000162689 001__ 162689
000162689 005__ 20251017144558.0
000162689 0247_ $$2doi$$a10.1007/s11075-025-02188-5
000162689 0248_ $$2sideral$$a145344
000162689 037__ $$aART-2025-145344
000162689 041__ $$aeng
000162689 100__ $$0(orcid)0000-0002-6497-7158$$aKhiar, Yasmina$$uUniversidad de Zaragoza
000162689 245__ $$aAccurate determinant computation of Cauchy-polynomial matrices
000162689 260__ $$c2025
000162689 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162689 5203_ $$aThis paper investigates the factorization of Cauchy-polynomial matrices, a structured class that generalizes Cauchy-Vandermonde matrices by incorporating polynomial bases different from the monomial basis. We analyze the impact of different polynomial bases, including q-Bernstein, h-Bernstein, and Said-Ball polynomials, on numerical accuracy. A key focus is the derivation of formulas for their determinants, satisfying the No Inaccurate Cancellation condition and ensuring high relative accuracy. The sensitivity of the algorithm under deviations of the input data is analyzed, and an upper running error bound is provided. Theoretical findings are supported by numerical experiments, demonstrating the superior accuracy of the proposed determinant formulas compared to standard computational methods, even when perturbations are considered.
000162689 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E41-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
000162689 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162689 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162689 700__ $$0(orcid)0000-0002-1101-6230$$aMainar, Esmeralda$$uUniversidad de Zaragoza
000162689 700__ $$0(orcid)0000-0002-1340-0666$$aPeña, Juan Manuel$$uUniversidad de Zaragoza
000162689 700__ $$0(orcid)0000-0003-1550-8168$$aRoyo-Amondarain, Eduardo$$uUniversidad de Zaragoza
000162689 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000162689 773__ $$g(2025), [20 pp.]$$pNumer. algorithms$$tNUMERICAL ALGORITHMS$$x1017-1398
000162689 8564_ $$s358153$$uhttps://zaguan.unizar.es/record/162689/files/texto_completo.pdf$$yVersión publicada
000162689 8564_ $$s1060731$$uhttps://zaguan.unizar.es/record/162689/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162689 909CO $$ooai:zaguan.unizar.es:162689$$particulos$$pdriver
000162689 951__ $$a2025-10-17-14:13:42
000162689 980__ $$aARTICLE