134].

• Implementation of the low-level planner in ROS [185] and validation of the results
through real experiments [186].

Problem formulation
Given a robotic manipulator system with R cobots evolving in a known environment E,

the system should automatically build a fixed structure from a set of solid elements based on
computed trajectories incorporating constraints in terms of space (regions under set Y , that
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Fig. 7.17. Overview Diagram of the proposed approach

should be reached sequentially and/or synchronously) and time (deadlines for reaching the
interest regions). Each cobot receives a set of MITL missions based on a set of actions that
are directly linked to the regions of interest. The cobots should cooperate to build the fixed
structure, considering the synchronization of actions when needed based on the individual
MITL missions. The full motion planning provides preemptive synchronization through the
two steps:

• A high-level planning solution is provided by an extension of the introduced Composed
Time Petri net model (Chapter5), which is built here to provide synchronization between
different MITL missions given individually for each robot.

• A low-level robotic framework that ensures the execution of the MITL missions
provided by the high-level planning, encapsulating a compensation strategy for the
communication delay and an execution time acquisition to validate the mission desired
period [186].

The main idea is to use the model Composed Time Petri net under the Time Petri net
formalism for each cobot that includes the following: one MITL mission ϕ imposing a set of
actions that should be satisfied in given time constraints, and the robotic model encapsulating
the capabilities of realizing the actions based on their dependencies with the region of
interest Y that should be reached. The synchronization is achieved formally by coupling the
Composed Time Petri nets representations for the cobots that need to synchronize, while an
experimental plant achieves the validation of the results.
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Solution
The solution includes a detailed explanation about both High-level motion planning and

Low-level path execution as observed in Figure 7.17. The examples accompanying the path
planning methods proposed for this work concentrate on the scenario that one robot should
pick up a tool necessary for the structure that the team of cobots builds.

High-level Motion Planning. The (a) high-level planner from Figure 7.17 is based
on the model Composed Time Petri net. First, a cell decomposition method is triggered,
in order to divide the workspace of the model in a Time Petri net model. Thus, the free
space and the regions of interest are captured in the robotic model. Secondly, the given
MITL specification is modeled as a Time Petri net mode, as explained in Chapter 4. Since
an MITL formula is expressed under a set of atomic propositions that portrays the space
requirements of the robot, the coupling of these models is made through a set of places
expressing the value of these atomic propositions (True or False), updated by the robot’s
movement in the environment. The framework illustrated in the mentioned figure portrays
a joint representation of individual Composed Time Petri nets, which are synchronized,
through the mechanism defined in Chapter 4.

Chapter 4 details the synchronization mechanism between multiple MITL missions
modeled in different Composed time Petri net representation, by adding a set of waiting places
that are connected to a newly added transition, having its time [0,0]. Since the transition time
does not add any new time, but only forces an instant firing when the missions are fulfilled,
the expressiveness of the MITL formulae is not altered.

Low-level Path Execution. The (b) low-level planner follows the sequence of points
representing the path of the robot ensuring the MITL mission. In order to obtain a planned
sequence of points tuned to the time constraints imposed, physical positions in space are
user-defined having a time component attached. An MITL mission that consists of a series
of these points is subjected to temporal boundaries, resulting in a total period of time at
low-level execution.

The execution of the pre-planned sequence of positions consists of a simple and efficient
ROS-based architecture that contains individual nodes including API for each robot used.

The ROS nodes coordinate the executions of the individual paths generated by the
previously mentioned formalism and delivered through positional commands. The robot’s
movements and the time of arrival in the right postures are recorded to be analyzed using
a similar node. The desired synchronization between the robots is ensured by the position
consecutively as a natural consequence of the planning at a similar starting point. The
validation of the high-level path planning is quantified by the level of similitude between the
time moments presumed in planning and the positional instantaneous moments of arriving in
specific postures.

As presented in Figure 7.17, the execution layer contributes as a low-level component
created to validate the high-level planning, by allowing a direct correspondence between
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the mission and the robot trajectory. The synchronization in the mentioned figure repre-
sents a desired moment in time on which both robots reach a desired pose, but it is not a
communication signal. Specifically, the Composed Time Petri net models ensure through
a model-checking method that the MITL missions are satisfied synchronously under the
imposed time constraints, maintaining the individual sequencing of the actions, while the
low-level planner ensures that the deliberated trajectories follow the ordered actions.

Fig. 7.18. Workspace configuration of the experimental plant: top-view diagram (left side) and
side-view real (right side)

Result analysis
For an easier understanding of the experimental plant, Figure 7.18 illustrates the con-

figuration of the cobots’ workspaces and their regions of interest connected with the MITL
specifications. Let us consider a cooperative system based on a cobot UR5 from Universal
Robots [187] and a cobot LM3 from Lebai Robotics [188], that should build a fixed structure
from solid pieces. The cobot UR5 (denoted for r1 for simplicity) is responsible for picking up
the pieces from the dedicated region y1 (red boundary) and placing them in the construction
area y2 (blue boundary). Cobot LM3 (denoted with r2) manages the linkage between the
solid pieces in the building region y2, for which the robot should replace its gripper in the
region y3 (black boundary on the left side associated with the white table on the right side)
based on the type of linkage procedure that it has to do. The current experiment considers
that r2 should use a welding gun.

Figure 7.19 portrays the workspace modeling in MATLAB of r1 (UR5) on the left side
and r2 (LM3) on the right side. The 3D polygonal shapes indicate the regions of interest for
each cobot, with blue showing the pick regions y1 (for pieces) of r1 and y3 (for welding gun)
of r2, and with green showing the common area y2 where the pieces are glued together. The
purple shapes represent the obstacles in the workspace which are removed from the robot’s
configuration space as a result of the cell decomposition method (Figure 7.20). For example,
r1 is framed by a fixed structure, visible also in Figure 7.18 on the right side, consisting of
a gray column between the cobots. The second cobot has two obstacles, illustrated by the
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(a) Representation workspace of cobot r1 (b) Representation workspace of cobot r2

Fig. 7.19. Workspaces representations of the cobots, illustrating each relevant region of interest

(a) Partitioned environment of r1 (b) Partitioned environment of r2

Fig. 7.20. Cuboid rectangular cell decomposition of the workspaces of each cobot

same gray column, as well as the lower space under the first cobot, since r2 is smaller and
has another space allowed for the movement.

Figure 7.20 illustrates the partitioned environment for each robot considered for this
application. the cell decomposition technique is based on the 3D method described by
Algorithm 1 in Chapter 2.1, considering the precision ε = 4 (the maximum number of
division for each axis). Notice that the robot is absent in the workspace to emphasize the
cells resulting from the cell decomposition method, mapping the free space.

The MITL specifications for r1, respectively r2 are denoted with ϕr1 , respectively ϕ1
r2

and ϕ2
r2

, and are given as follows:

ϕr1 =♢τ1Idler1 ∧ (Idler1 →♢τ2PickPiece)∧ (PickPiece →♢τ3PlacePiece) (7.3)

ϕ
1
r2
=♢τ1Idler2 ∧ (Idler2 →♢τ2PickTool)∧ (PickTool →♢τ3Idler2)

ϕ
2
r2
=♢τ4UseTool ∧ (UseTool →♢τ3Idler2) (7.4)

The equation 7.3 describes the mission of robot r1, indicating first reaching with the
robot’s end effector its intermediary pose Idler1 represented by fixed coordinates, considering
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the time upper bound τ1. Notice that Idle represents a controlled pose for a cobot ensuring
the synchronized start of the system from a known state. Moreover, this acts as an off-duty
robot posture before beginning each sequence of their actions. Immediately after the Idle
pose is reached, the second action of the robot is to pick up a piece PickPiece under τ2 time
units, the task being connected directly with the region y1. The last requirement of the robot
is to place the picked piece ensuring the time τ3.

On the other hand, robot r2 receives two missions (7.4): ϕ1
r2

requires to pick up a tool
PickTool in time τ2 once it reaches its Idle pose Idler2 in time τ1, and afterward returning to
its Idle pose again in time τ3; ϕ2

r2
requires to use the tool UseTool under time τ4 = τ1 + τ2.

The time requirements are with respect to each other, in the sense that the clock for the time
interval [0,τ2] starts once the previous action is achieved.

The design decision for assigning two MITL specifications to the robot r2 includes an
easier modularization of the actions to allow reproducibility with respect to the considered
application, where the actions of pick-and-place a piece, respectively, using the tool repeat
several times in the construction process.

The synchronizations of the robots considering their actions under time constraints are
visualized in Figure 7.21. This diagram portrays the sequence of the actions of each robot,
and their synchronizations, e.g., for r1, the PickPiece operation is ensured after the robot
reaches the Idler1 pose. In addition, the Idle pose is reached by both robots at the same time,
after τ1 time. Let us consider that the cobots are building a structure from n ∈ N pieces.

The high-level trajectories are ensured in two phases. Firstly, the MITL specification ϕr1

(green boundary) is coordinated with MITL mission ϕ1
r2

(yellow boundary), in order to pick
up both the first piece and the tool required for the construction of the structure. Secondly,
while r1 places the rest of n− 1 pieces, the robot r2 synchronizes its movements through
MITL mission ϕ2

r2
(orange boundary). After the last pieces it is placed in the construction

area y2, the second robot operates independently of the tool, thus no synchronization is
required for this action.

The experiment considered the following values, which will be further analyzed for the
verification of the global algorithm: number of pieces n = 4 assumed to be identical, τ1 = 4
seconds, τ2 = 7 seconds, τ3 = 7 seconds and τ4 = 11 seconds.

(a) High-level path planning. One advantage of the ROMEO tool concerning the
modeling of a Time Petri net model, which for us is given by the union of two Composed
Time Petri net, is emphasized through the model-checking properties. Particularly, the
tool allows for checking if a desired marking is reached by returning a sequence of timed
transitions. Let us consider two global models: (i) r1 with MITL ϕr1 and for r2 with MITL
ϕ1

r2
, respectively; (ii) r1 with MITL ϕr1 and for r2 with MITL ϕ2

r2
.

The first global model consists of 87 places and 63 transitions, while the second model
consists of 79 and 57 transitions. In both cases, the total number of places for both cobots
is given by the sum between the places considering also the places and transitions needed
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Fig. 7.21. Time Sequence Diagrams for both robots

for synchronization. For example, in the first case (i), the places modeling the robots is 17,
the places modeling the True and False value of the atomic propositions is 12, the places
modeling the MITL specification is 52, and the waiting places used for synchronization is 6,
e.g., 2 places assigned to Idler1 and Idler2 . The transitions computation is similar, with the
run time given by the model-checking properties being 30 seconds in the first case (i), and
38 seconds in the second case (ii). Notice that the tool does not inspect the entire state class
graph while searching for a solution, a fact observed in the simulation run time metric.

(b) Low-level path execution. The second phase (low-level execution plan) is conducted
on ROS on the Melodic distribution, using specialized APIs for both Universal Robot UR5
and Lebai Robotics LM3 collaborative robotic arms. Each of the system modules has a ROS
node, facilitating the communication, interaction, and synchronized execution start.

One major problem of individual time synchronization is network and code execution
latency, which is compensated as follows. First, the start time of the execution signal is
registered. Secondly, the travel time to the next target pose is altered such that any deviation
in the previous movements, referenced to the start time, is subtracted with an error-dependent
scaling coefficient from the next one. Although this creates a less accurate time between
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(a) UR5 time moments evolution (b) LM3 time moments evolution

Fig. 7.22. Time-comparison for real-world execution

UR5 LM3
Idler1 PickPiece PlacePiece Idler2 UseTool

Desired Time (s) 4 7 7 7 11
Execution µ time (s) 4.002 7.1207 7.9993 7.0013 11.0018

Table. 7.5. Desired time per action vs real-world execution time

missions it is a compromise that eliminates the error accumulation in the total execution time.
Without this approach, the execution diverges from the desired planning strategy.

Let it be noted that the system is specially designed such the robots have no reciprocal
communication and no waiting-for-event procedure exists, leading to individual resulted
dynamics that can demonstrate the time-planned synchronization. A principal node is
conducted to drive the application start and to record the time moments in which the robots
are reaching positions planned.

For the current application, using the high-level formalism and the low-level execution
presented, the numerical cumulative evolutions from Figure 7.22 describe the comparison
between the planning-desired execution time and time moments at which each robot reaches
the desired poses. The iterations that are on the X axis represent the consecutive periods of
readings for the time collected from the robots, based on executed operations. For example,
if we consider the robot r1 (UR5), then the iterations are expressed by the time when the Idle
pose is reached (Idler1), or by the recorded operations of opening and closing the gripper, as
part of the PickPiece action.

As can be observed, the time moments reported by the robot’s physical execution of
poses (blue) can be observed closely following the time sequence used in the planning
procedure (red). Considering the numerical values of the time restrictions τi, i = 1,4 given in
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the MITL specifications and the time sequence diagram from 7.21, the total execution time
for LM3, respectively UR5 is 88.01, respectively 76.48 seconds compared with the desired
total time of 90, respectively 72 seconds. The dissimilarities resulting from latency are well
compensated within a small margin of error fulfilling successfully the MITL specifications.

For a numerical representation of the execution time, a comparison between the desired
time (defining the MITL temporal constraints), and the executed period of time, can be found
in Table 7.5. The execution µ time represents the mean period for all the repetitions of a
similar action, e.g., PickPlace. As can be observed from the time evolutions in Figure 7.22
and the comparison Table 7.5, for the position sequence generated and experimented, the
cumulative time error is infinitesimal based on the presented method.

A complete real-world execution of the application described in the current work can
be found in [186], the execution for which the time comparison is presented in Figure 7.22.





Chapter 8

Concluding remarks

This thesis explored several challenges and solutions regarding the planning strategies for
multi-robot systems ensuring a mission, expressed through the temporal logic formalism.
Specifically, these planning methods aim to use the advantages of Discrete Event System
(DES) representations including an easier handling of the robotic model and facilitating the
integration with the model of a temporal logic specification. Starting from a collision-free
trajectory for a single robot system, the planning methods evolved towards multi-robotic
systems ensuring rich and complex missions. Thus, spatial and temporal constraints towards
a set of regions of interest from the workspace, that should be reached and/or avoided by
the robotic team, are encoded in this thesis through the temporal logic specification such as
Linear Temporal Logic (LTL), and Metric Interval Temporal Logic (MITL).

The planning solutions addressed to the robotic field aim to emphasize the coordination
of the robots when task allocation approaches are tackled, scalability concerning the number
of the robots in the team, and the versatility of the proposed planning methods towards
identical, respectively heterogeneous robotic teams, also considering the applicability of the
solutions in futuristic health care domain, an industrial application using cobots and in the
agriculture field using UAV team-based.

Chapter 2 introduces the fundamental notions upon which the robotic planning strate-
gies are built. Among the Discrete Event System representations used in the proposed
methods, let us recall the Transition Systems, Petri net models, and Time Petri net models.
The representations are associated with the robotic team, based on a partitioning technique
(2D and 3D cell decomposition) of the workspace leasing to easier handling. On the same
note, three types of missions were defined, starting from the Boolean specification expressing
the regions of interest that should be visited and/or bypassed throughout the trajectories,
towards encoding sequencing and synchronization for the spatial restrictions in the Lin-
ear Temporal Logic specification and closing with the specification under Metric Interval
Temporal Logic that includes temporal constraints. These formalisms are associated with
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an automata model, for which model-checking approaches can be applied to verify if the
mission is satisfied by the motion of the robots.

The next chapters of this thesis provide detailed explanations of the proposed frame-
works under Discrete Event Systems formalism guaranteeing high-level objectives for robotic
teams. Thus, the concluding remarks comprise a set of concise contributions to the field of
robotics, upon which future research directions are envisioned.

8.1 Contributions

Two task allocation strategies are presented in Chapter 3, particularly based on a task
decomposition technique for a given global LTL mission resulting in a set of smaller and
independent tasks that leads to a complexity reduction of the solution space, and based
on a reallocation task technique starting from a set of trajectories already computed and
enforcing the robots for a parallel movement. The latter method is based on the Banker’s
algorithm suitable for resource allocation problems. Both methods rely on the Petri net model
associated with the motion of the robots, a model that portrays a fixed topology when the
number of identical robots evolving in the same workspace is increasing or decreasing.

The aim of Chapter 4 is to propose a novel framework by joining the advantages of the
Petri net model, particularly a reduced model known under the term quotient, assigned for
the movement of the robotic team and a Büchi automata assigned to the global LTL mission.
For this, an intermediate layer of places is added, where each place is associated with an
atomic proposition assigned to a region of interest, a set upon which the mission is built. The
planning strategy is computed by two Mixed Integer Linear Programming (MILP) problems,
one considering the newly defined Composed Petri net model, respectively projecting the
solution based on the reduced model into the full Petri net model of the workspace. This
framework enhances a direct collision-free planning approach compared to other methods
from literature based on iterative approaches, through the use of global information on the
state of the robotic team indicated by the intermediate layer of places. Moreover, this work
has also been extended towards the MITL missions, considering a newly defined model
denoted Composed Time Petri net in Chapter 5. Thus, time constraints are encapsulated in
this representation and validated in both simulations and experiment results, considering an
industrial application for a team of cobots ensuring individual MITL missions.

Another novel framework is introduced in Chapter 6, denoted High-Level robotic team
Petri net model under the Nets-within-Nets (NwN) paradigm. Based on the state-of-the-
art, this approach could be considered a breakthrough, since the NwN paradigm has not
been tackled previously to plan trajectories for a heterogeneous robotic team ensuring a
global mission, specifically using an LTL formula. The benefits of the NwN formalism are
usually highlighted in industrial applications since this formalism incorporates a hierarchical
structure of the Petri nets: object nets associated with the local information of a robot state
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and a system net associated with the global information about the entire robotic system.
Notable, the tokens in the system net are encoded as object nets.

The contribution of this work is to design an object net for each type of robot since
the robotic team is heterogeneous, defined RobotOPN, respectively designing an object net
for the global specification defined SpecOPN. The coordination between the object nets is
realized through a synchronization function that ensures that the movement of the robots
fulfills the mission. The proposed framework has been analyzed through simulations for a
team of up to 10 heterogeneous robots and the results were compared with other Discrete
Event System methods from literature, concluding in a smaller run time for a large number
of simulations (up to 1000 simulations per one experiment).

The contributions that have been disseminated during the PhD research are enumerated
as follows:

1. Four journal papers:

(a) Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, and Jean-Jacques Lesage. On
multi-robot path planning based on Petri net models and LTL specifications. In
IEEE Transactions on Automatic Control, vol. 69, no. 9, pp. 6373-6380, 2024.

(b) Sofia Hustiu, Ioana Hustiu, Marius Kloetzer, and Cristian Mahulea. LTL task de-
composition for 3D high-level path planning. In Journal of Control Engineering
and Applied Informatics, 23(3), pp.76-87, 2021.

(c) Sofia Hustiu, Eva Robillard, Joaquín Ezpeleta, Cristian Mahulea, and Marius
Kloetzer. Multi-robot Motion Planning based on Nets-within-Nets Modeling and
Simulation. Under review. Available in [Online]: https://arxiv.org/abs/2304.087
72, 2023.

(d) Sofia Hustiu. Prerequisites to Design a Collision Free Trajectory in a 3D Dy-
namic Environment for an UAV. In Bulletin of the Polytechnic Institute of Ias, i.
Electrical Engineering, Power Engineering, Electronics Section, 67(2), pp.65-78,
2021.

2. Six conference proceedings:

(a) Sofia Hustiu, Alexandru-Florian Brasoveanu, and Andrei-Iulian Iancu. Inte-
gration of MITL for Cobots Workflow in a Manipulating Application. In 2024
IEEE 29th International Conference on Emerging Technologies and Factory
Automation (ETFA), 1–8, 2024.

(b) Sofia Hustiu, Dimos V. Dimarogonas, Cristian Mahulea, and Marius Kloetzer.
Multi-robot Motion Planning under MITL Specifications based on Time Petri
Nets. In 2023 European Control Conference (ECC) (pp. 1-8). IEEE, 2023.

https://arxiv.org/abs/2304.08772
https://arxiv.org/abs/2304.08772
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(c) Sofia Hustiu, Cristian Mahulea, and Marius Kloetzer. Parallel motion execution
and path rerouting for a team of mobile robots. In IFAC-PapersOnLine, 55(28),
73–78. In 16th IFAC Workshop on Discrete Event Systems WODES, 2022.

(d) Sofia Hustiu, Marius Kloetzer, Eva Robillard, Alejandro López-Martínez, and
Cristian Mahulea. Whitening of greenhouse’s roof using drones and Petri net
models. In 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–8, 2022.

(e) Sofia Hustiu, Marius Kloetzer, and Cristian Mahulea. Mission assignment and
3D path planning for a team of UAVs. In 2021 25th International Conference on
System Theory, Control and Computing (ICSTCC) (pp. 401-406). IEEE, 2021.

(f) Sofia Hustiu, Marius Kloetzer, and Adrian Burlacu. Collision Free Path Planning
for Unmanned Aerial Vehicles in Environments with Dynamic Obstacles. In
2020 24th International Conference on System Theory, Control and Computing
(ICSTCC) (pp. 520-525). IEEE, 2020.

8.2 Future research directions

The limitations of the proposed frameworks can be encapsulated in the following challenges:
(i) enabling open-source implementation for all the proposed frameworks, (ii) reducing the
computational complexity when the number of robots increases, (iii) strengthening the Nets-
within-Nets planning approach by adding characteristics modeling the dynamic of the robots
and aiming to fulfill the mission under time constraints, and (iv) motion plan collision-free
trajectories in unknown environments. Potential future research directions addressing these
challenges could be built upon the defined Discrete Event Systems throughout the thesis.

The first two points (i) and (ii) are related to one of the contributions of this thesis,
mainly the implementation in the RMTool, as mentioned previously. Firstly, since the Com-
posed Petri net model is deployed and available in the RMTool MATLAB, this representation
could be extended toward partially unknown environments. The RMTool includes a feature
of defining partially unknown environments for individual robots and planning trajectories
for Boolean specifications. Thus, the RMTool facilitates a simulation workspace for imple-
menting the idea of modeling uncertain environments under Petri net formalism, combined
with an intermediate layer of places providing a probabilistic view of the global state of the
robotic team, together with the Büchi automata for the LTL mission.

Similarly, the RMTool could be extended towards MITL specifications, since is currently
providing only Boolean and LTL missions to be ensured by the robotic team. Therefore, the
representation noted Composed Time Petri net could be automatically built for each robot
and a planning algorithm could be developed for a more controlled solution search in contrast
with the model-checking approach that has been used so far for this work.
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The third challenge (iii), concerning the High-Level robotic team Petri net model under
the Nets-within-Nets paradigm is also accessible to researchers, enhancing its potential of
being further tailored towards planning under time constraints. An interesting approach
would be to combine the high-level benefits of this framework with the low-level path
execution, through the addition of control algorithms. One idea is to encode a control method
when a transition is fired and executed by a robot, specifying the motion action considering
the robot’s dynamics of moving from the free space towards a region of interest.

Lastly, planning a robotic team in unknown environments is crucial (iv), especially in
search-and-rescue scenarios, where the robots should explore the environment in a coordi-
nated manner without colliding with obstacles. Here, several directions could be addressed.
By starting modeling the robotic system in a probabilistic mode, the robots could be allowed
to provide information about the environment based on their distance towards the regions of
interest. Another idea might investigate the modeling of uncertainty through the mission that
should be ensured, such as Probabilistic Temporal Logic formalism.

For all the proposed models, the adaptability and robustness of the frameworks could
also be improved by expanding them towards distributed systems and applying mathematical
programming algorithms to efficiently reduce computational solving time.





Chapter 9

Observat, ii finale

Această teză a explorat mai multe provocări s, i solut,ii privind strategiile de planificare pentru
sisteme multi-robot destinate îndeplinirii unei misiuni, exprimate prin formalismul logicii
temporale. În mod specific, aceste metode de planificare urmăresc să utilizeze avantajele
reprezentărilor Sistemelor de Evenimente Discrete (SED), inclusiv o gestionare mai simplă a
modelului robotic s, i facilitarea integrării cu modelul unei specificat,ii de logică temporală.
Pornind de la o traiectorie fără coliziuni pentru un sistem robotic individual, metodele de
planificare au evoluat către sisteme multi-robot capabile să asigure misiuni complexe s, i
bogate. Astfel, constrângerile spat,iale s, i temporale asociate unui set de regiuni de interes
din spat,iul de lucru, care trebuie atinse s, i/sau evitate de echipa robotică, sunt codificate în
această teză prin specificat,iile logicii temporale precum Logica Temporală Liniară (LTL) s, i
Logica Temporală Metrică pe Interval (MITL).

Solut,iile de planificare adresate domeniului roboticii îs, i propun să evident,ieze coor-
donarea robot,ilor în abordările de alocare a sarcinilor, scalabilitatea în raport cu numărul
de robot,i din echipă s, i versatilitatea metodelor propuse de planificare pentru echipe robo-
tice identice sau eterogene, luând în considerare, de asemenea, aplicabilitatea solut,iilor în
domenii futuriste precum asistent,a medicală, o aplicat,ie industrială utilizând cobots (robot,i
colaborativi) s, i în agricultură folosind echipe de UAV-uri.

Capitolul 2 introduce not,iunile fundamentale pe care sunt construite strategiile de
planificare robotică. Printre reprezentările Sistemelor de Evenimente Discrete utilizate în
metodele propuse, amintim Sistemele de Tranzit,ie, modelele de Ret,ea Petri s, i modelele
de Ret,ea Petri Temporală. Reprezentările sunt asociate echipei robotice, bazându-se pe o
tehnică de partit,ionare (decompozitie celulară 2D s, i 3D) a spat,iului de lucru, facilitând astfel
gestionarea. În acelas, i sens, au fost definite trei tipuri de misiuni, pornind de la specificat,ia
Booleană care exprimă regiunile de interes ce trebuie vizitate s, i/sau evitate de-a lungul
traiectoriilor, continuând prin a codifica secvent,ierea s, i sincronizarea restrict,iilor spat,iale în
specificat,iile LTL s, i finalizând cu specificat,iile MITL care includ constrângeri temporale.
Aceste formalizări sunt asociate unui model de automat pentru care pot fi aplicate metode de
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verificare a modelului (model-checking) pentru a verifica dacă misiunea este îndeplinită de
mis, carea robot,ilor.

Capitolele următoare ale tezei oferă explicat,ii detaliate ale cadrelor propuse sub formal-
ismul Sistemelor de Evenimente Discrete, garantând obiective de nivel înalt pentru echipele
robotice. Astfel, concluziile includ un set de contribut,ii concise pentru domeniul roboticii,
pe baza cărora se prevăd direct,ii viitoare de cercetare.

9.1 Contribut, ii

Două strategii de alocare a sarcinilor sunt prezentate în Capitolul 3, în mod particular bazate
pe o tehnică de decompozitie a unei misiuni globale LTL într-un set de sarcini mai mici s, i
independente, ceea ce duce la reducerea complexităt,ii spat,iului solut,iilor, s, i pe o tehnică
de realocare a sarcinilor, pornind de la un set de traiectorii deja calculate s, i fort,ând robot,ii
să se mis, te în paralel. Aceasta din urmă se bazează pe algoritmul Bancherului, potrivit
pentru probleme de alocare a resurselor (reprezentate de spat,iul liber de evolut,ie al robot,ilor).
Ambele metode se bazează pe modelul Ret,elei Petri asociat mis, cării robot,ilor, un model care
ment,ine o topologie fixă atunci când numărul de robot,i identici care evoluează în acelas, i
spat,iu de lucru cres, te sau scade.

Scopul Capitolului 4 este de a propune un cadru nou prin combinarea avantajelor
modelului Ret,elei Petri, în mod special un model redus cunoscut sub denumirea de quotient,
asociat mis, cării echipei robotice, s, i a unui automat Büchi asociat misiunii globale LTL.
Pentru aceasta, se adaugă un strat intermediar de locuri, unde fiecare loc este asociat cu o
propozit,ie atomică atribuită unei regiuni de interes, un set pe baza căruia este construită
misiunea. Strategia de planificare este calculată prin două probleme de Programare Liniară cu
Numere Întregi Mixte (MILP), una considerând modelul nou definit de Ret,ea Petri Compusă
s, i proiectând solut,ia bazată pe modelul redus în modelul complet al Ret,elei Petri al spat,iului
de lucru (Capitolul 5).

Un alt cadru inovator este introdus în Capitolul 6, denumit modelul de Ret,ea Petri
pentru o echipă robotică de nivel înalt în cadrul paradigmei Nets-within-Nets (NwN). Pe baza
stadiului actual al cercetărilor, această abordare ar putea fi considerată un progres, deoarece
paradigma NwN nu a fost explorată anterior pentru planificarea traiectoriilor unei echipe
robotice eterogene care să asigure o misiune globală, utilizând în mod specific o formulă
LTL.

În cadrul acestei contribut,ii, se dores, te proiectarea unei ret,ele de obiecte pentru fiecare
tip de robot, având în vedere că echipa de robot,i este eterogenă, definită ca RobotOPN,
respectiv proiectarea unei ret,ele de obiecte pentru specificat,ia globală, definită ca SpecOPN.
Coordonarea între ret,elele de obiecte este realizată printr-o funct,ie de sincronizare care
asigură că mis, carea robot,ilor îndeplines, te misiunea. Cadrul propus a fost analizat prin
simulări pentru o echipă formată din până la 10 robot,i eterogeni, iar rezultatele au fost
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comparate cu alte metode din literatura de specialitate bazate pe Sisteme de Evenimente
Discrete, concluzionându-se un timp de rulare mai mic pentru un număr mare de simulări
(până la 1000 de simulări per experiment).

Contribut,iile acestei teze au fost diseminate astfel:

1. Patru articole în reviste:

(a) Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, and Jean-Jacques Lesage. On
multi-robot path planning based on Petri net models and LTL specifications. In
IEEE Transactions on Automatic Control, vol. 69, no. 9, pp. 6373-6380, 2024.

(b) Sofia Hustiu, Ioana Hustiu, Marius Kloetzer, and Cristian Mahulea. LTL task de-
composition for 3D high-level path planning. In Journal of Control Engineering
and Applied Informatics, 23(3), pp.76-87, 2021.

(c) Sofia Hustiu, Eva Robillard, Joaquín Ezpeleta, Cristian Mahulea, and Marius
Kloetzer. Multi-robot Motion Planning based on Nets-within-Nets Modeling and
Simulation. Under review. Available in [Online]: https://arxiv.org/abs/2304.087
72, 2023.

(d) Sofia Hustiu. Prerequisites to Design a Collision Free Trajectory in a 3D Dy-
namic Environment for an UAV. In Bulletin of the Polytechnic Institute of Ias, i.
Electrical Engineering, Power Engineering, Electronics Section, 67(2), pp.65-78,
2021.

2. S, ase lucrări de conferint, ă:

(a) Sofia Hustiu, Alexandru-Florian Brasoveanu, and Andrei-Iulian Iancu. Inte-
gration of MITL for Cobots Workflow in a Manipulating Application. In 2024
IEEE 29th International Conference on Emerging Technologies and Factory
Automation (ETFA), 1–8, 2024.

(b) Sofia Hustiu, Dimos V. Dimarogonas, Cristian Mahulea, and Marius Kloetzer.
Multi-robot Motion Planning under MITL Specifications based on Time Petri
Nets. In 2023 European Control Conference (ECC) (pp. 1-8). IEEE, 2023.

(c) Sofia Hustiu, Cristian Mahulea, and Marius Kloetzer. Parallel motion execution
and path rerouting for a team of mobile robots. In IFAC-PapersOnLine, 55(28),
73–78. In 16th IFAC Workshop on Discrete Event Systems WODES, 2022.

(d) Sofia Hustiu, Marius Kloetzer, Eva Robillard, Alejandro López-Martínez, and
Cristian Mahulea. Whitening of greenhouse’s roof using drones and Petri net
models. In 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–8, 2022.

https://arxiv.org/abs/2304.08772
https://arxiv.org/abs/2304.08772
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(e) Sofia Hustiu, Marius Kloetzer, and Cristian Mahulea. Mission assignment and
3D path planning for a team of UAVs. In 2021 25th International Conference on
System Theory, Control and Computing (ICSTCC) (pp. 401-406). IEEE, 2021.

(f) Sofia Hustiu, Marius Kloetzer, and Adrian Burlacu. Collision Free Path Planning
for Unmanned Aerial Vehicles in Environments with Dynamic Obstacles. In
2020 24th International Conference on System Theory, Control and Computing
(ICSTCC) (pp. 520-525). IEEE, 2020.

9.2 Direct, ii viitoare de cercetare

Limitările cadrelor propuse pot fi sintetizate în următoarele provocări: (i) implementarea
open-source pentru toate cadrele propuse, (ii) reducerea complexităt,ii computat,ionale pe
măsură ce numărul robot,ilor cres, te, (iii) consolidarea abordării de planificare Nets-within-
Nets prin adăugarea caracteristicilor care modelează dinamica robot,ilor, având ca scop
îndeplinirea misiunii sub constrângeri de timp, s, i (iv) planificarea de traiectorii fără coliziuni
în medii necunoscute. Direct,iile potent,iale de cercetare viitoare care să abordeze aceste
provocări s-ar putea baza pe Sistemele de Evenimente Discrete definite pe parcursul acestei
teze.

Primele două puncte (i) s, i (ii) sunt legate de una dintre contribut,iile acestei teze, în
principal implementarea în RMTool, as, a cum s-a ment,ionat anterior. În primul rând, având
în vedere că modelul de Ret,ea Petri Compusă este implementat s, i disponibil în RMTool
MATLAB, această reprezentare ar putea fi extinsă către medii part,ial necunoscute. RMTool
include o funct,ionalitate pentru definirea mediilor part,ial necunoscute pentru robot,i individu-
ali s, i planificarea traiectoriilor pentru specificat,ii Booleene. Astfel, RMTool facilitează un
spat,iu de simulare pentru implementarea ideii de modelare a mediilor incerte sub formalismul
Ret,elelor Petri, combinat cu un strat intermediar de locuri care oferă o viziune probabilistică
asupra stării globale a echipei robotice, împreună cu automatul Büchi pentru misiunea LTL.

În mod similar, RMTool ar putea fi extins pentru specificat,ii MITL, deoarece în prezent
oferă doar misiuni Booleene s, i LTL pentru a fi îndeplinite de echipa robotică. Prin urmare,
reprezentarea denumită Ret,ea Petri Temporală Compusă ar putea fi construită automat pentru
fiecare robot, iar un algoritm de planificare ar putea fi dezvoltat pentru o căutare a solut,iilor
mai controlată, în contrast cu abordarea de verificare a modelului utilizată până acum în acest
context.

A treia provocare (iii), referitoare la modelul de Ret,ea Petri pentru o echipă robotică de
nivel înalt în cadrul paradigmei Nets-within-Nets, este, de asemenea, accesibilă cercetătorilor,
ceea ce spores, te potent,ialul de a fi adaptată pentru planificarea sub constrângeri de timp.
O abordare interesantă ar fi combinarea beneficiilor de nivel înalt ale acestui cadru cu
execut,ia traiectoriilor de nivel jos, prin adăugarea unor algoritmi de control. O idee ar fi
codificarea unei metode de control atunci când o tranzit,ie este activată s, i executată de un
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robot, specificând act,iunea de mis, care luând în considerare dinamica robotului în mis, carea
din spat,iul liber către o regiune de interes.

În cele din urmă, planificarea unei echipe de robot,i în medii necunoscute este crucială
(iv), în special în scenarii de căutare s, i salvare, unde robot,ii ar trebui să exploreze mediul în
mod coordonat fără să se ciocnească de obstacole. Aici pot fi abordate mai multe direct,ii.
Pornind de la modelarea sistemului robotic într-un mod probabilistic, robot,ii ar putea oferi
informat,ii despre mediu bazate pe distant,a lor fat,ă de regiunile de interes. O altă idee ar
putea investiga modelarea incertitudinii prin misiunea care trebuie îndeplinită, cum ar fi
formalismul Logicii Temporale Probabilistice.

Pentru toate modelele propuse, adaptabilitatea s, i robustet,ea cadrelor ar putea fi, de
asemenea, îmbunătăt,ite prin extinderea acestora către sisteme distribuite s, i aplicarea algorit-
milor de programare matematică pentru a reduce eficient timpul de rezolvare computat,ională.





Chapter 10

Resumen y conclusiónes

Esta tesis exploró varios desafíos y soluciones relacionados con las estrategias de plani-
ficación para sistemas multi-robot que garantizan una misión, expresada mediante el for-
malismo de lógica temporal. Específicamente, estos métodos de planificación tienen como
objetivo aprovechar las ventajas de las representaciones del Sistema de Eventos Discre-
tos (DES), incluyendo un manejo más sencillo del modelo robótico y la facilitación de
la integración con el modelo de una especificación de lógica temporal. Partiendo de una
trayectoria libre de colisiones para un sistema de un solo robot, los métodos de planificación
evolucionaron hacia sistemas multi-robot que aseguran misiones ricas y complejas. Así, las
restricciones espaciales y temporales hacia un conjunto de regiones de interés del espacio de
trabajo, que deben ser alcanzadas y/o evitadas por el equipo robótico, se codifican en esta
tesis a través de especificaciones de lógica temporal como la Lógica Temporal Lineal (LTL)
y la Lógica Temporal Métrica de Intervalos (MITL).

Las soluciones de planificación dirigidas al campo robótico tienen como objetivo
enfatizar la coordinación de los robots cuando se abordan enfoques de asignación de tareas, la
escalabilidad en relación con el número de robots en el equipo y la versatilidad de los métodos
de planificación propuestos para equipos robóticos idénticos y heterogéneos. Además, se
considera la aplicabilidad de las soluciones en dominios futuristas como el cuidado de la
salud, aplicaciones industriales utilizando cobots y en el campo de la agricultura utilizando
equipos de UAV.

El Capítulo 2 introduce las nociones fundamentales sobre las cuales se construyen
las estrategias de planificación robótica. Entre las representaciones del Sistema de Eventos
Discretos utilizadas en los métodos propuestos, se incluyen los Sistemas de Transición, los
modelos de redes de Petri y los modelos de redes de Petri Temporizadas. Estas representa-
ciones están asociadas al equipo robótico, basándose en una técnica de particionamiento
(descomposición celular 2D y 3D) del espacio de trabajo, facilitando su manejo. En la
misma línea, se definieron tres tipos de misiones, comenzando con la especificación booleana
que expresa las regiones de interés que deben ser visitadas y/o evitadas a lo largo de las
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trayectorias, pasando por la codificación de secuencias y sincronización para las restric-
ciones espaciales en la especificación de Lógica Temporal Lineal, y concluyendo con la
especificación bajo Lógica Temporal Métrica de Intervalos, que incluye restricciones tem-
porales. Estos formalismos están asociados con un modelo de autómatas, para el cual se
pueden aplicar enfoques de verificación formal (model-checking) para verificar si la misión
es satisfecha por el movimiento de los robots.

Los capítulos siguientes de esta tesis proporcionan explicaciones detalladas de los
marcos propuestos bajo el formalismo de los Sistemas de Eventos Discretos, garantizando
objetivos de alto nivel para equipos robóticos. Por lo tanto, las conclusiones comprenden un
conjunto de contribuciones concisas al campo de la robótica, sobre las cuales se vislumbran
futuras líneas de investigación.

10.1 Contribuciones

Dos estrategias de asignación de tareas se presentan en el Capítulo 3, basadas particularmente
en una técnica de descomposición de tareas para una misión global LTL dada, resultando
en un conjunto de tareas más pequeñas e independientes que llevan a una reducción de la
complejidad del espacio de soluciones, y en una técnica de reasignación de tareas a partir de
un conjunto de trayectorias ya calculadas, forzando a los robots a un movimiento paralelo.
Este último método se basa en el algoritmo del Banquero, adecuado para problemas de
asignación de recursos. Ambos métodos dependen del modelo de Redes de Petri asociado
al movimiento de los robots, un modelo que refleja una topología fija cuando el número de
robots idénticos que evolucionan en el mismo espacio de trabajo aumenta o disminuye.

El objetivo de el Capítulo 4 es proponer un nuevo marco que combina las ventajas del
modelo de Redes de Petri, particularmente un modelo reducido conocido como "cociente",
asignado para el movimiento del equipo robótico, y un autómata de Büchi asignado a la
misión global LTL. Para esto, se agrega una capa intermedia de lugares, donde cada lugar
está asociado a una proposición atómica asignada a una región de interés, un conjunto
sobre el cual se construye la misión. La estrategia de planificación se calcula mediante dos
problemas de Programación Lineal Entera Mixta (MILP), uno considerando el modelo recién
definido de Red de Petri Compuesta, y proyectando la solución basada en el modelo reducido
hacia el modelo completo de Red de Petri del espacio de trabajo. Este marco mejora un
enfoque de planificación directa libre de colisiones en comparación con otros métodos de la
literatura basados en enfoques iterativos, utilizando la información global sobre el estado
del equipo robótico indicada por la capa intermedia de lugares. Además, este trabajo se ha
extendido a misiones MITL, considerando un modelo recién definido denominado Red de
Petri Temporal Compuesta (el Capítulo 5). Así, las restricciones temporales se encapsulan
en esta representación y se validan tanto en simulaciones como en resultados experimentales,
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considerando una aplicación industrial para un equipo de cobots que garantizan misiones
MITL individuales.

Otro marco novedoso es introducido en el Capítulo 6, denominado Modelo de Red
de Petri de Equipo Robótico de Alto Nivel bajo el paradigma Nets-within-Nets (NwN).
Según el estado del arte, este enfoque podría considerarse un avance, ya que el paradigma
NwN no ha sido previamente abordado para planificar trayectorias de un equipo robótico
heterogéneo garantizando una misión global, específicamente utilizando una fórmula LTL.
Los beneficios del formalismo NwN suelen destacarse en aplicaciones industriales, ya que
este formalismo incorpora una estructura jerárquica de Redes de Petri: redes objeto asociadas
con la información local del estado de un robot y una red del sistema asociada con la
información global sobre todo el sistema robótico. Es notable que los tokens en la red del
sistema se codifican como redes objeto.

La contribución de este trabajo es diseñar una red objeto para cada tipo de robot,
definida como RobotOPN, y diseñar una red objeto para la especificación global, definida
como SpecOPN. La coordinación entre las redes objeto se realiza mediante una función de
sincronización que garantiza que el movimiento de los robots cumpla la misión. El marco
propuesto ha sido analizado a través de simulaciones para un equipo de hasta 10 robots
heterogéneos y los resultados se compararon con otros métodos de Sistemas de Eventos
Discretos de la literatura, concluyendo con un menor tiempo de ejecución en un gran número
de simulaciones (hasta 1000 simulaciones por experimento).

Las contribuciones que se han divulgado durante la investigación del doctorado se
enumeran a continuación:

1. Cuatro artículos de revista:

(a) Sofia Hustiu, Cristian Mahulea, Marius Kloetzer, and Jean-Jacques Lesage. On
multi-robot path planning based on Petri net models and LTL specifications. In
IEEE Transactions on Automatic Control, vol. 69, no. 9, pp. 6373-6380, 2024.

(b) Sofia Hustiu, Ioana Hustiu, Marius Kloetzer, and Cristian Mahulea. LTL task de-
composition for 3D high-level path planning. In Journal of Control Engineering
and Applied Informatics, 23(3), pp.76-87, 2021.

(c) Sofia Hustiu, Eva Robillard, Joaquín Ezpeleta, Cristian Mahulea, and Marius
Kloetzer. Multi-robot Motion Planning based on Nets-within-Nets Modeling and
Simulation. Under review. Available in [Online]: https://arxiv.org/abs/2304.087
72, 2023.

(d) Sofia Hustiu. Prerequisites to Design a Collision Free Trajectory in a 3D Dy-
namic Environment for an UAV. In Bulletin of the Polytechnic Institute of Ias, i.
Electrical Engineering, Power Engineering, Electronics Section, 67(2), pp.65-78,
2021.

https://arxiv.org/abs/2304.08772
https://arxiv.org/abs/2304.08772
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2. Seis actas de conferencias:

(a) Sofia Hustiu, Alexandru-Florian Brasoveanu, and Andrei-Iulian Iancu. Inte-
gration of MITL for Cobots Workflow in a Manipulating Application. In 2024
IEEE 29th International Conference on Emerging Technologies and Factory
Automation (ETFA), 1–8, 2024.

(b) Sofia Hustiu, Dimos V. Dimarogonas, Cristian Mahulea, and Marius Kloetzer.
Multi-robot Motion Planning under MITL Specifications based on Time Petri
Nets. In 2023 European Control Conference (ECC) (pp. 1-8). IEEE, 2023.

(c) Sofia Hustiu, Cristian Mahulea, and Marius Kloetzer. Parallel motion execution
and path rerouting for a team of mobile robots. In IFAC-PapersOnLine, 55(28),
73–78. In 16th IFAC Workshop on Discrete Event Systems WODES, 2022.

(d) Sofia Hustiu, Marius Kloetzer, Eva Robillard, Alejandro López-Martínez, and
Cristian Mahulea. Whitening of greenhouse’s roof using drones and Petri net
models. In 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 1–8, 2022.

(e) Sofia Hustiu, Marius Kloetzer, and Cristian Mahulea. Mission assignment and
3D path planning for a team of UAVs. In 2021 25th International Conference on
System Theory, Control and Computing (ICSTCC) (pp. 401-406). IEEE, 2021.

(f) Sofia Hustiu, Marius Kloetzer, and Adrian Burlacu. Collision Free Path Planning
for Unmanned Aerial Vehicles in Environments with Dynamic Obstacles. In
2020 24th International Conference on System Theory, Control and Computing
(ICSTCC) (pp. 520-525). IEEE, 2020.

10.2 Direcciones de investigación futura

Las limitaciones de los marcos propuestos pueden encapsularse en los siguientes desafíos: (i)
habilitar la implementación de código abierto para todos los marcos propuestos, (ii) reducir la
complejidad computacional cuando aumenta el número de robots, (iii) fortalecer el enfoque
de planificación de Redes dentro de Redes (Nets-within-Nets) añadiendo características
que modelen la dinámica de los robots y busquen cumplir la misión bajo restricciones de
tiempo, y (iv) planificar trayectorias libres de colisiones en entornos desconocidos. Las
posibles direcciones de investigación futura para abordar estos desafíos podrían basarse en
los Sistemas de Eventos Discretos definidos a lo largo de esta tesis.

Los dos primeros puntos (i) y (ii) están relacionados con una de las contribuciones de
esta tesis, principalmente la implementación en RMTool, como se mencionó previamente. En
primer lugar, dado que el modelo de Red de Petri Compuesta está implementado y disponible
en RMTool MATLAB, esta representación podría extenderse hacia entornos parcialmente
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desconocidos. RMTool incluye una función para definir entornos parcialmente desconocidos
para robots individuales y planificar trayectorias para especificaciones Booleanas. Por
lo tanto, RMTool facilita un espacio de simulación para implementar la idea de modelar
entornos inciertos bajo el formalismo de Redes de Petri, combinado con una capa intermedia
de lugares que proporciona una vista probabilística del estado global del equipo robótico,
junto con el autómata de Büchi para la misión LTL.

De manera similar, RMTool podría extenderse hacia especificaciones MITL, ya que
actualmente solo proporciona misiones Booleanas y LTL para ser cumplidas por el equipo
robótico. Por lo tanto, la representación denominada Red de Petri Temporal Compuesta podría
construirse automáticamente para cada robot y desarrollarse un algoritmo de planificación
para una búsqueda de soluciones más controlada en contraste con el enfoque de verificación
de modelos que se ha utilizado hasta ahora en este trabajo.

El tercer desafío (iii), relacionado con el modelo de Red de Petri de equipo robótico
de alto nivel bajo el paradigma de Redes dentro de Redes, también está disponible para
los investigadores, lo que aumenta su potencial para ser adaptado a la planificación bajo
restricciones de tiempo. Un enfoque interesante sería combinar los beneficios de alto nivel de
este marco con la ejecución de trayectorias de bajo nivel, mediante la adición de algoritmos
de control. Una idea es codificar un método de control cuando una transición se activa y es
ejecutada por un robot, especificando la acción de movimiento considerando la dinámica del
robot al desplazarse desde el espacio libre hacia una región de interés.

Finalmente, la planificación de un equipo robótico en entornos desconocidos es crucial
(iv), especialmente en escenarios de búsqueda y rescate, donde los robots deben explorar el
entorno de manera coordinada sin colisionar con obstáculos. Aquí se podrían abordar varias
direcciones. Al comenzar a modelar el sistema robótico de forma probabilística, los robots
podrían proporcionar información sobre el entorno basada en su distancia hacia las regiones
de interés. Otra idea podría investigar el modelado de la incertidumbre a través de la misión
que debe cumplirse, como el formalismo de Lógica Temporal Probabilística.

Para todos los modelos propuestos, la adaptabilidad y la robustez de los marcos también
podrían mejorarse al expandirlos hacia sistemas distribuidos y aplicar algoritmos de progra-
mación matemática para reducir de manera eficiente el tiempo de resolución computacional.
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